Rodentia Knagers Rodents Rongeurs Nagetiere Roedores Knaagdieren

Total Page:16

File Type:pdf, Size:1020Kb

Rodentia Knagers Rodents Rongeurs Nagetiere Roedores Knaagdieren Blad1 ABCDEFGHIJK L M N O P Q 2 Mammalia met melkklier Mammals Mammifères Säugetiere Mamiféros Zoogdieren 3 Rodentia knagers Rodents Rongeurs Nagetiere Roedores Knaagdieren 4 Myomorpha muis + vorm Mouse-like rodents Myomorphs Mauseverwandten Miomorfos Muisachtigen 5 Dipodoidea tweepoot + idea Jerboa-like rodents Berken-, Huppel- & Springmuizen 6 Sminthidae Grieks sminthos = muis + idae Birch mice Berkenmuizen 7 Sicista Berkenmuizen 8 S. caudata met staart Long-tailed birch mouse Siciste à longue queue Langschwanzbirkenmaus Ratón listado de cola largo Langstaartberkenmuis 9 S. concolor eenkleurig Chinese birch mouse Siciste de Chine China-Birkenmaus Ratón listado de China Chinese berkenmuis 10 S.c. concolor eenkleurig Gansu birch mouse Gansuberkenmuis 11 S.c. leathemi Leathem ??? Kashmir birch mouse Kasjmirberkenmuis 12 S.c. weigoldi Hugo Weigold Sichuan birch mouse Sichuanberkenmuis 13 S. tianshanica Tiensjangebergte, Azië Tian Shan birch mouse Siciste du Tian Shan Tienschan-Birkenmaus Ratón listado de Tien Shan Tiensjanberkenmuis 14 S. caucasica Kaukassisch Caucasian birch mouse Siciste du Caucase Kaukasus-Birkenmaus Ratón listado del Cáucaso Kaukasusberkenmuis 15 S. kluchorica Klukhorrivier, Kaukasus Kluchor birch mouse Siciste du Klukhor Kluchor-Birkenmaus Ratón listado de Kluchor Klukhorberkenmuis 16 S. kazbegica Kazbegi-district, Georgië Kazbeg birch mouse Siciste du Kazbegi Kazbeg-Birkenmaus Ratón listado de Kazbegi Kazbekberkenmuis 17 S. armenica Armeens Armenian birch mouse Siciste d'Arménie Armenien-Birkenmaus Ratón listado de Armenia Armeense berkenmuis 18 S. napaea een weidenimf Altai birch mouse Siciste de l'Altaï Nördliche Altai-Birkenmaus Ratón listado de Altái Altaiberkenmuis 19 S.n. napaea weidenimf West-Altaiberkenmuis 20 S.n. tschingistauca Tsjingiz-Tau-bergen, Kazachstan Kazachberkenmuis 21 S. pseudonapaea lijkend op napaea Gray birch mouse Siciste grise Südliche Altai-Birkenmaus Ratón listado gris Grijze berkenmuis 22 S. betulina van de berk Northern birch mouse Siciste des bouleaux Waldbirkenmaus Ratón listado septentrional Berkenmuis 23 S.b. betulina van de berk Oost-Europese berkenmuis 24 S.b. montana van de berg Bergberkenmuis 25 S.b. norvegica Noors Noorse berkenmuis 26 S.b. taigica van de taiga Taigaberkenmuis 27 S. strandi Strand Strand's birch mouse Siciste de Strand Strand-Steppenbirkenmaus Ratón listado de Strand Strands berkenmuis 28 S. subtilis fijngebouwd Southern birch mouse Siciste des steppes Steppenbirkenmaus Ratón listado meridional Driekleurige muis 29 S.s. subtilis fijngebouwd Ob-berkenmuis 30 S.s. cimlanica Tsimlyansk, Rusland Don-berkenmuis 31 S.s. severtzovi Nikolai Severtzov Aleksejevitsj Severtzov's birch mouse Severtzovs berkenmuis 32 S.s. sibirica Siberië Siberian birch mouse Siberische berkenmuis 33 S.s.vaga zwervend Pale birch mouse Bleke berkenmuis 34 S. trizona drie gordels Hungarian birch mouse Siciste de Hongrie Ungarn-Steppenbirkenmaus Ratón listado de Hungría Hongaarse berkenmuis 35 S.t. trizona drie gordels Echte Hongaarse berkenmuis 36 S.t. transylvanica Transsylvanië Transylvanian birch mouse Transsylvaanse berkenmuis 37 S. loriger riemdragend Nordmann's birch mouse Siciste de Nordmann