Using Dynamic Modeling to Scope Environmental Problems and Build Consensus

Total Page:16

File Type:pdf, Size:1020Kb

Using Dynamic Modeling to Scope Environmental Problems and Build Consensus Using Dynamic Modeling to Scope Environmental Problems and Build Consensus ROBERT COSTANZA tools for problem scoping and consensus building among a Center for Environmental and Estuarine Studies broad range of stakeholders and describes four case stud- Zoology Department and Institute for Ecological Economics ies in which dynamic modeling has been used to collect and University of Maryland, Box 38 organize data, synthesize knowledge, and build consensus Solomons, Maryland 20688-0038, USA about the management of complex systems. The case stud- ies range from industrial systems (mining, smelting, and re- MATTHIAS RUTH* fining of iron and steel in the United States) to ecosystems Center for Energy and Environmental Studies (Louisiana coastal wetlands, and Fynbos ecosystems in Boston University South Africa) to linked ecological economic systems (Mary- 675 Commonwealth Ave. land’s Patuxent River basin in the United States). They illus- Boston, Massachusetts 02215, USA trate uses of dynamic modeling to include stakeholders in all stages of consensus building, ranging from initial problem ABSTRACT / This paper assesses the changing role of dy- scoping to model development. The resultant models are the namic modeling for understanding and managing complex first stage in a three-stage modeling process that includes ecological economic systems. It discusses new modeling research and management models as the later stages. Types and Uses of Models rational thought at all. For many everyday decisions, mental models are sufficiently detailed and accurate to In environmental systems, nonlinearities and spatial be reliably used. Our experiences with these models are and temporal lags prevail. However, all too often these passed on to others through verbal and written accounts system features are moved to the sidelines of scientific that frequently generate a common group understand- investigations. As a consequence, the presence of nonlin- ing of the workings of a system. earities and spatial and temporal lags significantly In building mental models, humans typically simplify reduces the ability of these investigations to provide systems in particular ways. We base most of our mental insights that are necessary to make proper decisions modeling on qualitative rather than quantitative relation- about the management of complex ecological–eco- ships, we linearize the relationships among system nomic systems. New modeling approaches are required components, disregard temporal and spatial lags, treat to effectively identify, collect, and relate the informa- systems as isolated from their surroundings or limit our tion that is relevant for understanding those systems, to investigations to the system’s equilibrium domain. When make consensus building an integral part of the model- problems become more complex, and when quantita- ing process, and to guide management decisions. tive relationships, nonlinearities, and time and space Model building is an essential prerequisite for com- lags are important, we encounter limits to our ability to prehension and for choosing among alternative actions. properly anticipate system change. In such cases, our Humans build mental models in virtually all decision mental models need to be supplemented. situations, by abstracting from observations that are Statistical approaches based on historical or cross- deemed irrelevant for understanding that situation and sectional data often are used to quantify the relation- by relating the relevant parts with each other. Language ships among system components. To be able to deal itself is an expression of mental modeling, and one with multiple feedbacks among system components and could argue that without modeling there could be no with spatial and temporal lags requires the availability of rich data sets and elaborate statistical models. Recent advances in statistical methods have significantly im- KEY WORDS: Dynamic modeling; Scoping; Consensus building; En- proved the ability to test for the goodness of fit of vironmental management; Ecosystem management; alternative model specifications and have even at- Policy making; Graphical programming languages tempted to test for causality in statistical models (Granger 1969, 1993). Typically, little attention is given *Author to whom correspondence should be addressed. to first principles in attempts to use statistical models to Environmental Management Vol. 22, No. 2, pp. 183–195 ௠ 1998 Springer-Verlag New York Inc. 184 R. Costanza and M. Ruth arrive at a better understanding of the cause-effect tendency to use such models as a means of legitimizing relationships that lead to system change. Model results rather than informing policy decisions. By cloaking a are driven by data, the convenience of estimation policy decision in the ostensibly neutral aura of scien- techniques, and statistical criteria—none of which en- tific forecasting, policy-makers can deflect attention sure that the fundamental drivers for system change are from the normative nature of that decision . .’’ (Robin- satisfactorily identified (Leontief 1982, Leamer 1983). son 1993). The misguided quest for objective model By the same token, a statistical modeling exercise can building highlights the need to recognize, and more only provide insight into the empirical relationships effectively deal with, the inherent subjectivity of the over a system’s history or at a point in time, but it is of model development process. In this paper we wish to limited use for analyses of a system’s future develop- put computer modeling in its proper perspective: as an ment path under alternative management schemes inherently subjective but absolutely essential tool useful (Allen 1988). In many cases, those alternative manage- in supplementing our existing mental modeling capabili- ment schemes include decisions that have not been ties in order to make more informed decisions, both chosen in the past, and their effects are therefore not individually and in groups. captured in the data of the system’s history or present In the case of modeling ecological and economic state. systems, purposes can range from developing simple Dynamic modeling is distinct from statistical model- conceptual models, in order to provide a general ing by building into the representation of a phenom- understanding of system behavior, to detailed realistic enon those aspects of a system that we know actually applications aimed at evaluating specific policy propos- exist—such as the physical laws of material and energy als. It is inappropriate to judge this whole range of conservation that describe input–output relationships models by the same criteria. At minimum, the three in industrial and biological processes (Hannon and criteria of realism (simulating system behavior in a Ruth 1994, 1997). Dynamic modeling therefore starts qualitatively realistic way), precision (simulating behav- with an advantage over the purely statistical or empirical ior in a quantitatively precise way), and generality modeling schema. It does not rely on historic or (representing a broad range of systems’ behaviors with cross-sectional data to reveal those relationships. This the same model) are necessary (Holling 1964, Levins advantage also allows dynamic models to be used in 1966). No single model can maximize all three of these more related applications than empirical models— goals, and the choice of which objectives to pursue dynamic models are more transferable to new applica- depends on the fundamental purposes of the model. tions because the fundamental concepts on which they In this paper we propose a three-step process for are built are present in many other systems. developing computer models of a situation that begins Computers have come to play a large role in develop- with an initial scoping and consensus-building stage ing dynamic models for decision-making support in aimed at producing simplified, high generality models, complex systems. Their ability to numerically solve for and then moving to a more realistic research modeling complex nonlinear relationships among system compo- stage, and only then coming to a high precision manage- nents and to deal with time and space lags and disequi- ment model stage. We elaborate this process further on. librium conditions make obsolete the use of linear functional relationships or restriction of the analysis to Using Models to Build Consensus equilibrium points. It is inappropriate to think of models as anything but Models of complex system behavior are frequently crude—yet in many cases absolutely essential—abstract used to support decisions on environmental invest- representations of complex interrelationships among ments and problems. To effectively use those models, system components (Levins 1966, Robinson 1991, Ruth i.e., to foster consensus about the appropriateness of and Cleveland 1996). Their usefulness can be judged by their assumptions and results and thus to promote a their ability to help solve decision problems as the high degree of compliance with the policies derived dynamics of the real system unfold (Ruth and Hannon from the models, it is not enough for groups of 1997). The dynamic models presented in this paper are academic experts to build integrated dynamic com- designed with that criterion in mind. They are interac- puter models. What is required is a new role for tive tools that reflect the processes that determine modeling as a tool in building a broad consensus not system change and respond to the choices made by a only across academic disciplines, but
Recommended publications
  • What's in a Mental Model of a Dynamic System? Conceptual Structure and Model Comparison
    What’s in a mental model of a dynamic system? Conceptual structure and model comparison Martin Schaffernicht Facultad de Ciencias Empresariales Universidad de Talca Avenida Lircay s/n 3460000 Talca, CHILE [email protected] Stefan N. Groesser University of St. Gallen Institute of Management System Dynamics Group Dufourstrasse 40a CH - 9000 St. Gallen, Switzerland Tel: +41 71 224 23 82 / Fax: +41 71 224 23 55 [email protected] Contribution to the International System Dynamics Conference 2009 Albuquerque, NM, U.S.A. Abstract This paper deals with the representation of mental models of dynamic systems (MMDS). Improving ’mental models’ has always been fundamental in the field of system dynamics. Even though a specific definition exists, no conceptual model of the structure of a MMDS has been offered so far. Previous research about the learning effects of system dynamics interventions have used two methods to represent and analyze mental models. To what extend is the result of these methods comparable? Can they be used to account for a MMDS which is suitable for the system dynamics methodology? Two exemplary MMDSs are compared with both methods. We have found that the procedures and results differ significantly . In addition, neither of the methods can account for the concept of feedback loops. Based on this finding, we propose a conceptual model for the structure of a MMDS, a method to compare them, and a revised definition of MMDS. The paper concludes with a call for more substantive research. Keywords : Mental models, dynamic systems, mental model comparison, graph theory, mental model measurement Introduction Mental models have been a key concept in system dynamics from the beginning of the field (Forrester, 1961).
