Neogene Marine Mollusks of the Pacific Coast of North America: an Annotated Bibliography, 1797-1969

Total Page:16

File Type:pdf, Size:1020Kb

Neogene Marine Mollusks of the Pacific Coast of North America: an Annotated Bibliography, 1797-1969 Neogene Marine Mollusks of the Pacific Coast of North America: An Annotated Bibliography, 1797-1969 By WARREN 0. ADDICOTT GEOLOGICAL SURVEY BULLETIN 1362 A compilation of reports for the period 1797-1969 dealing with marine mollusks of Miocene and Pliocene age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROCERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 72-600313 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.50 (paper cover) CONTENTS Page Abstract. ______________________-_-__----_-__----------_----_-____ 1 Introduction.________-__________---__-_-__------_--_---__-_-__-___ 1 Acknowledgments ____-_--_______-----_-------------_--------_---__ 2 Scope and criteria for inclusion....__________________________________ 2 Geographic coverage.______________________________________________ 3 Stratigraphic considerations.__-____-__--_-____-_---__--_-____-__--__ 3 Annotations ________-________-__---_-__-_---------_-_--_-----_____ 4 Style of entries____-___--_-__--__---_--_-___----_---__--_--_-___-__ 5 Indexing. ________________________________________________________ 5 Trends in Neogene molluscan paleontology.__________________________ 5 Bibliography. _____--__-______-___--_-_-____--_----_-_--__-________ 9 Index.___________________________________________________________ 167 ILLUSTRATIONS Pag* FIGURE 1. Map showing generalized outlines of some marine Neogene depositional basins.____________________________________ 2. Graph showing trends in the systematic description and illustra­ tion of Neogene mollusks_____._____ __________________ HI NEOCENE MARINE MOLLUSKS OF THE PACIFIC COAST OF NORTH AMERICA: AN ANNOTATED BIBLIOGRAPHY By WARREN O. ADDICOTT ABSTRACT Reports dealing with marine mollusks of Neogene (Miocene and Pliocene) age from the Pacific and Arctic coasts of North America are listed alphabeti­ cally by author and year of publication. This compilation covers the period 1797-1969. Geographic coverage is from the west coast of Central America to, and including, Arctic Alaska with comprehensive coverage from the west coast of Mexico northward. Each citation is accompanied by a brief annotation indi­ cating the nature of information on Neogene mollusks and is referenced in a subject index, generally under two or more headings. Systematic description of Neogene mollusks and the utilization of paleontologic data in other geological reports have gone through a number of rather closely related cycles during the past 125 years. During the 5-year period 1965-69 both kinds of publications reached alltime highs. INTRODUCTION This bibliography includes reports dealing with marine molluscan fossils of Neogene (Miocene and Pliocene) age from the Pacific coast of North America and the Arctic coast of Alaska published prior to 1970. The citations are listed alphabetically by author. Each entry is accompanied by a brief annotation intended to indicate the nature of information on marine mollusks. There is a subject index in which almost all of the reports are listed under a geographic and a topical heading; some of the comprehensive reports are indexed under as many as eight headings. Reports containing illustrations of fossils or systematic descrip­ tions of new taxa are indicated by setting the author's names in cap­ ital letters; those in which only previously described fossils are illus­ trated are also indicated by capital letters but are accompanied by an asterisk following the year of publication. Lower case type is used for all other entries. Although there are a number of bibliographies that deal with Ter­ tiary stratigraphy and paleontology of individual States, no attempt 2 NEOGENE MARINE MOULUSKS has been made to bring together reports on Neogene mollusks since Dall's (1909c) post-Eocene bibliography for the northwest coast of North America. This report differs from these earlier, less compre­ hensive bibliographies in including annotations and in having a sub­ ject index. This bibliography is intended, in part, to complement two system­ atic catalogs of Tertiary mollusks of the Pacific Coast States: Keen and Bentson's (1944) checklist of Tertiary marine mollusks from California and Weaver's (1942) illustrated catalog of Tertiary ma­ rine invertebrates from Oregon and Washington. Although these re­ ports are about 30 years old, a significant proportion of the system­ atic description of Neogene marine mollusks had been accomplished by the early 1940's. Both of these reports also contain comprehensive bibliographies although Keen and Bentson's (1944) is limited to re­ ports in which Tertiary mollusks are illustrated or are newly de­ scribed. ACKNOWLEDGMENTS Many people have cooperated and have provided assistance in the preparation of this bibliography. The project was initially suggested by Dwight W. Taylor, San Diego Museum of Natural History, in 