An Astrobiological Lens on Planetary System Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GTL PI Meeting 2003 Presentation Nealson
USCUSC Geobiology Astrobiology Ken Nealson Wrigley Professor of Geobiology USC SHEWANELLA and Genomes to Life !! THE FUTURE!! WHERE ARE WE GOING? HOW WILL WE GET THERE? WHAT ARE THE CHALLENGES AND TRAPS? USCUSC Geobiology Astrobiology Genomes to Life: Shewanella and the future !! Genomes & Genomics: For sake of this discussion, I include Genome composition, gene expression, & metabolism Genomics Physiology Ecophsyiology Ecology Predictable Community Behavior Successful Manipulation of Natural Communities USCUSC Geobiology Astrobiology Shewanella in the future: Short Term: Genomic/Proteomic/Metabolic Connections Linkage of physiology to genomic information Mid Term: Ecophysiology Questions regarding regulation of MR-1 How does the cell”work”? Linkage of laboratory to microcosm and field data Long Term: Community structure and activities Genetic variability and use of genomic approaches Predictable community ecology The “old view” of Shewanella oneidensis Gamma Purple proteobacteria MR-1; when Isolated was One of ~10, Now >50 ! USCUSC Geobiology Astrobiology The “new view” of Shewanella Now MR-1 is again one of 1, although a strain of S. benthica is almost finished by a Japanese group (JAMSTEC) USCUSC Geobiology Astrobiology Excitement of the “new view”: May be able to use this information to dissect specific aspects of both ecology and evolution: Ecology: Involved in many different redox processes Aerobic and anaerobic niches Metal cycling connected with carbon cycling Potential for dealing with many toxic metals and radionuclides Can we understand Shewanella well enough to begin to use it? what it does how it does it how it regulates how it interacts with other organisms All of this well enough to make predictions that work. -
Thoughts in Geobiology
Journal of Geology and Mining Research Vol. 1(8), October, 2009 Available online http://www.academicjournals.org/jgmr ISSN 2006 – 9766 © 2009 Academic Journals Editorial Thoughts in Geobiology One of the possible ways to make connection between geologists and biologists is through studying subjects related to the newly established trend “Geobiology”. In the year 1972, Sylvester-Bradley stated that the Earth sciences include not only geology, but the hybrid-sciences geophysics, geochemistry and geobiology, of which the most complex and least rigorous is geobiology. Kump (2008) simply defined geobiology as the field that has recently energized the life and Earth sciences as geologists and biologists bring new tools to collaborations addressing fundamental problems that transcend the disciplines. The book edited by Xiao and Kaufman (2007) includes a set of multidisciplinary reviews on the Neoproterozoic fossil record (animals, algae, acritarchs, protists, and trace fossils), evolutionary developmental biology of animals, molecular clock estimates of phylogenetic divergences, and Neoproterozoic chemostratigraphy and sedimentary geology. The editors of this book believe that these topics are of continuing interest to geoscientists and bioscientists who are intrigued by the deep history of the Earth and its inhabitants. Yildirim et al. (2008) believe that microbial systems in extreme environments and in the deep biosphere may be analogous to potential life on other planetary bodies and hence may be used to investigate the possibilities of extraterrestrial life. I would add that astrobiologists are working on this point through studying materials from Mars. Through geobiology we search for origins and evolution of life, atmosphere, hydrosphere, lithosphere and biosphere, reasons of mass extinctions, interactions between microbes and minerals, global changes, and other subjects of interest. -
Giving Alexander Oparin's Origin of Life Postulates a Future