    [Show full text]
  • ESD.00 Introduction to Systems Engineering, Lecture 3 Notes
    Introduction to Engineering Systems, ESD.00 System Dynamics Lecture 3 Dr. Afreen Siddiqi From Last Time: Systems Thinking • “we can’t do just one thing” – things are interconnected and our actions have Decisions numerous effects that we often do not anticipate or realize. Goals • Many times our policies and efforts aimed towards some objective fail to produce the desired outcomes, rather we often make Environment matters worse Image by MIT OpenCourseWare. Ref: Figure 1-4, J. Sterman, Business Dynamics: Systems • Systems Thinking involves holistic Thinking and Modeling for a complex world, McGraw Hill, 2000 consideration of our actions Dynamic Complexity • Dynamic (changing over time) • Governed by feedback (actions feedback on themselves) • Nonlinear (effect is rarely proportional to cause, and what happens locally often doesn’t apply in distant regions) • History‐dependent (taking one road often precludes taking others and determines your destination, you can’t unscramble an egg) • Adaptive (the capabilities and decision rules of agents in complex systems change over time) • Counterintuitive (cause and effect are distant in time and space) • Policy resistant (many seemingly obvious solutions to problems fail or actually worsen the situation) • Char acterized by trade‐offs (h(the l ong run is often differ ent f rom the short‐run response, due to time delays. High leverage policies often cause worse‐before‐better behavior while low leverage policies often generate transitory improvement before the problem grows worse. Modes of Behavior Exponential Growth Goal Seeking S-shaped Growth Time Time Time Oscillation Growth with Overshoot Overshoot and Collapse Time Time Time Image by MIT OpenCourseWare. Ref: Figure 4-1, J.
    [Show full text]
  • Issues to Consider While Developing a System Dynamics Model
    Issues to Consider While Developing a System Dynamics Model Elizabeth K. Keating Kellogg Graduate School of Management Northwestern University Leverone Hall, Room 599 Evanston, IL 60208-2002 Tel: (847) 467-3343 Fax: (847) 467-1202 e-mail: [email protected] August 1999 I. Introduction Over the past forty years, system dynamicists have developed techniques to aid in the design, development and testing of system dynamics models. Several articles have proposed model development frameworks (for example, Randers (1980), Richardson and Pugh (1981), and Roberts et al. (1983)), while others have provided detailed advice on more narrow modeling issues. This note is designed as a reference tool for system dynamic modelers, tying the numerous specialized articles to the modeling framework outlined in Forrester (1994). The note first reviews the “system dynamics process” and modeling phases suggested by Forrester (1994). Within each modeling phase, the note provides a list of issues to consider; the modeler should then use discretion in selecting the issues that are appropriate for that model and modeling engagement. Alternatively, this note can serve as a guide for students to assist them in analyzing and critiquing system dynamic models. II. A System Dynamic Model Development Framework System dynamics modelers often pursue a similar development pattern. Several system dynamicists have proposed employing structured development procedures when creating system dynamics models. Some modelers have often relied on the “standard method” proposed by Randers (1980), Richardson and Pugh (1981), and Roberts et al. (1983) to ensure the quality and reliability of the model development process. Forrester (1994) Recently, Wolstenholme (1994) and Loebbke and Bui (1996) have drawn upon experiences in developing decision support systems (DSS) to provide guidance on model construction and analysis.
    [Show full text]
  • Generic and Reusable Structure in Systems Dynamics Modelling: Roadmap of Literature and Future Research Questions
    Generic and reusable structure in systems dynamics modelling: roadmap of literature and future research questions Sondoss ElSawah1,2, Alan McLucas3, Mike Ryan3 1Post-doctoral researcher, School of Information Technology and Electrical Engineering, University of New South Wales, Canberra, Australia 2 Adjunct Fellow, Integrated Catchment Assessment and Management Centre, Fenner School of Environment & Society, Australian National University, Canberra, Australia 3 Senior lecturer, School of Information Technology and Electrical Engineering, University of New South Wales, Canberra, Australia UNSW Australia at the Australian Defence Force Academy Northcott Drive, Canberra ACT 2600 Ph. +61 (0)2 6125 9021, +61 (0)4 3030 3946 Fax 61 (0)2 6125 8395 [email protected] Abstract In the systems dynamics literature, some research efforts have focused on the idea of developing generic and reusable modelling elements. This literature is largely fragmented, which makes it challenging, especially for newcomers, to synthesise what has been achieved and to identify potential research directions. Key insights from the paper are that there is little research into the process of designing reusable structures, and there is a clear gap between the design of these structures and how they can be used effectively in practice. We envisage that emerging research directions such as exploratory system dynamics modelling and XMILE may present opportunities to refresh interest in the topic. Keywords: generic structures, molecules, system dynamics-meta model, object-oriented Introduction In the first issue of the Systems Dynamics Review, Paich (1985) presented the topic of “generic structures” as a research problem, and put forward to the system dynamics community questions about their meaning, research value, utility to policy makers, and the approach to identify and validate them.