1966, in connection with a review of the status of knowledge on ma­ lacology in western North America. The early stages of assembling bibliographic citiations were aided by Helen E. Bailey, formerly re­ search librarian for the U.S. Geological Survey in Menlo Park. Ellen J. Moore, U.S. Geological Survey, and Wendell P. Woodring, Smithsonian Institution, furnished an unpublished chronological list of papers dealing with Tertiary invertebrate paleontology and stra­ tigraphy of the Pacific Coast States through 1960. William Sanders and Ann H. Schwabecher, research librarians, U.S. Geological Sur­ vey, have provided assistance in securing bibliographic materials. Some 40 paleontologists and geologists, actively working Pacific coast Tertiary problems, have kindly reviewed lists of their reports for accuracy and completeness. Finally, Kose M. Trombley has con­ tributed significantly to the preparation of the report, particularly in the preparation of the subject index. SCOPE AND CRITERIA FOR INCLUSION It is intended to include all reports, including abstracts, published prior to 1970 containing information on Neogene mollusks in this bibliography. The minimum criterion for inclusion is that molluscan fossils of Miocene or Pliocene age be mentioned in a report. Kecords of marine "fossils" in early reports, for example, have been taken to STRATIGRAPHIC CONSIDERATIONS O indicate that marine mollusks may have been found. Most of these early records have been supplemented by subsequent faunal docu­ mentation but a few still stand as the only indication that marine mollusks of late Tertiary age may be present in areas that have as yet not received intensive geological study. Foreign journals and paleontological reports in which molluscan taxa from other parts of the Pacific Ocean basin, or other oceans, have been compared with Pacific coast Neogene species have not been thoroughly searched, nor have trade journals dealing with the petroleum industry in California. Unpublished theses are not cited, but publications in which they are listed are included. During the 1920's and 1930's many abstracts of papers presented at the Geological Society of America's regional and national meet­ ings were published in the Pan-American Geologist in addition to customary publication in the Bulletin of the Geological Society of America. Frequently, the abstract appeared first in the Pan-Ameri­ can Geologist, but some abstracts are not identical with the official version in the Bulletin of the Geological Society of America and presumably were not submitted to the Pan-American Geologist for publication by the authors. Accordingly, citations to abstracts pub­ lished in the Pan-American Geologist are not included in the bibli­ ography. There are, however, a few full-length reports appearing in the Pan-American Geologist and nowhere else, such as Carson (1925a) and Howe (1926), and these are included herein. GEOGRAPHIC COVERAGE The area covered by the bibliography is from the Pacific coast of Central America to and including the Arctic coast of Alaska. Cover­ age is intended to be comprehensive from the west coast of Mexico northward. Many of the reports dealing with Neogene mollusks from the Pacific coast of other Central American countries are, how­ ever, included. STRATIGRAPHIC CONSIDERATIONS Use of Miocene and Pliocene in this report is with reference to the provincial molluscan standard (Weaver and others, 1944) as subse­ quently modified by Durham (1954). Because the recognition of European series and epoch boundaries along the Pacific coast continues to be controversial, many of the re­ ports dealing with late Oligocene faunas in the sense of Weaver and others (1944) and Durham (1954) are included in this report. As recognized herein, the Oligocene-Miocene boundary in the Pacific 4: NEOGENE MARINE MOLLUSKS coast provincial molluscan chronology is placed at the base of the "Vaqueros Stage" of Weaver and others (1944) in California and northwestern Baja California and at or near the middle of the "Blakeley Stage" of Oregon, Washington, Canada, and southeastern Alaska. The "Blakeley" and "Vaqueros" are considered to be in part time-equivalent, according to evidence presented by Vanderhoof (1942) and Addicott (1967b). This boundary corresponds to the boundary between the lower and upper parts of the Zemorrian Stage (Kleinpell, 1938) of the provincial benthonic foraminiferal standard. It should be noted that the Oligocene-Miocene boundary is placed somewhat higher in the provincial microfaunal sequences by specialists in Foraminifera usually
Recommended publications
  • Investigating the Behavior of the Invasive Marine Species the Japanese Oyster Drill (Ocinebrellus Inornatus): Food Preference, and Behaviour
