Dark Sectors and Kaon Physics

Total Page:16

File Type:pdf, Size:1020Kb

Dark Sectors and Kaon Physics Dark Sectors and Kaon physics Maxim Pospelov Perimeter Institute, Waterloo/University of Victoria, Victoria Kaon 2016 1 Outline of the talk 1. Introduction. Intensity Frontier. Portals to light new physics. 2. “Golden mode” of NA62, Kà π + missing energy – a potential for future discovery. Dark photons + light dark matter, Higgs portal scalar. 3. Radiative decays of Kaons, and sensitivity to new physics: K à µν l+l-; K à π+π0 e+e- 4. Beam dump mode ? 5. Conclusions 2 Big Questions in Physics “Missing mass” – what is it? New particle, new force, …? Both? How to find out? (History lesson: first “dark matter” problem occurred at the nuclear level, and eventually new particles, neutrons, were identified as a source of a “hidden mass” – and of course immediately with the new force of nature, the strong interaction force.) Neutral “portals” to the SM Let us classify possible connections between Dark sector and SM H+H (λ S2 + A S) Higgs-singlet scalar interactions (scalar portal) Bµν Vµν “Kinetic mixing” with additional U(1)’ group i (becomes a specific example of Jµ Aµ extension) LH N neutrino Yukawa coupling, N – RH neutrino i Jµ Aµ requires gauge invariance and anomaly cancellation It is very likely that the observed neutrino masses indicate that Nature may have used the LHN portal… Dim>4 A Jµ ∂µ a /f axionic portal ………. 4 On-going and future projects Fixed Target/beam dump experiments sensitive to § Dark Photons: HPS, DarkLight, APEX, Mainz, SHiP… § Light dark matter production + scattering: MiniBoNE, BDX, SHiP… § Right-handed neutrinos: SHiP § Missing energy via DM production: NA62 (Kàπνν mode), positron beam dumps… § Extra Z’ in neutrino scattering: DUNE near detector (?) 5 Sensitivity to light weakly-coupled new physics at the precision frontier Matthias Le Dall,1 Maxim Pospelov,1, 2 and Adam Ritz1 1Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada 2Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada (Dated: May 2015) Precision measurements of rare particle physics phenomena (flavor oscillations and decays, electric dipole moments, etc.) are often sensitive to the effects of new physics encoded in higher-dimensional n operators with Wilson coefficients given by C/(ΛNP) , where C is dimensionless, n 1, and ΛNP ≥ is an energy scale. Many extensions of the Standard Model predict that ΛNP should be at the electroweak scale or above, and the search for new short-distance physics is often stated as the primary goal of experiments at the precision frontier. In rather general terms, we investigate the alternative possibility: C 1, and ΛNP mW , to identify classes of precision measurements sensitive to light new physics (hidden sectors) that do not require an ultraviolet completion with additional states at or above the electroweak scale. We find that hadronic electric dipole moments, lepton number and flavor violation, non-universality, as well as lepton g 2canbeinducedat interesting levels by hidden sectors with light degrees of freedom. In contrast,− many hadronic flavor- and baryon number-violating observables, and precision probes of charged currents, typically require new physics with ΛNP > mW . Among the leptonic observables, we find that a non-zero electron electric dipole moment∼ near the current level of sensitivity would point to the existence of new physics at or above the electroweak scale. 1. INTRODUCTION The sensitivity of any constraint on new physics is de- termined on one hand by the precision of the measure- Accelerator-based particle physics has the goal of prob- ment in question, and on the other by the accuracy and ing the shortest distance scales directly, by colliding par- precision of any SM calculations required to disentangle ticles and their constituents at high energies. Thus far, background contributions. If the effective Lagrangian is schematically written in the form = + , all high energy data is well described by the Standard L LSM LNP Model (SM) of particles and fields, with the last missing the possibility of discovery relies on being able to reli- element, the Higgs boson, identified recently [1, 2]. Con- ably bound the NP contribution to the observable away siderable attention is therefore focussed on the search from zero. The natural tendency to interpret results in for ‘new physics’ (NP) that may complement the SM terms of operators in NP induced by ultraviolet NP can be problematic, asL