Nordmann-Steppenbirkenmaus Ratón listado de Nordmann Nordmanns berkenmuis 38 Zapodidae erg + poot + -idae Jumping mice Hüpfmäuse Huppelmuizen 39 Eozapus vroege Zapus Chinese huppelmuizen 40 E. setchuanus Sichuan, China Chinese jumping mouse Zapode de chine China-Hüpfmaus Ratón saltador de China Chinese huppelmuis 41 Sichuan jumping mouse 42 Zapus erg + poot Echte huppelmuizen 43 Z. hudsonius Van de Hudson Baai Meadow jumping mouse Zapode des champs Wiesenhüpfmaus Ratón saltador de pradera Graslandhuppelmuis 44 Hudson Bay jumping mouse 45 Z.h. hudsonius Hudson Baai Hudsonhuppelmuis 46 Z.h. acadicus Acadië, NO-Canada Acadische huppelmuis 47 Z.h. alascensis Alaskaans Alaskahuppelmuis 48 Z.h. americanus Amerikaans Amerikaanse huppelmuis 49 Z.h. campestris van het veld Prairiehuppelmuis 50 Z.h. canadensis Canadees Canadese huppelmuis 51 Z.h. intermedius er tussen in Middelste huppelmuis 52 Z. h. ladas een renner van Alexander de Grote Labradorhuppelmuis 53 Z.h. luteus saffraankleurig Arizonahuppelmuis 54 Z.h. pallidus bleek Bleke huppelmuis 55 Z. h. preblei Edward Alexander Preble Preble's huppelmuis 56 Z.h. tenellus delicaat Brits-Columbiaanse huppelmuis 57 Z. trinotatus hier: driekleurig Pacific jumping mouse Zapode du Pacifique Pazifik-Hüpfmaus Ratón saltador del Pacífico Pacifische huppelmuis 58 Coast jumping mouse 59 Z.t. trinotatus hier: driekleurig Driekleurige huppelmuis 60 Z.t. eureka ik heb het! Eurekahuppelmuis 61 Z.t. montanus van de berg Berghuppelmuis 62 Z.t. orarius van de kust Point Reyes jumping mouse Kusthuppelmuis 63 Z. princeps de voornaamste Western jumping mouse Zapode de l'Ouest Westliche Hüpfmaus Ratón saltador occidental Westelijke huppelmuis 64 Pacific jumping mouse 65 Z.p. princeps de voornaamste Montanahuppelmuis 66 Z.p. chrysogenys goudwang Goudwanghuppelmuis 67 Z.p. cinereus asgrijs Grijze huppelmuis 68 Z.p. curtatus kort Nevadahuppelmuis 69 Z.p. idahoensis uit Idaho, VS Idahohuppelmuis 70 Z.p. kootenayensis Kootenayrivier, Noord-Amerika Kootenayhuppelmuis 71 Z.p. minor klein Kleine huppelmuis 72 Z.p. oregonus Uit Oregon, VS Oregonhuppelmuis 73 Z.p. pacificus Pacifisch Californische huppelmuis 74 Z.p. saltator danser Springhuppelmuis 75 Z.p. utahensis Utah, VS Utahhuppelmuis 76 Napaeozapus bebost valleitje + sterk + poot Boshuppelmuizen 77 N. isignis iets onderscheidends Woodland jumping mouse Zapode des bois Waldhüpfmaus Ratón saltador de bosque Boshuppelmuis 78 N.i. insignis iets onderscheidends Opvallende boshuppelmuis 79 N.i. abietorum van de zilverspar Sparrenboshuppelmuis 80 N.i. frutectanus van het struikgewas Struikhuppelmuis 81 N.i. roanensis Roan(oke?), VS Virginiaboshuppelmuis 82 N.i. saguenayensis Saguenay-rivier, Canada Sagenayboshuppelmuis 83 Dipodidae tweepoot + idae Jerboas Springmuizen 84 Cardiocraniinae hart + schedel + inae Pygmy jerboas Dwergspringmuizen 85 Cardiocranius hart + schedel Vijfteendwergspringmuizen 86 C. paradoxus onverwacht Five-toed pygmy jerboa Gerboise à cinq doigts Fünfzehen-Zwergspringmaus Jerbo pigmeo pentadáctylo Vijfteendwergspringmuis 87 Five-toed dwarf jerboa 88 Satunin's jerboa 89 Salpingotus trompet + oor Drieteendwergspringmuizen 90 S. kozlovi Pjotr Kozlov Kozlov's pygmy jerboa Gerboise de Kozlov Kozlov-Dreizehenzwergspringmaus Jerbo pigmeo de Kozlov Kozlovdwergspringmuis 91 Three-toed dwarf jerboa 92 S.k. kozlovi Pjotr Kozlov Mongoolse dwergspringmuis 