    Investigating the behavior of the invasive marine species the Japanese Oyster Drill (Ocinebrellus inornatus): Food preference, and Behaviour First Draft Delta Academy December 21st 2018 Belma Colakovic INVESTIGATING THE BEHAVIOUR OF THE INVASIVE MARINE SPECIES THE JAPANESE OYSTER DRILL (OCINEBRELLUS INORNATIS), FOOD PREFERENCE AND BEHAVIOUR FIRST DRAFT Title: Investigating the behaviour of the invasive marine species the Japanese Oyster Drill (Ocinebrellus inornatus), food preference Subtitle: first draft Report type: first draft Date: December 21st 2018 Author: Belma Colakovic Approved by: Contact: Internship supervisor: Eva Hartog Institute: HZ University of Applied Sciences Version: First draft Status: PREFACE The basis behind this research is to gain a deeper insight into the still quite unknown yet very invasive marine species, Ocinebrellus inornatus, also known as the Japanese Oyster Drill. Ongoing research is continuously being conducted by the research group Aquaculture, under HZ University of Applied Sciences, which aims to understand their behaviour, physiology, phenology, nutrition, reproductive biology, and water tolerances, all of which are important factors in knowing how to cope with the impacts this species has on Oyster farming, the economy, and biodiversity. I would have not been able to accomplish this research without the help of a strong core research group. Firstly, my supervisor Eva Hartog, who has played a significant role throughout the research process, providing immense guidance along the way, and my research group colleagues. Thank you all for your unwavering support throughout the entire duration during this research. SUMMARY The Japanese Oyster Drill (Ocinebrellus inornatus) was first spotted off the coast of France in 1995, and has since then by means of transportation and importing of oysters has brought them into the Netherlands, being first spotted in Gorishoek in 2007.
    [Show full text]
  • Muricidae, from Palk Strait, Southeast Coast of India
    Nature Environment and Pollution Technology Vol. 8 No. 1 pp. 63-68 2009 An International Quarterly Scientific Journal Original Research Paper New Record of Muricanthus kuesterianus (Tapparone-Canefri, 1875) Family: Muricidae, from Palk Strait, Southeast Coast of India C. Stella and C. Raghunathan* Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi-623 409, Ramnad district, Tamil Nadu, India *Zoological Survey of India, Andaman and Nicobar Regional Station, Haddo, Port Blair-744 102, Andaman & Nicobar Islands, India Key Words: ABSTRACT Gastropoda The present study reported the occurrence of Muricanthus kuesterianus in the Palk Muricidae Strait region of southeast coast of India as a first hand record. The detailed description Muricanthus kuesterianus of this species has been given with the comparison of its close resembled species Chicoreus virgineus Chicoreus virgineus. INTRODUCTION Muricidae, the largest and varied taxonomic family among marine gastropods has small to large predatory sea snails in the Order Neogastropoda. At least 1,000 species of muricids under numerous subfamilies are known. Many muricids have unusual shells which are considered attractive by shell collectors. The spire and body whorl of the muricids are often ornamental with knobs, tubercules, ribbing or spines. Muricids have episodic growth which means that the shell grows in spurts, remain- ing in the same size for a while before rapidly growing to the next size stage resulting in a series of varices on each whorl. Most species of muricids are carnivorous, feeding on other gastropods, bivalves and barnacles. In March 2007, during the course of faunistic surveys along the Palk Strait region of southeast coast of India (Fig.
    [Show full text]
  • Chapter 30. Latest Oligocene Through Early Miocene Isotopic Stratigraphy
    Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), 1997 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 154 30. LATEST OLIGOCENE THROUGH EARLY MIOCENE ISOTOPIC STRATIGRAPHY AND DEEP-WATER PALEOCEANOGRAPHY OF THE WESTERN EQUATORIAL ATLANTIC: SITES 926 AND 9291 B.P. Flower,2 J.C. Zachos,2 and E. Martin3 ABSTRACT Stable isotopic (d18O and d13C) and strontium isotopic (87Sr/86Sr) data generated from Ocean Drilling Program (ODP) Sites 926 and 929 on Ceara Rise provide a detailed chemostratigraphy for the latest Oligocene through early Miocene of the western Equatorial Atlantic. Oxygen isotopic data based on the benthic foraminifer Cibicidoides mundulus exhibit four distinct d18O excursions of more than 0.5ä, including event Mi1 near the Oligocene/Miocene boundary from 23.9 to 22.9 Ma and increases at about 21.5, 18 and 16.5 Ma, probably reßecting episodes of early Miocene Antarctic glaciation events (Mi1a, Mi1b, and Mi2). Carbon isotopic data exhibit well-known d13C increases near the Oligocene/Miocene boundary (~23.8 to 22.6 Ma) and near the early/middle Miocene boundary (~17.5 to 16 Ma). Strontium isotopic data reveal an unconformity in the Hole 926A sequence at about 304 meters below sea ßoor (mbsf); no such unconformity is observed at Site 929. The age of the unconfor- mity is estimated as 17.9 to 16.3 Ma based on a magnetostratigraphic calibration of the 87Sr/86Sr seawater curve, and as 17.4 to 15.8 Ma based on a biostratigraphic calibration. Shipboard biostratigraphic data are more consistent with the biostratigraphic calibration.