can in general also receive by addressing some of its shortcomings. However, the LNP most prominent empirical evidence for new physics, asso- contributions from light weakly-coupled degrees of free- ciated for example with neutrino mass and dark matter, dom. This dilemma is nicely illustrated by the theoret- does not necessarily point to an origin at shorter distance ical interpretation of a NP discovery that has already scales. occurred, namely the observation of neutrino flavor os- New physics:cillations. The UV experimental or IR? results(let’s say are IR/UV most boundary straightfor- ~ EW scale) Fortunately, experiments at the energy frontier are wardly interpreted in terms of the masses and mixing of not the only tools available to probe NP; they are sup- the light active neutrino species [8, 9]. However, as is plemented by searches at the precision (and intensity)Neutrino oscillations: We know that new phenomenon exists, and if interpretedwell known, as neutrino there aremasses a number and mixing, of possible is it explanations coming from deep frontier (see e.g. [3]). Precision observables, particularly for their origin. These include a short-distance expla- those that probe violations of exact or approximate sym-UV, vianation e. .g in Weinberg’s terms of the operator dimension-five Weinberg operator metries of the Standard Model such as CP and flavor, [10], NP (HL)(HL)/ΛUV with ΛUV H ,which play an important role in the search for new physics [4– L ∝ 2 or it is generatedgenerates by neutrino new IR massesfield, such scaling as RH as Hcomponent/ΛUV.There of Dirac 7]. Their reach in energy scale, through loop-induced are also a variety of different UV completions for this corrections from new UV physics, can often extend wellneutrinos?operator, with and without heavy right-handed neutrino beyond the direct reach of high energy colliders. How- states, present throughout the theory literature. While ever, measurements at low energies may be sensitive not Dark matterthis interpretation: 25% of Universe’s is certainly energy valid, balance there is is also in dark the pos- matter: only to NP corrections coming from the short distances, sibility of interpreting neutrino mass as a consequence of but also to NP at longer distances (lower mass) with ex-we can set constraints on both. If it is embedded in particle very light states N,withmN mW and the quantum tremely weak coupling to the SM. It is therefore prudentphysics,numbers then e.g. of right-handed neutralinos or neutrinos axions [11–16].imply new Such UV states scales. to ask for which precision observables can measured devi- However,would there typically are models be veryof DM weakly where coupled NP lives to thecompletely SM, thus in the ations from SM predictions unambiguously be identified escaping direct detection. The most prominent model in with short-distance NP at the electroweak (EW) scaleIR, and no new scales are necessary. this class is the simple three-generation extension of the or above? Alternatively, one can ask when such devia- SM with N states that allow Dirac masses for the active tions might also admit an interpretation in terms ofBoth new optionsneutrinos. deserve Thus a close we see look. that In neutrino particular, oscillations light and can very be weakly low-scale hidden sector degrees of freedom. This is thecoupledinterpreted states are as often the result overlooked, of UV but or IRdeserve new physics attention (or. 6 question we will address in this paper. 1.1 Kinetic mixing 1.1 Kinetic mixing ConsiderConsider a QED-like a QED-like theory theory with with one one (or (or several) several) extra extra vector vector particle(s), particle(s), coupled coupled to the to the electromagneticelectromagnetic current. current. A mass A mass term, term, or or in in general general a a mass mass matrix matrix for for the the vector vector states, states, is is protectedprotected against against additive additive renormalization renormalization due due to to the the conservation conservation of of the the electromagnetic electromagnetic 2 2 current.current. If the If mass the mass matrix matrix for for such such vector vector states states has a a zero zero determinant, determinant, det( det(MV )=0,thenMV )=0,then the theorythe theory contains contains one one massless massless vector, vector, to to be be identified identified with with a a photon, photon, and and several several massive massive vectorvector states. states. This is thee model