93 S.k. xiangi Xinjiang, China Xiangdwergspringmuis 94 S. crassicauda dikstaart Thick-tailed pygmy jerboa Gerboise à queue grasse Dickschwanz-Dreizehenzwergspringmaus Jerbo pigmeo de cola gruesa Dikstaartdwergspringmuis 95 S.c. crassicauda dikstaart Dzungarian thick-tailed pygmy jerboa Dzjoengarijse dwergspringmuis 96 S.c. gobicus van de Gobiwoestijn Gobi thick-tailed jerboa Gobidwergspringmuis 97 S. heptneri Vladimir Georgievitsj Heptner Heptner's pygmy jerboa Gerboise de Heptner Heptner-Dreizehenzwergspringmaus Jerbo pigmeo de Heptner Heptners dwergspringmuis Pagina 1 Blad1 ABCDEFGHIJK L M N O P Q 98 S. pallidus bleek Pallid pygmy jerboa Gerboise pâle Blasse Dreizehenzwergspringmaus Jerbo pigmeo pálido Bleke dwergspringmuis 99 Pale pygmy jerboa 100 S.p. pallidus bleek Pale pygmy Aral jerboa Araldwergspringmuis 101 S.p. sludskii A.A. Sludski Pale pygmy Balkash jerboa Balkashdwergspringmuis 102 S. thomasi Thomas's pygmy jerboa Gerboise de Thomas Thomas-Dreizehenzwaergspringmaus Jerbo pigmeo de Thomas Thomas' dwergspringmuis 103 S. michaelis Michaelis ??? Balochistan pygmy jerboa Gerboise du Baloutchistan Balutschistan- Dreizehenzwergspringmaus Jerbo pigmeo de Baluchistán Baloechistandwergspringmuis 104 Dwarf three-toed jerboa 105 Euchoreutinae echt + reidanser + inae Long-eared jerboas Grootoorspringmuizen 106 Euchoreutes echt + reidanser Grootoorspringmuizen 107 E. naso neus Long-eared jerboa Gerboise à longues oreilles Riesenohr-Springmaus Jerbo de orejas largas Grootoorspringmuis 108 E.n. naso neus Tarimgrootoorspringmuis 109 E.n. alashanicus Helanbergen = Alashan, China Helangrootoorspringmuis 110 E.n. yiwuensis Yiwu, China Dzjoengarijse grootoorspringmuis 111 Allactaginae Mongoolse naam + inae Five-toed jerboas Paardenspringmuizen 112 Allactaga Mongoolse naam Sowjetpaardespringmuizen 113 A. major groot Great jerboa Grande gerboise Großer Pferdespringer Jerbo grande Grote paardenspringmuis 114 A.m. major groot Russische paardenspringmuis 115 A.m. djetysuensis Djetisu, Kazachstan Kazachse paardenspringmuis 116 A.m. spiculum speer(punt) Altaipaardenspringmuis 117 A. severtzovi Nikolai Aleksejevitsj Severtsov Severtzov's jerboa Gerboise de Severtzov Severtzov-Pferdespringer Jerbo de Severtzov Severtzovs paardenspringmuis 118 A.s. severtzovi Nikolai Aleksejevitsj Severtsov Almatypaardenspringmuis 119 A.s. chorezmi Chorasmië, Centraal Azië Chorasmische paardenspringmuis 120 Allactodipus Allactaga + tweepoot Bobrinski's springmuizen 121 A. bobrinskii Nikolai Aleksejevitsj Bobrinski Bobrinski's jerboa Gerboise de Bobrinski Bobrinski-Springmaus Jerbo de Bobrinski Bobrinski's springmuis 122 Orientallactaga oost + Allactaga Aziatische paardenspringmuizen 123 O. sibirica Siberisch Siberian jerboa Gerboise de Sibérie Siberien-Pferdespringer Jerbo de Siberia Siberische paardenspringmuis 124 Mongolian five-toed jerboa 125 Siberian five-toed jerboa 126 O.s. sibirica Siberisch Mongoolse paardenspringmuis 127 O.s. altorum (op)voeder Tiensjanpaardenspringmuis 128 O.s. bulganensis
Recommended publications
  • MAMMALS of OHIO F I E L D G U I D E DIVISION of WILDLIFE Below Are Some Helpful Symbols for Quick Comparisons and Identfication
