A System Architecture for Learning Robots

Total Page:16

File Type:pdf, Size:1020Kb

A System Architecture for Learning Robots A system architecture for learning robots Adam Leigh Haber A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy, October 2014. School of Computer Science and Engineering Faculty of Engineering PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Haber First name: Adam Other name/s: Leigh Abbreviation for degree as given in the University calendar: PhD School: Computer Science & Engineering (CSE) Faculty: Engineering Title: A system architecture for learning robots Abstract 350 words maximum: (PLEASE TYPE) Control systems for intelligent, autonomous robots require the synthesis of a varied set of components in a highly constrained manner. Individual algorithmic solutions for many necessary components are now firmly in place. However, the mechanisms and dynamics of integration into complete systems have received less attention. Robot architectures provide principled frameworks to guide this process. This thesis presents a novel robot architecture, called MALA, constructed specifically to incorporate the diversity of specialised components necessary for autonomous robots, and integrate them with planning systems necessary for flexible reasoning. The extent to which robots can function autonomously over long timescales is dependent on their ability to learn from experience. Therefore, MALA is also focused on embedding learning into all aspects of robot software. Previous research has typically focused on robot learning an isolated setting, rather than interleaved with extended autonomous operation. Integrated approaches such as MALA enable robot learning to be analysed in this embedded context. To demonstrate this, MALA is used to control a simulated rescue robot that explores a disaster site, constructs plans to achieve its goals, and simultaneously learns to drive under difficult conditions. It is shown that the learning components enable the robot’s performance to consistently improve. There is significant potential to improve robot performance by enabling learning processes operating at different levels of abstraction to influence and guide each other, which is referred to as hybrid learning. A particularly novel aspect of MALA is the emphasis placed on hybrid learning in its design. Using MALA, a hybrid learning system capable of simultaneously acquiring task- and control- level knowledge from demonstrations is introduced. A robot initially acquires relational models of novel actions through Explanation-Based Learning (EBL), and control-level knowledge of how to perform these actions using Dynamic Motion Primitives (DMPs). It then generalises these action models using an active learning algorithm based on Inductive Logic Programming (ILP). The system is shown to be capable of learning complex manipulation actions involving both dynamic and logical characteristics, such as hitting with a hammer, and using these actions to make plans to achieve difficult goals. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). …………………………………………………………… ……………………………………..……………… ……….……………………...…….… Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS Originality Statement I hereby declare that this submission is my own work and to the best of my knowl- edge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged. Signed Date iii COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... Date ……………………………………………........................... INCLUSION OF PUBLICATIONS STATEMENT UNSW is supportive of candidates publishing their research results during their candidature as detailed in the UNSW Thesis Examination Procedure. Publications can be used in their thesis in lieu of a Chapter if: • The student contributed greater than 50% of the content in the publication and is the “primary author”, ie. the student was responsible primarily for the planning, execution and preparation of the work for publication • The student has approval to include the publication in their thesis in lieu of a Chapter from their supervisor and Postgraduate Coordinator. • The publication is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in the thesis Please indicate whether this thesis contains published material or not. This thesis contains no publications, either published or submitted for publication ☐ (if this box is checked, you may delete all the material on page 2) Some of the work described in this thesis has been published and it has been documented in the relevant Chapters with acknowledgement (if this box is ☒ checked, you may delete all the material on page 2) This thesis has publications (either published or submitted for publication) ☐ incorporated into it in lieu of a chapter and the details are presented below CANDIDATE’S DECLARATION I declare that: • I have complied with the Thesis Examination Procedure • where I have used a publication in lieu of a Chapter, the listed publication(s) below meet(s) the requirements to be included in the thesis. Name Signature Date (dd/mm/yy) Adam Leigh Haber 24/09/2019 Postgraduate Coordinator’s Declaration (to be filled in where publications are used in lieu of Chapters) I declare