    [Show full text]
  • Delongueville-Scaillet
    NOVAPEX / Société 13(3), 10 octobre 2012 77 Illustration de Buccinum cyaneum Bruguière, 1792 dans l’Atlantique Nord-Est Christiane DELONGUEVILLE Avenue Den Doorn, 5 – B - 1180 Bruxelles - [email protected] Roland SCAILLET Avenue Franz Guillaume, 63 – B - 1140 Bruxelles - [email protected] MOTS-CLEFS Buccinidae, Buccinum cyaneum , illustration, individus vivants KEY-WORDS Buccinidae, Buccinum cyaneum , illustration, live specimens RÉSUMÉ Buccinum cyaneum en provenance de diverses localités de l’Atlantique Nord-Est est illustré. Des spécimens vivants sont également représentés. ABSTRACT Buccinum cyaneum from different North-East Atlantic localities are illustrated. Live specimens are also presented. INTRODUCTION Buccinum cyaneum Bruguière, 1792 est un petit représentant de la famille des Buccinidae qui ne dépasse généralement pas une hauteur de 5 à 6 cm. La coquille se caractérise par une absence de plis verticaux, du moins dans la grande majorité des cas. Elle porte des côtes spirales espacées, principalement sur le dernier tour. Son opercule est pointu avec un nucleus décentré (Macpherson 1971). Buccinum cyaneum dépose des capsules ovigères à la surface lisse en amas semi-circulaires de 41 à 48 mm de diamètre (Thorson 1935). Dans celles-ci de petites coquilles s’y développent (Delongueville & Scaillet 2001). Il existe de nombreuses variétés qui ont donné lieu à la multiplication des synonymes, le plus connu est Buccinum groenlandicum Chemnitz, 1788. Certaines variétés sont illustrées dans Fraussen & Poppe (1994). Buccinum cyaneum vit à la limite des zones boréale et arctique. Sa distribution est assez vaste. On le trouve en Amérique du Nord de la Nouvelle Ecosse (Whiteaves 1901) jusqu’à l’ile d’Ellesmere, à l’ouest et au sud-est du Groenland, en Islande (Macpherson 1971), aux iles Féroé (Sneli et al.
    [Show full text]
  • The Nature of Northern Australia
    THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF).
    [Show full text]
  • Download Full Article in PDF Format
    A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases.
    [Show full text]
  • Aequipecten Opercularis (Linnaeus, 1758)
    Aequipecten opercularis (Linnaeus, 1758) AphiaID: 140687 VIEIRA Animalia (Reino) > Mollusca (Filo) > Bivalvia (Classe) > Autobranchia (Subclasse) > Pteriomorphia (Infraclasse) > Pectinida (Ordem) > Pectinoidea (Superfamilia) > Pectinidae (Familia) © Vasco Ferreira Mouna Antit, via WoRMS v_s_ - iNaturalist.org Facilmente confundível com: 1 Pecten maximus Vieira Principais ameaças Sinónimos Aequipecten heliacus (Dall, 1925) Chlamys bruei coeni Nordsieck, 1969 Chlamys bruei pulchricostata Nordsieck, 1969 Chlamys opercularis (Linnaeus, 1758) Ostrea dubia Gmelin, 1791 Ostrea elegans Gmelin, 1791 Ostrea florida Gmelin, 1791 Ostrea opercularis Linnaeus, 1758 Ostrea plana Gmelin, 1791 Ostrea radiata Gmelin, 1791 Ostrea regia Gmelin, 1791 Ostrea versicolor Gmelin, 1791 Pecten (Chlamys) vescoi Bavay, 1903 Pecten audouinii Payraudeau, 1826 Pecten cretatus Reeve, 1853 Pecten daucus Reeve, 1853 Pecten heliacus Dall, 1925 Pecten lineatus da Costa, 1778 Pecten lineatus var. albida Locard, 1888 Pecten lineatus var. bicolor Locard, 1888 Pecten opercularis (Linnaeus, 1758) 2 Pecten opercularis var. albopurpurascens Lamarck, 1819 Pecten opercularis var. albovariegata Clement, 1875 Pecten opercularis var. aspera Bucquoy, Dautzenberg & Dollfus, 1889 Pecten opercularis var. concolor Bucquoy, Dautzenberg & Dollfus, 1889 Pecten opercularis var. depressa Locard, 1888 Pecten opercularis var. elongata Jeffreys, 1864 Pecten opercularis var. luteus Lamarck, 1819 Pecten pictus da Costa, 1778 Pecten subrufus Pennant, 1777 Pecten vescoi Bavay, 1903 Referências basis of record Gofas, S.; Le Renard, J.; Bouchet, P. (2001). Mollusca. in: Costello, M.J. et al. (eds), European Register of Marine Species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels. 50: 180-213. [details] additional source Ardovini, R.; Cossignani, T. (2004). West African seashells (including Azores, Madeira and Canary Is.) = Conchiglie dell’Africa Occidentale (incluse Azzorre, Madeira e Canarie).