of ‘paraphotons’, introduced by Okun in early 1980s [6], that can be This is the model of ‘paraphotons’, introduced by Okun in early 1980s [6], that can be reformulated in equivalent language using the kinetic mixing portal. Following Holdom [7], reformulated in equivalent language using the kinetic mixing portal. Following Holdom [7], one writes a QED-like“Simplified theory withγ twomodel”U(1) groups, for supplemented dark sector by the cross term in the one writeskinetic a Lagrangian, QED-like theory and a mass with term two forU(1) one groups, of the vector supplemented fields. by the cross term in the kinetic Lagrangian, and a mass term for(Okun one ’, ofHoldom the, vector…) fields. 1 2 2 = ψ,A + χ,A FµνF + m (A ) . (1.1) γ µν A µ L L L −2 21 2 2 = + F F + m (A ) . (1.1) ψ,A χ,A µν µν A µ ψ,A and χ,A are theL standardL QED-typeL − 2 Lagrangians,2 L L χ 1 ψ,A and χ,A are the standard QED-type2 ¯ Lagrangians, L L ψ,A = Fµν + ψ[γµ(i∂µ eAµ) mψ]ψ Figure 1: The interaction throughL the exchange−4 by a mixed−γ A− propagator between the 1 2 = 1 F 2+ ψ¯[γ (i∂ eA− ) m ]ψ SM particles and particles χ chargedψ,A= under(F µ new)ν +¯χU[(1)γ µ(i∂group.µ gA In)µ them limit]χψ, of mA 0the(1.2) LLχ,A −−4 4 µν µ µ −− µ −− χ → apparent electromagentioc charge of χ1 is e.
Recommended publications
  • Pion and Kaon Structure at 12 Gev Jlab and EIC
    Pion and Kaon Structure at 12 GeV JLab and EIC Tanja Horn Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas Thanks to: Yulia Furletova, Elke Aschenauer and Steve Wood INT 17-3: Spatial and Momentum Tomography 28 August - 29 September 2017, of Hadrons and Nuclei INT - University of Washington Emergence of Mass in the Standard Model LHC has NOT found the “God Particle” Slide adapted from Craig Roberts (EICUGM 2017) because the Higgs boson is NOT the origin of mass – Higgs-boson only produces a little bit of mass – Higgs-generated mass-scales explain neither the proton’s mass nor the pion’s (near-)masslessness Proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark The strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter Origin of Mass of QCD’s Pseudoscalar Goldstone Modes Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267] 2 Pseudoscalar masses are generated dynamically – If rp ≠ 0, mp ~ √mq The mass of bound states increases as √m with the mass of the constituents In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents E.g., in models with constituent quarks Q: in the nucleon mQ ~ ⅓mN ~ 310 MeV, in the pion mQ ~ ½mp ~ 70 MeV, in the kaon (with s quark) mQ ~ 200 MeV – This is not real.
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • Detection of a Strange Particle
    10 extraordinary papers Within days, Watson and Crick had built a identify the full set of codons was completed in forensics, and research into more-futuristic new model of DNA from metal parts. Wilkins by 1966, with Har Gobind Khorana contributing applications, such as DNA-based computing, immediately accepted that it was correct. It the sequences of bases in several codons from is well advanced. was agreed between the two groups that they his experiments with synthetic polynucleotides Paradoxically, Watson and Crick’s iconic would publish three papers simultaneously in (see go.nature.com/2hebk3k). structure has also made it possible to recog- Nature, with the King’s researchers comment- With Fred Sanger and colleagues’ publica- nize the shortcomings of the central dogma, ing on the fit of Watson and Crick’s structure tion16 of an efficient method for sequencing with the discovery of small RNAs that can reg- to the experimental data, and Franklin and DNA in 1977, the way was open for the com- ulate gene expression, and of environmental Gosling publishing Photograph 51 for the plete reading of the genetic information in factors that induce heritable epigenetic first time7,8. any species. The task was completed for the change. No doubt, the concept of the double The Cambridge pair acknowledged in their human genome by 2003, another milestone helix will continue to underpin discoveries in paper that they knew of “the general nature in the history of DNA. biology for decades to come. of the unpublished experimental results and Watson devoted most of the rest of his ideas” of the King’s workers, but it wasn’t until career to education and scientific administra- Georgina Ferry is a science writer based in The Double Helix, Watson’s explosive account tion as head of the Cold Spring Harbor Labo- Oxford, UK.