that: • the information below is accurate • where listed publication(s) have been used in lieu of Chapter(s), their use complies with the Thesis Examination Procedure • the minimum requirements for the format of the thesis have been met. PGC’s Name PGC’s Signature Date (dd/mm/yy) i Abstract Control systems for intelligent, autonomous robots require the synthesis of a diverse set of components in a highly constrained manner. Algorithmic solutions for many necessary individual modules are now firmly in place. However, the mechanisms and dynamics of integration into complete systems have received less attention. Robot architectures provide principled frameworks to guide this process. This thesis presents a novel robot architecture, called MALA, constructed specifically to incorporate the diversity of specialised components necessary for autonomous robots, and integrate them with planning systems necessary for flexible reasoning. The extent to which robots can function autonomously over long timescales is dependent on their ability to learn from experience. Therefore, MALA is also focused on embedding learning into all aspects of robot software. Previous research has typically focused on robot learning an isolated setting, rather than interleaved with extended autonomous operation. Integrated approaches such as MALA enable robot learning to be analysed in this
Recommended publications
  • Design and Evaluation of Modular Robots for Maintenance in Large Scientific Facilities
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES PRITHVI SEKHAR PAGALA, MSC 2014 DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES PhD Thesis Author: Prithvi Sekhar Pagala, MSC Advisors: Manuel Ferre Perez, PhD Manuel Armada, PhD 2014 DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES Author: Prithvi Sekhar Pagala, MSC Tribunal: Presidente: Dr. Fernando Matía Espada Secretario: Dr. Claudio Rossi Vocal A: Dr. Antonio Giménez Fernández Vocal B: Dr. Juan Antonio Escalera Piña Vocal C: Dr. Concepción Alicia Monje Micharet Suplente A: Dr. Mohamed Abderrahim Fichouche Suplente B: Dr. José Maráa Azorín Proveda Acuerdan otorgar la calificación de: Madrid, de de 2014 Acknowledgements The duration of the thesis development lead to inspiring conversations, exchange of ideas and expanding knowledge with amazing individuals. I would like to thank my advisers Manuel Ferre and Manuel Armada for their constant men- torship, support and motivation to pursue different research ideas and collaborations during the course of entire thesis. The team at the lab has not only enriched my professionally life but also in Spanish ways. Thank you all the members of the ROMIN, Francisco, Alex, Jose, Jordi, Ignacio, Javi, Chema, Luis .... This research project has been supported by a Marie Curie Early Stage Initial Training Network Fellowship of the European Community’s Seventh Framework Program "PURESAFE". I wish to thank the supervisors and fellow research members of the project for the amazing support, fruitful interactions and training events.
    [Show full text]
  • Learning for Microrobot Exploration: Model-Based Locomotion, Sparse-Robust Navigation, and Low-Power Deep Classification
    Learning for Microrobot Exploration: Model-based Locomotion, Sparse-robust Navigation, and Low-power Deep Classification Nathan O. Lambert1, Farhan Toddywala1, Brian Liao1, Eric Zhu1, Lydia Lee1, and Kristofer S. J. Pister1 Abstract— Building intelligent autonomous systems at any Classification Intelligent, mm scale Fast Downsampling scale is challenging. The sensing and computation constraints Microrobot of a microrobot platform make the problems harder. We present improvements to learning-based methods for on-board learning of locomotion, classification, and navigation of microrobots. We show how simulated locomotion can be achieved with model- Squeeze-and-Excite Hard Activation System-on-chip: based reinforcement learning via on-board sensor data distilled Camera, Radio, Battery into control. Next, we introduce a sparse, linear detector and a Dynamic Thresholding method to FAST Visual Odometry for improved navigation in the noisy regime of mm scale imagery. Locomotion Navigation We end with a new image classifier capable of classification Controller Parameter Unknown Dynamics Original Training Image with fewer than one million multiply-and-accumulate (MAC) Optimization Modeling & Simulator Resulting Map operations by combining fast downsampling, efficient layer Reward structures and hard activation functions. These are promising … … SLIPD steps toward using state-of-the-art algorithms in the power- Ground Truth Estimated Pos. State Space limited world of edge-intelligence and microrobots. Sparse I. INTRODUCTION Local Control PID: K K K Microrobots have been touted as a coming revolution p d i for many tasks, such as search and rescue, agriculture, or Fig. 1: Our vision for microrobot exploration based on distributed sensing [1], [2]. Microrobotics is a synthesis of three contributions: 1) improving data-efficiency of learning Microelectromechanical systems (MEMs), actuators, power control, 2) a more noise-robust and novel approach to visual electronics, and computation.