Giving Alexander Oparin’s Origin of Life Postulates a Future Jeffrey J. Wolynski [email protected] April 17, 2016 Cocoa, FL 32922 Abstract: Alexander Oparin was a Soviet scientist working behind the Iron Curtain. Many of his ideas are true and can be further developed by utilizing the General Theory of Stellar Metamorphosis. Explanation is with author’s writing in dark green. Although Oparin's started out reviewing various panspermia theories, including those of Hermann von Helmholtz and William Thomson Kelvin,[3] he was primarily interested in how life began. As early as 1922, he asserted that: 1. There is no fundamental difference between a living organism and lifeless matter. The complex combination of manifestations and properties characteristic of life must have arisen as a part of the process of the evolution of matter. The complex combination of manifestations and properties characteristic of life arise as a part of the evolution of a single star as it evolves, cools and dies becoming an “exoplanet/planet”, as stellar evolution is planet formation itself. 2. Taking into account the recent discovery of methane in the atmospheres of Jupiter and the other giant planets, Oparin suggested that the infant Earth had possessed a strongly reducing atmosphere, containing methane, ammonia, hydrogen and water vapor. In his opinion, these were the raw materials for the evolution of life. Earth had a very violent hot past before it even possessed a reducing atmosphere, it was big, hot and bright like the Sun before it was cool enough to allow for the formation of ammonia, methane, hydrogen gas and water vapor. -
Rowan C. Martindale Curriculum Vitae Associate Professor (Invertebrate Paleontology) at the University of Texas at Austin
ROWAN C. MARTINDALE CURRICULUM VITAE ASSOCIATE PROFESSOR (INVERTEBRATE PALEONTOLOGY) AT THE UNIVERSITY OF TEXAS AT AUSTIN Department of Geological Sciences E-mail: [email protected] Jackson School of Geosciences Website: www.jsg.utexas.edu/martindale/ 2275 Speedway Stop C9000 Orchid ID: 0000-0003-2681-083X Austin, TX 78712-1722 Phone: 512-475-6439 Office: JSG 3.216A RESEARCH INTERESTS The overarching theme of my work is the connection between Earth and life through time, more precisely, understanding ancient (Mesozoic and Cenozoic) ocean ecosystems and the evolutionary and environmental events that shaped them. My research is interdisciplinary, (paleontology, sedimentology, biology, geochemistry, and oceanography) and focuses on: extinctions and carbon cycle perturbation events (e.g., Oceanic Anoxic Events, acidification events); marine (paleo)ecology and reef systems; the evolution of reef builders (e.g., coral photosymbiosis); and exceptionally preserved fossil deposits (Lagerstätten). ACADEMIC APPOINTMENTS Associate Professor, University of Texas at Austin September 2020 to Present Assistant Professor, University of Texas at Austin August 2014 to August 2020 Postdoctoral Researcher, Harvard University August 2012 to July 2014 Department of Organismic and Evolutionary Biology; Mentor: Dr. Andrew H. Knoll. EDUCATION Doctorate, University of Southern California 2007 to 2012 Dissertation: “Paleoecology of Upper Triassic reef ecosystems and their demise at the Triassic-Jurassic extinction, a potential ocean acidification event”. Advisor: Dr. David J. Bottjer, degree conferred August 7th, 2012. Bachelor of Science Honors Degree, Queen’s University 2003 to 2007 Geology major with a general concentration in Biology (Geological Sciences Medal Winner). AWARDS AND RECOGNITION Awards During Tenure at UT Austin • 2019 National Science Foundation CAREER Award: Awarded to candidates who are judged to have the potential to serve as academic role models in research and education. -
Dornbos.Web.CV