    [Show full text]
  • System Dynamics Modeling in Science and Engineering
    SYSTEM DYNAMICS MODELING IN SCIENCE AND ENGINEERING Hans U. Fuchs Department of Physics and Mathematics Zurich University of Applied Sciences at Winterthur 8401 Winterthur, Switzerland e-mail: [email protected] Invited Talk at the System Dynamics Conference at the University of Puerto Rico Resource Center for Science and Engineering, Mayaguez, December 8-10, 2006 Abstract: Modeling—both formal and computer based (numerical)—has a long and important history in physical science and engineering. Each field has developed its own metaphors and tools. Modeling is as diverse as the fields themselves. An important feature of modeling in science and engineering is its formal character. Computer modeling in particular is assumed to involve many aspects a student can only learn after quite some time at college. These aspects include subject matter, analytical and numerical mathemat- ics, and computer science. As a consequence, students learn modeling of complex systems and processes late. The diversity and complexity of the traditional forms of modeling call for a unified and simpli- fied methodology. This can be found in system dynamics modeling. System dynamics tools al- low for an intuitive approach to the modeling of dynamical systems from any imaginable field and can be approached by even quite young learners. In this paper, I shall argue that system dynamics modeling is not only simple but also powerful (simple ideas can be combined into models of complex systems and processes), useful (it makes the integration of modeling and experimenting a simple matter), and natural (the simple ideas behind SD models correspond to a basic form of human thought).
    [Show full text]
  • An Introduction to a Simple System Dynamics Model of Long-Run Endogenous Technological Progress, Resource Consumption and E
    Faculty & Research An Introduction to REXS a Simple System Dynamics Model of Long-Run Endogenous Technological Progress, Resource Consumption and Economic Growth by B. Warr and R. Ayres 2003/15/EPS/CMER Working Paper Series CMER Center for the Management of Environmental Resources An introduction to REXS a simple system dynamics model of long-run endogenous technological progress, resource consumption and economic growth. Benjamin Warr and Robert Ayres Center for the Management of Environmental Resources INSEAD Boulevard de Constance Fontainebleau Cedex 77300 November 2002 Keywords : technological progress, economic output, system dynamics, natural resources, exergy. DRAFT - Journal Publication. [email protected] http://TERRA2000.free.fr Abstract This paper describes the development of a forecasting model called REXS (Resource EXergy Services) capable of accurately simulating the observed economic growth of the US for the 20th century. The REXS model differs from previous energy-economy models such as DICE and NICE (Nordhaus 1991) by replacing the requirement for exogenous assumptions of con- tinuous exponential growth for a simple model representing the dynamics of endogenous technological change, the result of learning from production experience. In this introductory paper we present new formulations of the most important components of most economy- energy models the capital accumulation, resource use (energy) and technology-innovation mechanisms. Robust empirical trends of capital and resource intensity and the technical effi- ciency of exergy conversion were used to parameterise a very parsimonious model of economic output, resource consumption and capital accumulation. Exogenous technological progress assumptions were replaced by two learning processes: a) cumulative output and b) cumulative energy service production experience.