    [Show full text]
  • Robot Learning
    Robot Learning 15-494 Cognitive Robotics David S. Touretzky & Ethan Tira-Thompson Carnegie Mellon Spring 2009 04/06/09 15-494 Cognitive Robotics 1 What Can Robots Learn? ● Parameter tuning, e.g., for a faster walk ● Perceptual learning: ALVINN driving the Navlab ● Map learning, e.g., SLAM algorithms ● Behavior learning; plans and macro-operators – Shakey the Robot (SRI) – Robo-Soar ● Learning from human teachers – Operant conditioning: Skinnerbots – Imitation learning 04/06/09 15-494 Cognitive Robotics 2 Lots of Work on Robot Learning ● IEEE Robotics and Automation Society – Technical Committee on Robot Learning – http://www.learning-robots.de ● Robot Learning Summer School – Lisbon, Portugal; July 20-24, 2009 ● Workshops at major robotics conferences – ICRA 2009 workshop: Approachss to Sensorimotor Learning on Humanoid Robots – Kobe, Japan; May 17, 2009 04/06/09 15-494 Cognitive Robotics 3 Parameter Optimization ● How fast can an AIBO walk? Figures from Kohl & Stone, ICRA 2004, for the ERS-210 model: – CMU (2002) 200 mm/s – German Team 230 mm/s Hand-tuned gaits – UT Austin Villa 245 mm/s – UNSW 254 mm/s – Hornsby (1999) 170 mm/s – UNSW 270 mm/s Learned gaits – UT Austin Villa 291 mm/s 04/06/09 15-494 Cognitive Robotics 4 Walk Parameters 12 parameters to optimize: ● Front locus (height, x pos, ypos) ● Rear locus (height, x pos, y pos) ● Locus length ● Locus skew multiplier (in the x-y plane, for turning) ● Height of front of body ● Height of rear of body From Kohl & Stone (ICRA 2004) ● Foot travel time ● Fraction of time foot is on ground 04/06/09 15-494 Cognitive Robotics 5 Optimization Strategy ● “Policy gradient reinforcement learning”: – Walk parameter assignment = “policy” – Estimate the gradient along each dimension by trying combinations of slight perturbations in all parameters – Measure walking speed on the actual robot – Optimize all 12 parameters simultaneously – Adjust parameters according to the estimated gradient.
    [Show full text]
  • Systematic Review of Research Trends in Robotics Education for Young Children
    sustainability Review Systematic Review of Research Trends in Robotics Education for Young Children Sung Eun Jung 1,* and Eun-sok Won 2 1 Department of Educational Theory and Practice, University of Georgia, Athens, GA 30602, USA 2 Department of Liberal Arts Education, Mokwon University, Daejeon 35349, Korea; [email protected] * Correspondence: [email protected]; Tel.: +1-706-296-3001 Received: 31 January 2018; Accepted: 13 March 2018; Published: 21 March 2018 Abstract: This study conducted a systematic and thematic review on existing literature in robotics education using robotics kits (not social robots) for young children (Pre-K and kindergarten through 5th grade). This study investigated: (1) the definition of robotics education; (2) thematic patterns of key findings; and (3) theoretical and methodological traits. The results of the review present a limitation of previous research in that it has focused on robotics education only as an instrumental means to support other subjects or STEM education. This study identifies that the findings of the existing research are weighted toward outcome-focused research. Lastly, this study addresses the fact that most of the existing studies used constructivist and constructionist frameworks not only to design and implement robotics curricula but also to analyze young children’s engagement in robotics education. Relying on the findings of the review, this study suggests clarifying and specifying robotics-intensified knowledge, skills, and attitudes in defining robotics education in connection to computer science education. In addition, this study concludes that research agendas need to be diversified and the diversity of research participants needs to be broadened. To do this, this study suggests employing social and cultural theoretical frameworks and critical analytical lenses by considering children’s historical, cultural, social, and institutional contexts in understanding young children’s engagement in robotics education.