    [Show full text]
  • DISCUSSION of the FLORA of GUADALUPE ISLAND Dr. Reid Moran1
    DISCUSSION OF THE FLORA OF GUADALUPE ISLAND Dr. Reid Moran1: Guadalupe Island lies about 250 miles south- southwest of San Diego, California, and about 160 miles off the peninsula of Baja California, Mexico. Volcanic in origin and sep­ arated from the peninsula by depths of about 12,000 feet, it is clearly an oceanic island. Among the vascular plants recorded from Guadalupe Island and its islets, apparently 164 species are native. Goats, introduced more than a century ago, have eliminated some species and re­ duced others nearly to extinction. Outer Islet, a goatless refugium two miles south of the main island, has a native florula of 36 species. Nine of these (including Euphorbia misera and Lavatera occidentalis) are very scarce on the main island, largely confined to cliffs inaccessible to goats; another one (Coreopsis gigantea) has not been collected there since 1875; and five others (includ­ ing Lavatera lindsayi, Dudleya guadalupensis, and Rhus integri¬ folia) have never been recorded from there. Although it is not known that these five ever did occur on the main island, presum­ ably they did but were exterminated by the goats. These five, comprising 14 per cent of the native florula of Outer Islet, give the only suggestion we have as to how many species must have been eliminated from the main island by the goats before they could be found by botanists. Also reported from Guadalupe Island are 42 species that prob­ ably are not native. Several of these, each found only once, ap­ parently have not persisted; but, with the severe reduction of many native plants by the goats, other introduced plants have become abundant.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • APPLICATIONS of QUANTITATIVE METHODS and CHAOS THEORY in ICHNOLOGY for ANALYSIS of INVERTEBRATE BEHAVIOR and EVOLUTION by James
    APPLICATIONS OF QUANTITATIVE METHODS AND CHAOS THEORY IN ICHNOLOGY FOR ANALYSIS OF INVERTEBRATE BEHAVIOR AND EVOLUTION by James Richard Woodson Lehane A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology Department of Geology and Geophysics The University of Utah August 2014 Copyright © James Richard Woodson Lehane 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of James Richard Woodson Lehane has been approved by the following supervisory committee members: Allan A. Ekdale , Chair May 5th, 2014 Date Approved Randall B. Irmis , Member June 6th, 2014 Date Approved Marjorie A. Chan , Member May 5th, 2014 Date Approved Elena A. Cherkaev , Member June 12th, 2014 Date Approved Leif Tapanila , Member June 6th, 2014 Date Approved and by John M. Bartley , Chair/Dean of the Department/College/School of Geology and Geophysics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Trace fossils are the result of animal behaviors, such as burrowing and feeding, recorded in the rock record. Previous research has been mainly on the systematic description of trace fossils and their paleoenvironmental implications, not how animal behaviors have evolved. This study analyzes behavioral evolution using the quantification of a group of trace fossils, termed graphoglyptids. Graphoglyptids are deep marine trace fossils, typically found preserved as casts on the bottom of turbidite beds. The analytical techniques performed on the graphoglyptids include calculating fractal dimension, branching angles, and tortuosity, among other analyses, for each individual trace fossil and were performed on over 400 trace fossils, ranging from the Cambrian to the modem.