Stephen Quinn Dornbos Associate Professor and Department Chair Department of Geosciences University of Wisconsin-Milwaukee Milwaukee, WI 53201-0413 Phone: (414) 229-6630 Fax: (414) 229-5452 E-mail: [email protected] http://uwm.edu/geosciences/people/dornbos-stephen/ EDUCATION 2003 Ph.D., Geological Sciences, University of Southern California, Los Angeles, CA. 1999 M.S., Geological Sciences, University of Southern California, Los Angeles, CA. 1997 B.A., Geology, The College of Wooster, Wooster, OH. ADDITIONAL EDUCATION 2002 University of Washington, Summer Marine Invertebrate Zoology Course, Friday Harbor Laboratories. 1997 Louisiana State University, Summer Field Geology Course. PROFESSIONAL EXPERIENCE 2017-Present Department Chair, Department of Geosciences, University of Wisconsin-Milwaukee. 2010-Present Associate Professor, Department of Geosciences, University of Wisconsin-Milwaukee. 2004-2010 Assistant Professor, Department of Geosciences, University of Wisconsin-Milwaukee. 2012-Present Adjunct Curator, Geology Department, Milwaukee Public Museum. 2004-Present Curator, Greene Geological Museum, University of Wisconsin- Milwaukee. 2003-2004 Postdoctoral Research Fellow, Department of Earth Sciences, University of Southern California. 2002 Research Assistant, Invertebrate Paleontology Department, Natural History Museum of Los Angeles County. EDITORIAL POSITIONS 2017-Present Editorial Board, Heliyon. 2015-Present Board of Directors, Coquina Press. 2014-Present Commentaries Editor, Palaeontologia Electronica. 2006-Present Associate Editor, Palaeontologia Electronica. Curriculum Vitae – Stephen Q. Dornbos 2 RESEARCH INTERESTS 1) Evolution and preservation of early life on Earth. 2) Evolutionary paleoecology of early animals during the Cambrian radiation. 3) Geobiology of microbial structures in Precambrian–Cambrian sedimentary rocks. 4) Cambrian reef evolution, paleoecology, and extinction. 5) Exceptional fossil preservation. HONORS AND AWARDS 2013 UWM Authors Recognition Ceremony. 2011 Full Member, Sigma Xi. -
The Science of Astrobiology
The Science of Astrobiology Cellular Origin, Life in Extreme Habitats and Astrobiology ________________________________________________________________ Volume 20 (Second Edition) ________________________________________________________________ Julian Chela-Flores The Science of Astrobiology A Personal View on Learning to Read the Book of Life Julian Chela-Flores The Abdus Salam International Centre for Theoretical Physics P.O. Box 586 34014 Trieste Italy [email protected] ISSN 1566-0400 ISBN 978-94-007-1626-1 e-ISBN 978-94-007-1627-8 DOI 10.1007/978-94-007-1627-8 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2011934255 © Springer Science+Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) The cupola in the West Atrium of St. Mark's Basilica in Venice, Italy representing the biblical interpretation of Genesis (Cf., also pp. 215-216 at the beginning of Part 4: The destiny of life in the universe. With kind permission of the Procuratoria of St. Mark's Basilica.) For Sarah Catherine Mary Table of contents Table of contents vii Preface xvii Acknowledgements xxi Recommendations to the readers xxiii INTRODUCTION The cultural and scientific context of astrobiology I.1 Early attempts to read the Book of Life 3 ARISTARCHUS OF SAMOS AND HIPPARCHUS 4 NICHOLAS OF CUSA (CUSANUS) 4 NICHOLAS COPERNICUS 4 GIORDANO BRUNO 5 CHARLES DARWIN 6 I.2 Some pioneers of the science of astrobiology 8 ALEXANDER OPARIN 8 STANLEY MILLER 10 SIDNEY W. -
Arxiv:1910.06396V4 [Physics.Pop-Ph] 12 Jun 2021 ∗ Rmtv Ieeitdi H R-Oa Eua(Vni H C System)
Nebula-Relay Hypothesis: Primitive Life in Nebula and Origin of Life on Earth Lei Feng1,2, ∗ 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023 2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing University – Purple Mountain Observatory, Nanjing 210093, China Abstract A modified version of panspermia theory, named Nebula-Relay hypothesis or local panspermia, is introduced to explain the origin of life on Earth. Primitive life, acting as the seeds of life on Earth, originated at pre-solar epoch through physicochemical processes and then filled in the pre- solar nebula after the death of pre-solar star. Then the history of life on the Earth can be divided into three epochs: the formation of primitive