    [Show full text]
  • Prospects for Measurements with Strange Hadrons at Lhcb
    Prospects for measurements with strange hadrons at LHCb A. A. Alves Junior1, M. O. Bettler2, A. Brea Rodr´ıguez1, A. Casais Vidal1, V. Chobanova1, X. Cid Vidal1, A. Contu3, G. D'Ambrosio4, J. Dalseno1, F. Dettori5, V.V. Gligorov6, G. Graziani7, D. Guadagnoli8, T. Kitahara9;10, C. Lazzeroni11, M. Lucio Mart´ınez1, M. Moulson12, C. Mar´ınBenito13, J. Mart´ınCamalich14;15, D. Mart´ınezSantos1, J. Prisciandaro 1, A. Puig Navarro16, M. Ramos Pernas1, V. Renaudin13, A. Sergi11, K. A. Zarebski11 1Instituto Galego de F´ısica de Altas Enerx´ıas(IGFAE), Santiago de Compostela, Spain 2Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 3INFN Sezione di Cagliari, Cagliari, Italy 4INFN Sezione di Napoli, Napoli, Italy 5Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom, now at Universit`adegli Studi di Cagliari, Cagliari, Italy 6LPNHE, Sorbonne Universit´e,Universit´eParis Diderot, CNRS/IN2P3, Paris, France 7INFN Sezione di Firenze, Firenze, Italy 8Laboratoire d'Annecy-le-Vieux de Physique Th´eorique , Annecy Cedex, France 9Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology, Kalsruhe, Germany 10Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Kalsruhe, Germany 11School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 12INFN Laboratori Nazionali di Frascati, Frascati, Italy 13Laboratoire de l'Accelerateur Lineaire (LAL), Orsay, France 14Instituto de Astrof´ısica de Canarias and Universidad de La Laguna, Departamento de Astrof´ısica, La Laguna, Tenerife, Spain 15CERN, CH-1211, Geneva 23, Switzerland 16Physik-Institut, Universit¨atZ¨urich,Z¨urich,Switzerland arXiv:1808.03477v2 [hep-ex] 31 Jul 2019 Abstract This report details the capabilities of LHCb and its upgrades towards the study of kaons and hyperons.
    [Show full text]
  • Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings
    Date: April 19, 2018 Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings 14th - 15th February, 2018 Thomas Jefferson National Accelerator Facility, Newport News, VA, U.S.A. M. Amaryan, M. Baalouch, G. Colangelo, J. R. de Elvira, D. Epifanov, A. Filippi, B. Grube, V. Ivanov, B. Kubis, P. M. Lo, M. Mai, V. Mathieu, S. Maurizio, C. Morningstar, B. Moussallam, F. Niecknig, B. Pal, A. Palano, J. R. Pelaez, A. Pilloni, A. Rodas, A. Rusetsky, A. Szczepaniak, and J. Stevens Editors: M. Amaryan, Ulf-G. Meißner, C. Meyer, J. Ritman, and I. Strakovsky Abstract This volume is a short summary of talks given at the PKI2018 Workshop organized to discuss current status and future prospects of π K interactions. The precise data on π interaction will − K have a strong impact on strange meson spectroscopy and form factors that are important ingredients in the Dalitz plot analysis of a decays of heavy mesons as well as precision measurement of Vus matrix element and therefore on a test of unitarity in the first raw of the CKM matrix. The workshop arXiv:1804.06528v1 [hep-ph] 18 Apr 2018 has combined the efforts of experimentalists, Lattice QCD, and phenomenology communities. Experimental data relevant to the topic of the workshop were presented from the broad range of different collaborations like CLAS, GlueX, COMPASS, BaBar, BELLE, BESIII, VEPP-2000, and LHCb. One of the main goals of this workshop was to outline a need for a new high intensity and high precision secondary KL beam facility at JLab produced with the 12 GeV electron beam of CEBAF accelerator.