    [Show full text]
  • LCSH Section W
    W., D. (Fictitious character) William Kerr Scott Lake (N.C.) Waaddah Island (Wash.) USE D. W. (Fictitious character) William Kerr Scott Reservoir (N.C.) BT Islands—Washington (State) W.12 (Military aircraft) BT Reservoirs—North Carolina Waaddah Island (Wash.) USE Hansa Brandenburg W.12 (Military aircraft) W particles USE Waadah Island (Wash.) W.13 (Seaplane) USE W bosons Waag family USE Hansa Brandenburg W.13 (Seaplane) W-platform cars USE Waaga family W.29 (Military aircraft) USE General Motors W-cars Waag River (Slovakia) USE Hansa Brandenburg W.29 (Military aircraft) W. R. Holway Reservoir (Okla.) USE Váh River (Slovakia) W.A. Blount Building (Pensacola, Fla.) UF Chimney Rock Reservoir (Okla.) Waaga family (Not Subd Geog) UF Blount Building (Pensacola, Fla.) Holway Reservoir (Okla.) UF Vaaga family BT Office buildings—Florida BT Lakes—Oklahoma Waag family W Award Reservoirs—Oklahoma Waage family USE Prix W W. R. Motherwell Farmstead National Historic Park Waage family W.B. Umstead State Park (N.C.) (Sask.) USE Waaga family USE William B. Umstead State Park (N.C.) USE Motherwell Homestead National Historic Site Waahi, Lake (N.Z.) W bosons (Sask.) UF Lake Rotongaru (N.Z.) [QC793.5.B62-QC793.5.B629] W. R. Motherwell Stone House (Sask.) Lake Waahi (N.Z.) UF W particles UF Motherwell House (Sask.) Lake Wahi (N.Z.) BT Bosons Motherwell Stone House (Sask.) Rotongaru, Lake (N.Z.) W. Burling Cocks Memorial Race Course at Radnor BT Dwellings—Saskatchewan Wahi, Lake (N.Z.) Hunt (Malvern, Pa.) W.S. Payne Medical Arts Building (Pensacola, Fla.) BT Lakes—New Zealand UF Cocks Memorial Race Course at Radnor Hunt UF Medical Arts Building (Pensacola, Fla.) Waʻahila Ridge (Hawaii) (Malvern, Pa.) Payne Medical Arts Building (Pensacola, Fla.) BT Mountains—Hawaii BT Racetracks (Horse racing)—Pennsylvania BT Office buildings—Florida Waaihoek (KwaZulu-Natal, South Africa) W-cars W star algebras USE Waay Hoek (KwaZulu-Natal, South Africa : USE General Motors W-cars USE C*-algebras Farm) W.
    [Show full text]
  • The Conservation of Forest Genetic Resources Case Histories from Canada, Mexico, and the United States
    The Conservation of Forest Genetic Resources Case Histories from Canada, Mexico, and the United States value of gene banks in the conservation of forest genetic resources. By E Thomas Ledig, J.JesusVargas-Hernandez, and Kurt H. Johnsen Prepared as a task of the Forest Genetic Resources Study Group/North American Forestry CornrnissioniFood and Agriculture Organization of the United Nations. Reprinted from the Joul-rzal of Forestry, Vol. 96, No. 1, January 1998. Not for further reproduction. e Conservation of Forest Case Histories from Canada, Mexico, and the United States he genetic codes of living organ- taken for granted: release of oxygen and isms are natural resources no less storage of carbon, amelioration of cli- T than soil, air, and water. Genetic mate, protection of watersheds, and resources-from nucleotide sequences others. Should genetic resources be lost, in DNA to selected genotypes, popula- ecosystem function may also be dam- tions, and species-are the raw mater- aged, usually expressed as a loss of pri- ial in forestry: for breeders, for the for- mary productivity, the rate at which a est manager who produces an eco- plant community stores energy and pro- nomic crop, for society that reaps the duces organic matter (e.g., Fetcher and environmental benefits provided by Shaver 1990). Losses in primary pro- forests, and for the continued evolu- ductivity result in changes in nutrient tion of the species itself. and gas cycling in Breeding, of course, The loss g~f;a ecosystems (Bormann requires genetic variation. and Likens 1979). Continued improvement p population is Genetic diversity is in medicines, agricultural the most basic element By F.
    [Show full text]