    MAMMALS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE Below are some helpful symbols for quick comparisons and identfication. They are located in the same place for each species throughout this publication. Definitions for About this Book the scientific terms used in this publication can be found at the end in the glossary. Activity Method of Feeding Diurnal • Most active during the day Carnivore • Feeds primarily on meat Nocturnal • Most active at night Herbivore • Feeds primarily on plants Crepuscular • Most active at dawn and dusk Insectivore • Feeds primarily on insects A word about diurnal and nocturnal classifications. Omnivore • Feeds on both plants and meat In nature, it is virtually impossible to apply hard and fast categories. There can be a large amount of overlap among species, and for individuals within species, in terms of daily and/or seasonal behavior habits. It is possible for the activity patterns of mammals to change due to variations in weather, food availability or human disturbances. The Raccoon designation of diurnal or nocturnal represent the description Gray or black in color with a pale most common activity patterns of each species. gray underneath. The black mask is rimmed on top and bottom with CARNIVORA white. The raccoon’s tail has four to six black or dark brown rings. habitat Raccoons live in wooded areas with Tracks & Skulls big trees and water close by. reproduction Many mammals can be elusive to sighting, leaving Raccoons mate from February through March in Ohio. Typically only one litter is produced each year, only a trail of clues that they were present.
    [Show full text]
  • Mammalia: Rodentia) Around Amasya, Turkey
    Z. ATLI ŞEKEROĞLU, H. KEFELİOĞLU, V. ŞEKEROĞLU Turk J Zool 2011; 35(4): 593-598 © TÜBİTAK Research Article doi:10.3906/zoo-0910-4 Cytogenetic characteristics of Microtus dogramacii (Mammalia: Rodentia) around Amasya, Turkey Zülal ATLI ŞEKEROĞLU1,*, Haluk KEFELİOĞLU2, Vedat ŞEKEROĞLU1 1Ordu University, Faculty of Arts and Sciences, Department of Biology, 52200 Ordu - TURKEY 2Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Biology, 55139 Kurupelit, Samsun - TURKEY Received: 02.10.2009 Abstract: Th e banding patterns of chromosomes of Microtus dogramacii, a recently described vole species endemic to Turkey, were studied. G-, C-, and Ag-NOR-banded patterns of this species are reported here for the fi rst time. In this study, 2 karyotypical forms were determined. Each form had the same diploid chromosome numbers (2n = 48), but possessed diff erent autosomal morphologies. For this reason, the samples collected from the research area were karyologically separated into 2 groups, cytotype-1 (NF = 50) and cytotype-2 (NF = 52). All chromosomes possessed centromeric/pericentromeric heterochromatin bands in both karyotypical forms. It was shown that the acrocentric chromosomes of pair 8 in cytotype-1 have been transformed into metacentric chromosomes in cytotype-2 through pericentric inversion. Variation in the number of active NORs was also observed, but the modal number of active NORs was 8. Due to the chromosomal variation found in M. dogramacii, the cytogenetic results presented in this study may represent a process of chromosomal speciation. Key words: Microtus dogramacii, karyology, pericentric inversion, Turkey Amasya (Türkiye) çevresindeki Microtus dogramacii (Mammalia: Rodentia)’nin sitogenetik özellikleri Özet: Türkiye için endemik olan yeni tanımlanmış bir tarla faresi, Microtus dogramacii’nin kromozomlarının bantlı örnekleri çalışıldı.