    [Show full text]
  • Kaon to Two Pions Decays from Lattice QCD: ∆I = 1/2 Rule and CP
    Kaon to Two Pions decays from Lattice QCD: ∆I =1/2 rule and CP violation Qi Liu Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 c 2012 Qi Liu All Rights Reserved Abstract Kaon to Two Pions decays from Lattice QCD: ∆I =1/2 rule and CP violation Qi Liu We report a direct lattice calculation of the K to ππ decay matrix elements for both the ∆I = 1/2 and 3/2 amplitudes A0 and A2 on a 2+1 flavor, domain wall fermion, 163 32 16 lattice ensemble and a 243 64 16 lattice ensemble. This × × × × is a complete calculation in which all contractions for the required ten, four-quark operators are evaluated, including the disconnected graphs in which no quark line connects the initial kaon and final two-pion states. These lattice operators are non- perturbatively renormalized using the Rome-Southampton method and the quadratic divergences are studied and removed. This is an important but notoriously difficult calculation, requiring high statistics on a large volume. In this work we take a major step towards the computation of the physical K ππ amplitudes by performing → a complete calculation at unphysical kinematics with pions of mass 422MeV and 329MeV at rest in the kaon rest frame. With this simplification we are able to 3 resolve Re(A0) from zero for the first time, with a 25% statistical error on the 16 3 lattice and 15% on the 24 lattice. The complex amplitude A2 is calculated with small statistical errors.
    [Show full text]
  • Physics 29000 – Quarknet/Service Learning
    Physics 29000 – Quarknet/Service Learning Lecture 3: Ionizing Radiation Purdue University Department of Physics February 1, 2013 1 Resources • Particle Data Group: http://pdg.lbl.gov • Summary tables of particle properties: http://pdg.lbl.gov/2012/tables/contents_tables.html • Table of atomic and nuclear properties of materials: http://pdg.lbl.gov/2012/reviews/rpp2012-rev-atomic-nuclear-prop.pdf 2 Some Subatomic Particles – electron , and positron , – proton , and neutron , – muon , and anti-muon , • When we don’t care which we usually just call them “muons” or write ± – photon , – electron neutrino , and muon neutrino , – charged pions , ± and charged kaons , ± – neutral pions , and neutral kaons , – “lambda hyperon ”, Some are fundamental (no substructure) while others are not. 3 Subatomic Particles • Fundamental particles (as far as we know): Quarks Leptons • electrons, muons and neutrinos are fundamental. • protons, neutrons, kaons, pions are made of quarks: – baryons have 3 quarks: – mesons are pairs: • what about the photon? 4 Subatomic Particles • fundamental particles of matter interact with fundamental “force carriers” called “gauge bosons”: – Electromagnetic force: photon ( ) – Weak nuclear force, responsible for -decay: , – Strong nuclear force: gluons ( ) • The force carriers “couple” to the “charge” of the matter particle: – photons couple to electric charge (not neutrinos) – W’s couple to “weak hypercharge” (all particles) – gluons couple to “color charge” (only quarks) – mesons and baryons are “colorless”
    [Show full text]
  • Kaon Oscillations and Baryon Asymmetry of the Universe Abstract
    Kaon oscillations and baryon asymmetry of the universe Wanpeng Tan∗ Department of Physics, Institute for Structure and Nuclear Astrophysics (ISNAP), and Joint Institute for Nuclear Astrophysics - Center for the Evolution of Elements (JINA-CEE), University of Notre Dame, Notre Dame, Indiana 46556, USA (Dated: September 17, 2019) Abstract Baryon asymmetry of the universe (BAU) can likely be explained with K0 − K00 oscillations of a newly developed mirror-matter model and new understanding of quantum chromodynamics (QCD) phase transitions. A consistent picture for the origin of both BAU and dark matter is presented with the aid of n − n0 oscillations of the new model. The global symmetry breaking transitions in QCD are proposed to be staged depending on condensation temperatures of strange, charm, bottom, and top quarks in the early universe. The long-standing BAU puzzle could then be understood with K0 − K00 oscillations that occur at the stage of strange quark condensation and baryon number violation via a non-perturbative sphaleron-like (coined \quarkiton") process. Similar processes at charm, bottom, and top quark condensation stages are also discussed including an interesting idea for top quark condensation to break both the QCD global Ut(1)A symmetry and the electroweak gauge symmetry at the same time. Meanwhile, the U(1)A or strong CP problem of particle physics is addressed with a possible explanation under the same framework. ∗ [email protected] 1 I. INTRODUCTION The matter-antimatter imbalance or baryon asymmetry of the universe (BAU) has been a long standing puzzle in the study of cosmology. Such an asymmetry can be quantified in various ways.