    [Show full text]
  • Software Reliability Simulation: Process, Approaches and Methodology by Javaid Iqbal, Dr
    Global Journal of Computer Science and Technology Volume 11 Issue 8 Version 1.0 May 2011 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) ISSN: 0975-4172 & Print ISSN: 0975-4350 Software Reliability Simulation: Process, Approaches and Methodology By Javaid Iqbal, Dr. S.M.K. Quadri University of Kashmir Abstract- Reliability is probably the most crucial factor to put ones hand up for in any engineering process. Quantitatively, reliability gives a measure (quantity) of quality, and the quantity can be properly engineered using appropriate reliability engineering process. Software Reliability Modeling has been one of the much-attracted research domains in Software Reliability Engineering, to estimate the current state as well as predict the future state of the software system reliability. This paper aims to raise awareness about the usefulness and importance of simulation in support of software reliability modeling and engineering. Simulation can be applied in many critical and touchy areas and enables one to address issues before they these issues become problems. This paper brings to fore some key concepts in simulation-based software reliability modeling. This paper suggests that the software engineering community could exploit simulation to much greater advantage which include cutting down on software development costs, improving reliability, narrowing down the gestation period of software development, fore-seeing the software development process and the software product itself and so on. Keywords: Software Reliability ngineering, Software Reliability, Modeling, Simulation, Simulation model. GJCST Classification: C.4, D.2.4 Software Reliability Simulation Process, Approaches and Methodology Strictly as per the compliance and regulations of: © 2011 Javaid Iqbal, Dr.
    [Show full text]
  • A System Dynamics Model for Business Process Change Projects
    A System Dynamics Model for Business Process Change Projects Zuzana Rosenberg, Tobias Riasanow, Helmut Krcmar Technische Universität München Chair of Information Systems Boltzmannstr. 3 Garching b. München, Germany zuzana.rosenberg|tobias.riasanow|[email protected] Abstract At present, companies are confronted with a rapidly changing environment that is characterized by high market pressure and technological development, which results in shorter delivery times, lower development costs, and increasingly complex business processes. Companies must be continuously prepared to adapt to changes to remain competitive and profitable. Thus, many companies are undergoing significant business process change (BPC) to increase business process flexibility and enhance their performance. Various researchers have advanced the domain of BPC over the last twenty years, proposing several managerial concepts, principles, and guidelines for BPC. However, many BPC projects still fail. BPC is seen as a complex endeavor, and its decisions are shaped by many dynamic and interacting factors that are difficult to predict. Thus, this paper proposes a system dynamics simulation model that conveys the complex relationships between important constructs in BPC. The resulting model is based on results compiled from 130 BPC case studies. BPC researchers can use the proposed model as a starting point for analyzing and understanding BPC decisions under different policy changes. Practitioners will obtain a ready-to-use simulation model to make various BPC decisions. Keywords: Business process change, system dynamics, simulation model, meta-case analysis 1. Introduction Today’s dynamic and unpredictable business environment, shrinking product lifecycles, and rapidly changing customer requirements, as well as the effects of recent financial crises, are only some of the main reasons why companies must be continuously prepared to face changes.
    [Show full text]
  • System Dynamics Modeling
    System Dynamics Modeling AN APPROACH TO PLANNING AND DEVELOPING STRATEGY IN THE CHANGING ELECTRICITY INDUSTRY PREPARED BY T. Bruce Tsuchida The Brattle Group Lawrence E. Jones Edison Electric Institute April 2019 Notice ––––– This white paper reflects the perspectives and opinions of the authors and does not necessarily reflect those of The Brattle Group’s clients or other consultants, nor of the Edison Electric Institute (EEI) and its members. However, we are grateful for the valuable contributions of Philip Q Hanser, Frank Graves, Nicole Irwin, and Kevin Arritt. Where permission has been granted to publish excerpts of this white paper for any reason, the publication of the excerpted material must include a citation to the complete white paper, including page references. Copyright © 2019 The Brattle Group, Inc. The electric utility business is changing in complex ways. Supply-driven hierarchical structures are being challenged by new technologies that are largely distributed and characterized by decentralized decision-making. Customer adoption is partly based on the economics of energy but also on cultural and other factors less familiar to utility industry planners. Understanding the feedbacks and interdependencies caused by these changes is becoming more important than ever. Such feedbacks and interdependencies may be on a macro scale, such as how utility decisions affect the job market and overall economy, or on a more local scale, such as how the adoption of new technologies can affect the planning and operational paradigms of utilities and the associated impacts they may lead to. This paper introduces the structure and insights of a modeling approach, known as System Dynamics, that is well- suited to helping understand these feedbacks and interdependencies, and to developing effective strategies against these ongoing changes.