    [Show full text]
  • Multi-Leapmotion Sensor Based Demonstration for Robotic Refine Tabletop Object Manipulation Task
    Available online at www.sciencedirect.com ScienceDirect CAAI Transactions on Intelligence Technology 1 (2016) 104e113 http://www.journals.elsevier.com/caai-transactions-on-intelligence-technology/ Original article Multi-LeapMotion sensor based demonstration for robotic refine tabletop object manipulation task* Haiyang Jin a,b,c, Qing Chen a,b, Zhixian Chen a,b, Ying Hu a,b,*, Jianwei Zhang c a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China b Chinese University of Hong Kong, Hong Kong, China c University of Hamburg, Hamburg, Germany Available online 2 June 2016 Abstract In some complicated tabletop object manipulation task for robotic system, demonstration based control is an efficient way to enhance the stability of execution. In this paper, we use a new optical hand tracking sensor, LeapMotion, to perform a non-contact demonstration for robotic systems. A Multi-LeapMotion hand tracking system is developed. The setup of the two sensors is analyzed to gain a optimal way for efficiently use the informations from the two sensors. Meanwhile, the coordinate systems of the Mult-LeapMotion hand tracking device and the robotic demonstration system are developed. With the recognition to the element actions and the delay calibration, the fusion principles are developed to get the improved and corrected gesture recognition. The gesture recognition and scenario experiments are carried out, and indicate the improvement of the proposed Multi-LeapMotion hand tracking system in tabletop object manipulation task for robotic demonstration. Copyright © 2016, Chongqing University of Technology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Machine Vision for Service Robots & Surveillance
    Machine Vision for Service Robots & Surveillance Prof.dr.ir. Pieter Jonker EMVA Conference 2015 Delft University of Technology Cognitive Robotics (text intro) This presentation addresses the issue that machine vision and learning systems will dominate our lives and work in future, notably through surveillance systems and service robots. Pieter Jonker’s specialism is robot vision; the perception and cognition of service robots, more specifically autonomous surveillance robots and butler robots. With robot vision comes the artificial intelligence; if you perceive and understand, than taking sensible actions becomes relative easy. As robots – or autonomous cars, or … - can move around in the world, they encounter various situations to which they have to adapt. Remembering in which situation you adapted to what is learning. Learning comes in three flavors: cognitive learning through Pattern Recognition (association), skills learning through Reinforcement Learning (conditioning) and the combination (visual servoing); such as a robot learning from observing a human how to poor in a glass of beer. But as always in life this learning comes with a price; bad teachers / bad examples. 2 | 16 Machine Vision for Service Robots & Surveillance Prof.dr.ir. Pieter Jonker EMVA Conference Athens 12 June 2015 • Professor of (Bio) Mechanical Engineering Vision based Robotics group, TU-Delft Robotics Institute • Chairman Foundation Living Labs for Care Innovation • CEO LEROVIS BV, CEO QdepQ BV, CTO Robot Care Systems Delft University of Technology Content •
    [Show full text]
  • A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
    Journal of Machine Learning Research 22 (2021) 1-82 Submitted 9/19; Revised 8/20; Published 1/21 A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms Oliver Kroemer∗ [email protected] School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213, USA Scott Niekum [email protected] Department of Computer Science The University of Texas at Austin Austin, TX 78712, USA George Konidaris [email protected] Department of Computer Science Brown University Providence, RI 02912, USA Editor: Daniel Lee Abstract A key challenge in intelligent robotics is creating robots that are capable of directly in- teracting with the world around them to achieve their goals. The last decade has seen substantial growth in research on the problem of robot manipulation, which aims to exploit the increasing availability of affordable robot arms and grippers to create robots capable of directly interacting with the world to achieve their goals. Learning will be central to such autonomous systems, as the real world contains too much variation for a robot to expect to have an accurate model of its environment, the objects in it, or the skills required to manipulate them, in advance. We aim to survey a representative subset of that research which uses machine learning for manipulation. We describe a formalization of the robot manipulation learning problem that synthesizes existing research into a single coherent framework and highlight the many remaining research opportunities and challenges. Keywords: manipulation, learning, review, robots, MDPs 1. Introduction Robot manipulation is central to achieving the promise of robotics|the very definition of a robot requires that it has actuators, which it can use to effect change on the world.