    [Show full text]
  • Mammals of the California Desert
    MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif.
    [Show full text]
  • Long-Term Monitoring Reveals Topographical Features and Vegetation Explain Winter Habitat Use of an Arctic Rodent
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.24.427984; this version posted January 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 Long-term monitoring reveals topographical features and vegetation explain winter habitat 3 use of an Arctic rodent 4 Abstract 5 Collapsing lemming cycles have been observed across the Arctic, presumably due to global 6 warming creating less favorable winter conditions. The quality of wintering habitats, such as 7 depth of snow cover, plays a key role in sustaining population dynamics of arctic lemmings. 8 However, few studies so far investigated habitat use during the arctic winter. Here, we used a 9 unique long-term time series to test whether lemmings are associated with topographical and 10 vegetational habitat features for their winter refugi. We examined yearly numbers and 11 distribution of 22,769 winter nests of the collared lemming Dicrostonyx groenlandicus from 12 an ongoing long-term research on Traill Island, Northeast Greenland, collected between 1989 13 and 2019, and correlated this information with data on dominant vegetation types, elevation 14 and slope. We specifically asked if lemming nests were more frequent at sites with preferred 15 food plants such as Dryas octopetala x integrifolia and at sites with increased snow cover. We 16 found that the number of lemming nests was highest in areas with a high proportion of Dryas 17 heath, but also correlated with other vegetation types which suggest some flexibility in 18 resource use of wintering lemmings.
    [Show full text]
  • Mammal Extinction Facilitated Biome Shift and Human Population Change During the Last Glacial Termination in East-Central Europeenikő
    Mammal Extinction Facilitated Biome Shift and Human Population Change During the Last Glacial Termination in East-Central EuropeEnikő Enikő Magyari ( [email protected] ) Eötvös Loránd University Mihály Gasparik Hungarian Natural History Museum István Major Hungarian Academy of Science György Lengyel University of Miskolc Ilona Pál Hungarian Academy of Science Attila Virág MTA-MTM-ELTE Research Group for Palaeontology János Korponai University of Public Service Zoltán Szabó Eötvös Loránd University Piroska Pazonyi MTA-MTM-ELTE Research Group for Palaeontology Research Article Keywords: megafauna, extinction, vegetation dynamics, biome, climate change, biodiversity change, Epigravettian, late glacial Posted Date: August 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-778658/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Studying local extinction times, associated environmental and human population changes during the last glacial termination provides insights into the causes of mega- and microfauna extinctions. In East-Central (EC) Europe, Palaeolithic human groups were present throughout the last glacial maximum (LGM), but disappeared suddenly around 15 200 cal yr BP. In this study we use radiocarbon dated cave sediment proles and a large set of direct AMS 14C dates on mammal bones to determine local extinction times that are compared with the Epigravettian population decline, quantitative climate models, pollen and plant macrofossil inferred climate and biome reconstructions and coprophilous fungi derived total megafauna change for EC Europe. Our results suggest that the population size of large herbivores decreased in the area after 17 700 cal yr BP, when temperate tree abundance and warm continental steppe cover both increased in the lowlands Boreal forest expansion took place around 16 200 cal yr BP.