life in the pre-solar epoch; pre-solar nebula epoch; the formation of solar system and the Earth age of life. The main prediction of our model is that primitive life existed in the pre-solar nebula (even in the current nebulas) and the celestial body formed therein (i.e. solar system). arXiv:1910.06396v4 [physics.pop-ph] 12 Jun 2021 ∗Electronic address: [email protected] 1 I. INTRODUCTION Generally speaking, there are several types of models to interpret the origin of life on Earth. The two most persuasive and popular models are the abiogenesis [1, 2] and pansper- mia theory [3]. The modern version of abiogenesis is also known as chemical origin theory introduced by Oparin in the 1920s [1], and Haldane proposed a similar theory independently [2] at almost the same time. In this theory, the organic compounds are naturally produced from inorganic matters through physicochemical processes and then reassembled into much more complex living creatures. -
Spontaneous Generation & Origin of Life Concepts from Antiquity to The
SIMB News News magazine of the Society for Industrial Microbiology and Biotechnology April/May/June 2019 V.69 N.2 • www.simbhq.org Spontaneous Generation & Origin of Life Concepts from Antiquity to the Present :ŽƵƌŶĂůŽĨ/ŶĚƵƐƚƌŝĂůDŝĐƌŽďŝŽůŽŐLJΘŝŽƚĞĐŚŶŽůŽŐLJ Impact Factor 3.103 The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers in metabolic engineering & synthetic biology; biocatalysis; fermentation & cell culture; natural products discovery & biosynthesis; bioenergy/biofuels/biochemicals; environmental microbiology; biotechnology methods; applied genomics & systems biotechnology; and food biotechnology & probiotics Editor-in-Chief Ramon Gonzalez, University of South Florida, Tampa FL, USA Editors Special Issue ^LJŶƚŚĞƚŝĐŝŽůŽŐLJ; July 2018 S. Bagley, Michigan Tech, Houghton, MI, USA R. H. Baltz, CognoGen Biotech. Consult., Sarasota, FL, USA Impact Factor 3.500 T. W. Jeffries, University of Wisconsin, Madison, WI, USA 3.000 T. D. Leathers, USDA ARS, Peoria, IL, USA 2.500 M. J. López López, University of Almeria, Almeria, Spain C. D. Maranas, Pennsylvania State Univ., Univ. Park, PA, USA 2.000 2.505 2.439 2.745 2.810 3.103 S. Park, UNIST, Ulsan, Korea 1.500 J. L. Revuelta, University of Salamanca, Salamanca, Spain 1.000 B. Shen, Scripps Research Institute, Jupiter, FL, USA 500 D. K. Solaiman, USDA ARS, Wyndmoor, PA, USA Y. Tang, University of California, Los Angeles, CA, USA E. J. Vandamme, Ghent University, Ghent, Belgium H. Zhao, University of Illinois, Urbana, IL, USA 10 Most Cited Articles Published in 2016 (Data from Web of Science: October 15, 2018) Senior Author(s) Title Citations L. Katz, R. Baltz Natural product discovery: past, present, and future 103 Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and R. -
Twelve Testable Hypotheses on the Geobiology of Weathering S
Geobiology (2011) DOI: 10.1111/j.1472-4669.2010.00264.x Twelve testable hypotheses on the geobiology of weathering S. L. BRANTLEY,1 J. P. MEGONIGAL,2 F. N. SCATENA,3 Z. BALOGH-BRUNSTAD,4 R. T. BARNES,5 M. A. BRUNS,6 P. VAN CAPPELLEN,7 K. DONTSOVA,8 H. E. HARTNETT,9 A. S. HARTSHORN,10 A. HEIMSATH,11 E. HERNDON,1 L. JIN,1 C. K. KELLER,12 J. R. LEAKE,13 W. H. MCDOWELL,14 F. C. MEINZER,15 T. J. MOZDZER,2 S. PETSCH,16 J. PETT-RIDGE,17 K. S. PREGITZER,18 P. A. RAYMOND,19 C. S. RIEBE,20 K. SHUMAKER,21 A. SUTTON-GRIER,2 R. WALTER22 AND K. YOO23 1Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA, USA 2Smithsonian Environmental Research Center, Edgewater, MD, USA 3Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, USA 4Departments of Geology, Environmental Sciences and Chemistry, Hartwick College, Oneonta, NY, USA 5Department of Geological Sciences, University of Colorado, Boulder, CO, USA 6Department of Crop and Soil Sciences, Pennsylvania State University, University Park, PA, USA 7School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA 8Biosphere 2 Earthscience, University of Arizona, Tucson, AZ, USA 9School of Earth and Space Exploration, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA 10Department of Geology and Environmental Science, James Madison University, Harrisonburg, VA, USA 11School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA 12School of Earth and -