    [Show full text]
  • System Dynamics and Cybernetics: a Necessary Synergy
    International System Dynamics Conference, Oxford, July 2004 System Dynamics and Cybernetics: A Necessary Synergy Markus Schwaninger, University of St. Gallen, Switzerland José Pérez Ríos, Universidad de Valladolid, Spain Kristjan Ambroz, University of St. Gallen, Switzerland August 13, 2004 1 Abstract In line with the conference theme – „Collegiality“ – the authors propose to build a bridge between two Systems Approaches, namely System Dynamics (SD) and Management Cybernetics (MC). This synthesis is aimed at opening a path for a better capability to deal with complex issues of actors in both organizations and society. With their respective strengths – modelling and simulation of content issues for SD, and providing a viable organizational context for MC - a combination appears to be potentially promising. The authors propose the Integrative Systems Methodology as a framework for combining SD and MC, and they give practical illustrations to support their argument. 2 Introduction In this paper we identify a complementarity of the two fields, System Dynamics and Management Cybernetics for applications to social systems. We propose that this complementarity should be explored synergistically. We shall also give an outline for building a bridge between System Dynamics and Management Cybernetics. One does not build a bridge for the sake of construction, but because one wants to establish a necessary connection. The purpose of this paper is to show why and how System Dynamics (SD) and Management Cybernetics (MC) are complementary. Both disciplines are rooted in the Systems Approach, and therewith have bred methodologies for dealing with complexity. Both originate from a common theoretical basis, General System Theory and Information Theory. But each one also has additional roots in disciplines or theories, which are specific to it, in particular, Neurophysiology and Set Theory for Management Cybernetics, Engineering and Control Theory for System Dynamics.
    [Show full text]
  • A System Dynamics Model of Employees' Performance
    sustainability Article A System Dynamics Model of Employees’ Performance Mudhafar Alefari, Mohammed Almanei and Konstantinos Salonitis * Manufacturing Department, Cranfield University, Bedford MK43 0AL, UK; m.alefari@cranfield.ac.uk (M.A.); [email protected] (M.A.) * Correspondence: k.salonitis@cranfield.ac.uk; Tel.: +44-1234-758347 Received: 15 May 2020; Accepted: 7 August 2020; Published: 12 August 2020 Abstract: Employee performance is dynamic and can have great impact on the overall performance of any company and its sustainability. A number of factors that can be controlled by the company can affect the employees’ performance. The present paper starts with a thorough literature review for identifying these key driving in order to develop a system dynamics models that will be able to assess different improvement scenarios and initiatives. Based on causal loop diagrams, stock and flow diagrams are developed and solved using system dynamics theory. The model developed can be used for organizations to assess the impact of different improvement initiatives. Keywords: employee performance; system dynamics; manufacturing; modelling 1. Introduction Employee performance is dynamic and can have great impact on the overall performance of any organization and its sustainability. This is understood by companies, and human resource management departments are responsible for measuring the performance of the employees. One of their key objectives is to develop methods and policies for improving their performance constantly. Such practices include training of employees, providing initiatives such as bonuses, and days off. Employee performance management is critical in human resource management. Through employee performance management, the senior management and leadership attempts to align the organizational objectives with the employees’ agreed key performance indicators (KPIs).
    [Show full text]
  • A Recent Overview of the Integration of System Dynamics and Agent-Based Modelling and Simulation
    A recent overview of the integration of System Dynamics and Agent-based Modelling and Simulation Graciela d. C. Nava Guerrero*1, Philipp Schwarz*1, Jill H Slinger1,2 1 Faculty of Technology, Policy and Management, Delft University of Technology, Netherlands 2 Faculty of Civil Engineering and Geosciences, Delft University of Technology, Netherlands Correspondance should be addressed to [email protected] and [email protected] March 22, 2016 Abstract: Modelling and simulation aim to reproduce the structure and imitate the behavior of real-life systems. For complex dynamic systems, System Dynamics (SD) and Agent-based (AB) modelling are two widely used modelling paradigms that prior to the early 2010’s have traditionally been viewed as mutually exclusive alternatives. This literature review seeks to update the work of Scholl (2001) and Macal, (2010) by providing an overview of attempts to integrate SD and AB over the last ten years. First, the building blocks of both paradigms are presented. Second, their capabilities are contrasted, in order to explore how their integration can yield insights that cannot be generated with one methodology alone. Then, an overview is provided of recent work comparing the outcomes of both paradigms and specifying opportunities for integration. Finally, a critical reflection is presented. The literature review concludes that while paradigm emulation has contributed to expanding the applications of SD, it is the dynamic combination of the two approaches that has become the most promising research line. Integrating SD and AB, and even tools and methods from other disciplines, makes it possible to avoid their individual pitfalls and, hence, to exploit the full potential of their complementary characteristics, so as to provide a more complete representation of complex dynamic systems.
    [Show full text]