    [Show full text]
  • Rare Kaon Decays
    1 64. Rare Kaon Decays 64. Rare Kaon Decays Revised August 2019 by L. Littenberg (BNL) and G. Valencia (Monash U.). 64.1 Introduction There are several useful reviews on rare kaon decays and related topics [1–12]. Activity in rare kaon decays can be divided roughly into four categories: 1. Searches for explicit violations of the Standard Model (SM) 2. The golden modes: K → πνν¯ 3. Other constraints on SM parameters 4. Studies of strong interactions at low energy. The paradigm of Category 1 is the lepton flavor violating decay KL → µe. Category 2 in- cludes the two modes that can be calculated with negligible theoretical uncertainty, K+ → π+νν 0 and KL → π νν. These modes can lead to precision determinations of CKM parameters or, in combination with other measurements of these parameters, they can constrain new interactions. They constitute the main focus of the current experimental kaon program. Category 3 is focused 0 + − + − on decays with charged leptons, such as KL → π ` ` or KL → ` ` where ` ≡ e, µ. These modes are sensitive to CKM parameters but they suffer from multiple hadronic uncertainties that can be addressed, at least in part, through a systematic study of the peripheral modes indicated in Fig. 64.1. The interplay between Categories 3-4 and their complementarity to Category 2 is illustrated in the figure. Category 4 includes reactions like K+ → π+`+`− where long distance con- tributions are dominant and which constitute a testing ground for the ideas of chiral perturbation 0 + − theory. Other decays in this category are KL → π γγ and KL → ` ` γ.
    [Show full text]
  • Kaon Physics: CP Violation and Hadronic Matrix Elements
    Kaon Physics: CP Violation and Hadronic Matrix Elements Mar´ıa Elvira G´amiz S´anchez Departamento de F´ısica Te´orica y del Cosmos arXiv:hep-ph/0401236v1 29 Jan 2004 Universidad de Granada October 2003 · · Contents 1 Introduction 5 1.1 OverviewoftheStandardModel. .. 7 1.1.1 TheScalarSector............................ 9 1.1.2 CP Symmetry Violation in the Standard Model . .. 12 2 CP Violation in the Kaon System 15 2.1 CP Violation in K0 K¯ 0 Mixing: Indirect CP Violation . 15 − 2.2 εK intheStandardModel ........................... 17 2.3 CP Violation in the Decay: Direct CP Violation . ...... 18 ′ 2.4 εK intheStandardModel ........................... 20 1 2.4.1 ∆I = 2 Contribution .......................... 23 3 2.4.2 ∆I = 2 Contribution .......................... 24 ′ 2.4.3 Discussion on the Theoretical Determinations of εK ......... 25 2.5 Direct CP Violation in Charged Kaons K 3π Decays........... 27 → 3 The Effective Field Theory of the Standard Model at Low Energies 31 3.1 Lowest Order Chiral Perturbation Theory . ..... 31 3.2 Next-to-Leading Order Chiral Lagrangians . ....... 33 3.3 Leading Order Chiral Perturbation Theory Predictions . .......... 38 3.4 CouplingsoftheLeadingOrderLagrangian . ..... 40 4 Charged Kaons K 3π CP Violating Asymmetries at NLO in CHPT 43 → 4.1 Numerical Inputs for the Weak Counterterms . ..... 44 4.1.1 Counterterms of the NLO Weak Chiral Lagrangian . ... 45 4.2 CP-Conserving Observables . .. 46 4.2.1 Slope g .................................. 47 4.2.2 Slopes h and k ............................. 47 4.2.3 DecayRates............................... 49 4.3 CP-Violating Observables at Leading Order . ...... 50 4.3.1 CP-Violating Asymmetries in the Slope g ..............