    [Show full text]
  • Acknowledgements Acknowl
    2161 Acknowledgements Acknowl. B.21 Actuators for Soft Robotics F.58 Robotics in Hazardous Applications by Alin Albu-Schäffer, Antonio Bicchi by James Trevelyan, William Hamel, The authors of this chapter have used liberally of Sung-Chul Kang work done by a group of collaborators involved James Trevelyan acknowledges Surya Singh for de- in the EU projects PHRIENDS, VIACTORS, and tailed suggestions on the original draft, and would also SAPHARI. We want to particularly thank Etienne Bur- like to thank the many unnamed mine clearance experts det, Federico Carpi, Manuel Catalano, Manolo Gara- who have provided guidance and comments over many bini, Giorgio Grioli, Sami Haddadin, Dominic Lacatos, years, as well as Prof. S. Hirose, Scanjack, Way In- Can zparpucu, Florian Petit, Joshua Schultz, Nikos dustry, Japan Atomic Energy Agency, and Total Marine Tsagarakis, Bram Vanderborght, and Sebastian Wolf for Systems for providing photographs. their substantial contributions to this chapter and the William R. Hamel would like to acknowledge work behind it. the US Department of Energy’s Robotics Crosscut- ting Program and all of his colleagues at the na- C.29 Inertial Sensing, GPS and Odometry tional laboratories and universities for many years by Gregory Dudek, Michael Jenkin of dealing with remote hazardous operations, and all We would like to thank Sarah Jenkin for her help with of his collaborators at the Field Robotics Center at the figures. Carnegie Mellon University, particularly James Os- born, who were pivotal in developing ideas for future D.36 Motion for Manipulation Tasks telerobots. by James Kuffner, Jing Xiao Sungchul Kang acknowledges Changhyun Cho, We acknowledge the contribution that the authors of the Woosub Lee, Dongsuk Ryu at KIST (Korean Institute first edition made to this chapter revision, particularly for Science and Technology), Korea for their provid- Sect.
    [Show full text]
  • 74. Learning from Humans Fro
    1995 Multimedia Contents Learning74. Learning from Humans fro Aude G. Billard, Sylvain Calinon, Rüdiger Dillmann 74.1 Learning of Robots .............................. 1995 This chapter surveys the main approaches devel- 74.1.1 Principle................................... 1996 oped to date to endow robots with the ability 74.1.2 Brief History.............................. 1996 to learn from human guidance. The field is best 74.2 Key Issues When Learning known as robot programming by demonstration, from Human Demonstrations ............... 1998 robot learning from/by demonstration, appren- 74.2.1 When and Whom to Imitate ....... 1998 ticeship learning and imitation learning. We start 74.2.2 How to Imitate and How to Solve with a brief historical overview of the field. We the Correspondence Problem...... 1999 then summarize the various approaches taken 74.3 Interfaces for Demonstration................ 2000 to solve four main questions: when, what, who 74.4 Algorithms to Learn from Humans ........ 2002 and when to imitate. We emphasize the im- 74.4.1 Learning Individual Motions....... 2002 portance of choosing well the interface and the 74.4.2 Learning Compound Actions ....... 2003 channels used to convey the demonstrations, 74.4.3 Incremental Teaching Methods ... 2004 with an eye on interfaces providing force control 74.4.4 Combining Learning and force feedback. We then review algorith- from Humans with Other mic approaches to model skills individually and Learning Techniques .................. 2005 as a compound and algorithms that combine 74.4.5 Learning from Humans, a Form learning from human guidance with reinforce- of Human–Robot Interaction...... 2006 ment learning. We close with a look on the use 74.5 Conclusions and Open Issues of language to guide teaching and a list of open in Robot LfD .......................................