    [Show full text]
  • Potential Factors Influencing Repeated SARS Outbreaks in China
    International Journal of Environmental Research and Public Health Review Potential Factors Influencing Repeated SARS Outbreaks in China Zhong Sun 1 , Karuppiah Thilakavathy 1,2 , S. Suresh Kumar 2,3, Guozhong He 4,* and Shi V. Liu 5,* 1 Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, University Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; [email protected] (Z.S.); [email protected] (K.T.) 2 Genetics and Regenerative Medicine Research Group, Faculty of Medicine & Health Sciences, University Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; [email protected] 3 Department of Medical Microbiology and Parasitology, University Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia 4 Institute of Health, Kunming Medical University, Kunming 650500, China 5 Eagle Institute of Molecular Medicine, Apex, NC 27523, USA * Correspondence: [email protected] (G.H.); [email protected] (S.V.L.) Received: 28 January 2020; Accepted: 29 February 2020; Published: 3 March 2020 Abstract: Within last 17 years two widespread epidemics of severe acute respiratory syndrome (SARS) occurred in China, which were caused by related coronaviruses (CoVs): SARS-CoV and SARS-CoV-2. Although the origin(s) of these viruses are still unknown and their occurrences in nature are mysterious, some general patterns of their pathogenesis and epidemics are noticeable. Both viruses utilize the same receptor—angiotensin-converting enzyme 2 (ACE2)—for invading human bodies. Both epidemics occurred in cold dry winter seasons celebrated with major holidays, and started in regions where dietary consumption of wildlife is a fashion. Thus, if bats were the natural hosts of SARS-CoVs, cold temperature and low humidity in these times might provide conducive environmental conditions for prolonged viral survival in these regions concentrated with bats.
    [Show full text]
  • Further Assessment of the Genus Neodon and the Description of a New Species from Nepal
    RESEARCH ARTICLE Further assessment of the Genus Neodon and the description of a new species from Nepal 1³ 2 2 3 Nelish PradhanID , Ajay N. Sharma , Adarsh M. Sherchan , Saurav Chhetri , 4 1³ Paliza Shrestha , C. William KilpatrickID * 1 Department of Biology, University of Vermont, Burlington, Vermont, United States of America, 2 Center for Molecular Dynamics±Nepal, Kathmandu, Nepal, 3 Department of Biology, Trinity University, San Antonio, Texas, United States of America, 4 Department of Plant and Soil Science, University of Vermont, Burlington, Vermont, United States of America a1111111111 ³ These authors are joint senior authors on this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Recent molecular systematic studies of arvicoline voles of the genera Neodon, Lasiopod- omys, Phaiomys, and Microtus from Central Asia suggest the inclusion of Phaiomys leu- OPEN ACCESS curus, Microtus clarkei, and Lasiopodomys fuscus into Neodon and moving Neodon juldaschi into Microtus (Blanfordimys). In addition, three new species of Neodon (N. linz- Citation: Pradhan N, Sharma AN, Sherchan AM, Chhetri S, Shrestha P, Kilpatrick CW (2019) Further hiensis, N. medogensis, and N. nyalamensis) have recently been described from Tibet. assessment of the Genus Neodon and the Analyses of concatenated mitochondrial (Cytb, COI) and nuclear (Ghr, Rbp3) genes recov- description of a new species from Nepal. PLoS ered Neodon as a well-supported monophyletic clade including all the recently described ONE 14(7): e0219157. https://doi.org/10.1371/ and relocated species. Kimura-2-parameter distance between Neodon from western Nepal journal.pone.0219157 compared to N. sikimensis (K2P = 13.1) and N. irene (K2P = 13.4) was equivalent to genetic Editor: Johan R.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • The Status and Distribution of Mediterranean Mammals
    THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod AN E AN R R E IT MED The IUCN Red List of Threatened Species™ – Regional Assessment THE STATUS AND DISTRIBUTION OF MEDITERRANEAN MAMMALS Compiled by Helen J. Temple and Annabelle Cuttelod The IUCN Red List of Threatened Species™ – Regional Assessment The designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of IUCN or other participating organizations, concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland and Cambridge, UK Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Red List logo: © 2008 Citation: Temple, H.J. and Cuttelod, A. (Compilers). 2009. The Status and Distribution of Mediterranean Mammals. Gland, Switzerland and Cambridge, UK : IUCN. vii+32pp. ISBN: 978-2-8317-1163-8 Cover design: Cambridge Publishers Cover photo: Iberian lynx Lynx pardinus © Antonio Rivas/P. Ex-situ Lince Ibérico All photographs used in this publication remain the property of the original copyright holder (see individual captions for details).