    [Show full text]
  • Arxiv:1910.08133V1 [Nucl-Th] 17 Oct 2019 and the Observed Modifications of Bound Proton Emffs at Ties Have Been Made Mostly in Vacuum, but Not in Medium
    APCTP Pre2019-012, LFTC-19-7/45 Electroweak properties of kaons in a nuclear medium Parada T. P. Hutauruk1, ∗ and K. Tsushima2, 1, y 1Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea 2Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul / Universidade Cidade de Sao Paulo, 01506-000, São Paolo, SP, Brazil (Dated: October 21, 2019) Kaon electroweak properties in symmetric nuclear matter are studied in the Nambu–Jona-Lasinio model using the proper-time regularization. The valence quark properties in symmetric nuclear matter are calculated in the quark-meson coupling model, and they are used as inputs for studying the in-medium kaon properties in the NJL model. We evaluate the kaon decay constant, kaon-quark coupling constant, and K+ electromagnetic form factor by two different approaches. Namely, by two different ways of calculating the in-medium constituent quark masses of the light quarks. We predict that, in both approaches, the kaon decay constant and kaon-quark coupling constant decrease as nuclear density increases, while the K+ charge radius increases by 20-25% at normal nuclear density. I. INTRODUCTION following reasons; (i) the constituent quark masses in vacuum are the input parameters in Ref. [32], but it is preferable to Kaons play special roles in strong and electroweak inter- calculate them dynamically, (ii) the vacuum in the light-front action phenomena, and in low-energy hadronic reactions as- approach is generally believed to be "trivial", and there is no sociated with quantum chromodynamics (QCD) at low ener- clearly defined quark chiral condensates in the light-front ap- gies [1–14].
    [Show full text]
  • B Meson Decays Marina Artuso1, Elisabetta Barberio2 and Sheldon Stone*1
    Review Open Access B meson decays Marina Artuso1, Elisabetta Barberio2 and Sheldon Stone*1 Address: 1Department of Physics, Syracuse University, Syracuse, NY 13244, USA and 2School of Physics, University of Melbourne, Victoria 3010, Australia Email: Marina Artuso - [email protected]; Elisabetta Barberio - [email protected]; Sheldon Stone* - [email protected] * Corresponding author Published: 20 February 2009 Received: 20 February 2009 Accepted: 20 February 2009 PMC Physics A 2009, 3:3 doi:10.1186/1754-0410-3-3 This article is available from: http://www.physmathcentral.com/1754-0410/3/3 © 2009 Stone et al This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We discuss the most important Physics thus far extracted from studies of B meson decays. Measurements of the four CP violating angles accessible in B decay are reviewed as well as direct CP violation. A detailed discussion of the measurements of the CKM elements Vcb and Vub from semileptonic decays is given, and the differences between resulting values using inclusive decays versus exclusive decays is discussed. Measurements of "rare" decays are also reviewed. We point out where CP violating and rare decays could lead to observations of physics beyond that of the Standard Model in future experiments. If such physics is found by directly observation of new particles, e.g. in LHC experiments, B decays can play a decisive role in interpreting the nature of these particles.
    [Show full text]