    [Show full text]
  • Abstract a Cognitive Robotic Imitation Learning System
    ABSTRACT Title of dissertation: A COGNITIVE ROBOTIC IMITATION LEARNING SYSTEM BASED ON CAUSE-EFFECT REASONING Garrett Ethan Katz Doctor of Philosophy, 2017 Dissertation directed by: Professor James A. Reggia Department of Computer Science As autonomous systems become more intelligent and ubiquitous, it is increas- ingly important that their behavior can be easily controlled and understood by human end users. Robotic imitation learning has emerged as a useful paradigm for meeting this challenge. However, much of the research in this area focuses on mimicking the precise low-level motor control of a demonstrator, rather than inter- preting the intentions of a demonstrator at a cognitive level, which limits the ability of these systems to generalize. In particular, cause-effect reasoning is an important component of human cognition that is under-represented in these systems. This dissertation contributes a novel framework for cognitive-level imitation learning that uses parsimonious cause-effect reasoning to generalize demonstrated skills, and to justify its own actions to end users. The contributions include new causal inference algorithms, which are shown formally to be correct and have reason- able computational complexity characteristics. Additionally, empirical validations both in simulation and on board a physical robot show that this approach can ef- ficiently and often successfully infer a demonstrator's intentions on the basis of a single demonstration, and can generalize learned skills to a variety of new situations. Lastly, computer experiments are used to compare several formal criteria of parsi- mony in the context of causal intention inference, and a new criterion proposed in this work is shown to compare favorably with more traditional ones.
    [Show full text]
  • Robot Learning for Persistent Autonomy
    Robot Learning for Persistent Autonomy Petar Kormushev and Seyed Reza Ahmadzadeh Abstract Autonomous robots are not very good at being autonomous. They work well in structured environments, but fail quickly in the real world facing uncertainty and dynamically changing conditions. In this chapter, we describe robot learning approaches that help to elevate robot autonomy to the next level, the so-called ’per- sistent autonomy’. For a robot to be ’persistently autonomous’ means to be able to perform missions over extended time periods (e.g. days or months) in dynamic, uncertain environments without need for human assistance. In particular, persistent autonomy is extremely important for robots in difficult-to-reach environments such as underwater, rescue, and space robotics. There are many facets of persistent auton- omy, such as: coping with uncertainty, reacting to changing conditions, disturbance rejection, fault tolerance, energy efficiency and so on. This chapter presents a col- lection of robot learning approaches that address many of these facets. Experiments with robot manipulators and autonomous underwater vehicles demonstrate the use- fulness of these learning approaches in real world scenarios. 1 Persistent Autonomy While humans and animals can perform effortlessly complicated tasks in unknown environments, our human-built robots are not very good at being similarly indepen- dent. Operating in real environments, they easily get stuck, often ask for help, and generally succeed only when attempting simple tasks in well-known situations. We Petar Kormushev Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, UK e-mail: [email protected] S. Reza Ahmadzadeh iCub Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy e-mail: [email protected] 1 2 Petar Kormushev and Reza Ahmadzadeh would like autonomous robots to be much better at being autonomous for longer stretches of time (persistent autonomy), and to be able to carry out more compli- cated tasks without getting stuck, lost or confused.
    [Show full text]
  • Deep Learning in Robotics: a Review of Recent Research Harry A. Pierson
    Deep Learning in Robotics: A Review of Recent Research Harry A. Pierson (corresponding author) Department of Industrial Engineering, University of Arkansas, Fayetteville, AR, USA 4207 Bell Engineering Center 1 University of Arkansas Fayetteville, AR 72701 [email protected] +1 (479) 575-6034 Michael S. Gashler Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR, USA 504 J. B. Hunt Building 1 University of Arkansas Fayetteville, AR 72701 [email protected] 1 Deep Learning in Robotics: A Review of Recent Research Advances in deep learning over the last decade have led to a flurry of research in the application of deep artificial neural networks to robotic systems, with at least thirty papers published on the subject between 2014 and the present. This review discusses the applications, benefits, and limitations of deep learning vis-à-vis physical robotic systems, using contemporary research as exemplars. It is intended to communicate recent advances to the wider robotics community and inspire additional interest in and application of deep learning in robotics. Keywords: deep neural networks; artificial intelligence; human-robot interaction 1. Introduction Deep learning is the science of training large artificial neural networks. Deep neural networks (DNNs) can have hundreds of millions of parameters [1, 2], allowing them to model complex functions such as nonlinear dynamics. They form compact representations of state from raw, high-dimensional, multimodal sensor data commonly found in robotic systems [3], and unlike many machine learning methods, they do not require a human expert to hand-engineer feature vectors from sensor data at design time. DNNs can, however, present particular challenges in physical robotic systems, where generating training data is generally expensive, and sub-optimal performance in training poses a danger in some applications.
    [Show full text]