    [Show full text]
  • Estimating the Energy Expenditure of Endotherms at the Species Level
    Canadian Journal of Zoology Estimating the energy expenditure of endotherms at the species level Journal: Canadian Journal of Zoology Manuscript ID cjz-2020-0035 Manuscript Type: Article Date Submitted by the 17-Feb-2020 Author: Complete List of Authors: McNab, Brian; University of Florida, Biology Is your manuscript invited for consideration in a Special Not applicable (regular submission) Issue?: Draft arvicoline rodents, BMR, Anatidae, energy expenditure, endotherms, Keyword: Meliphagidae, Phyllostomidae © The Author(s) or their Institution(s) Page 1 of 42 Canadian Journal of Zoology Estimating the energy expenditure of endotherms at the species level Brian K. McNab B.K. McNab, Department of Biology, University of Florida 32611 Email for correspondence: [email protected] Telephone number: 1-352-392-1178 Fax number: 1-352-392-3704 The author has no conflict of interest Draft © The Author(s) or their Institution(s) Canadian Journal of Zoology Page 2 of 42 McNab, B.K. Estimating the energy expenditure of endotherms at the species level. Abstract The ability to account with precision for the quantitative variation in the basal rate of metabolism (BMR) at the species level is explored in four groups of endotherms, arvicoline rodents, ducks, melaphagid honeyeaters, and phyllostomid bats. An effective analysis requires the inclusion of the factors that distinguish species and their responses to the conditions they encounter in the environment. These factors are implemented by changes in body composition and are responsible for the non-conformity of species to a scaling curve. Two concerns may limit an analysis. The factors correlatedDraft with energy expenditure often correlate with each other, which usually prevents them from being included together in an analysis, thereby preventing a complete analysis, implying the presence of factors other than mass.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Downloaded from Ensembl (Www
    Lin et al. BMC Genomics 2014, 15:32 http://www.biomedcentral.com/1471-2164/15/32 RESEARCH ARTICLE Open Access Transcriptome sequencing and phylogenomic resolution within Spalacidae (Rodentia) Gong-Hua Lin1, Kun Wang2, Xiao-Gong Deng1,3, Eviatar Nevo4, Fang Zhao1, Jian-Ping Su1, Song-Chang Guo1, Tong-Zuo Zhang1* and Huabin Zhao5* Abstract Background: Subterranean mammals have been of great interest for evolutionary biologists because of their highly specialized traits for the life underground. Owing to the convergence of morphological traits and the incongruence of molecular evidence, the phylogenetic relationships among three subfamilies Myospalacinae (zokors), Spalacinae (blind mole rats) and Rhizomyinae (bamboo rats) within the family Spalacidae remain unresolved. Here, we performed de novo transcriptome sequencing of four RNA-seq libraries prepared from brain and liver tissues of a plateau zokor (Eospalax baileyi) and a hoary bamboo rat (Rhizomys pruinosus), and analyzed the transcriptome sequences alongside a published transcriptome of the Middle East blind mole rat (Spalax galili). We characterize the transcriptome assemblies of the two spalacids, and recover the phylogeny of the three subfamilies using a phylogenomic approach. Results: Approximately 50.3 million clean reads from the zokor and 140.8 million clean reads from the bamboo ratwere generated by Illumina paired-end RNA-seq technology. All clean reads were assembled into 138,872 (the zokor) and 157,167 (the bamboo rat) unigenes, which were annotated by the public databases: the Swiss-prot, Trembl, NCBI non-redundant protein (NR), NCBI nucleotide sequence (NT), Gene Ontology (GO), Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG).
    [Show full text]