CURRENT TECHNOLOGY and RESOURCE NEEDS the Specific and Primary Agouronpurposes Are to Perform Research in the Sciences
The Agouron Institute GEOBIOLOGY CURRENT TECHNOLOGY and RESOURCE NEEDS The specific and primary AGOURONpurposes are to perform research in the sciences INSTITUTEand in mathematics, to disseminate the results obtained therefrom, all to benefit mankind. Cover photo: Phototrophic sulfur and non-sulfur bacteria in an enrichment from a microbial mat reveal part of the enormous diversity of microorganisms. © 2001 The Agouron Institute 45 GEOBIOLOGY CURRENT TECHNOLOGY and RESOURCE NEEDS The Agouron Institute INTRODUCTION 3 GEOBIOLOGY: 5 Current Research General Overview 5 Advances in Probing The Rock Record 6 Advances in Molecular Biology and Genomics 9 Current Research Directions 11 Questions of What and When: Detecting Life in the Geologic Record 12 Molecular Fossils 12 Morphological Fossils 14 Isotopic Signatures 16 Question of Who and How: Deciphering the Mechanisms of Evolution 18 Genetic Diversity 18 Microbial Physiology 20 Eukaryotic Systems 23 Experimental Paleogenetics 25 GEOBIOLOGY: Resource Needs 29 An Intensive Training Course in Geobiology 30 A Postdoctoral Fellowship Program in Geobiology 31 Support for Specific Research Projects 32 REFERENCES 34 2 Agouron Institute had expanded considerably and had obtained additional funding from the NSF and the NIH. A group of molecular biologists and chemists were collaborating to exploit new technology in which synthetic oligonucleotides were used to direct specific mutations in genes. A crystallography group had been INTRODUCTION formed and they were collaborating with the molecular biologists to study the properties of the altered proteins. These were among the very first applications of the new technology to form what is now the very ith the discovery of recombi- large field of protein engineering. -
The Mystery of Life's Origin
The Mystery of Life’s Origin The Continuing Controversy CHARLES B. THAXTON, WALTER L. BRADLEY, ROGER L. OLSEN, JAMES TOUR, STEPHEN MEYER, JONATHAN WELLS, GUILLERMO GONZALEZ, BRIAN MILLER, DAVID KLINGHOFFER Seattle Discovery Institute Press Description e origin of life from non-life remains one of the most enduring mysteries of modern science. e Mystery of Life’s Origin: e Continuing Controversy investigates how close scientists are to solving that mystery and explores what we are learning about the origin of life from current research in chemistry, physics, astrobiology, biochemistry, and more. e book includes an updated version of the classic text e Mystery of Life’s Origin by Charles axton, Walter Bradley, and Roger Olsen, and new chapters on the current state of the debate by chemist James Tour, physicist Brian Miller, astronomer Guillermo Gonzalez, biologist Jonathan Wells, and philosopher of science Stephen C. Meyer. Copyright Notice Copyright © 2020 by Discovery Institute, All Rights Reserved. Library Cataloging Data e Mystery of Life’s Origin: e Continuing Controversy by Charles B. axton, Walter L. Bradley, Roger L, Olsen, James Tour, Stephen Meyer, Jonathan Wells, Guillermo Gonzalez, Brian Miller, and David Klinghoffer 486 pages, 6 x 9 x 1.0 inches & 1.4 lb, 229 x 152 x 25 mm. & 0.65 kg Library of Congress Control Number: 9781936599745 ISBN-13: 978-1-936599-74-5 (paperback), 978-1-936599-75-2 (Kindle), 978-1-936599-76-9 (EPUB) BISAC: SCI013040 SCIENCE / Chemistry / Organic BISAC: SCI013030 SCIENCE / Chemistry / Inorganic BISAC: SCI007000 SCIENCE / Life Sciences / Biochemistry BISAC: SCI075000 SCIENCE / Philosophy & Social Aspects Publisher Information Discovery Institute Press, 208 Columbia Street, Seattle, WA 98104 Internet: http://www.discoveryinstitutepress.com/ Published in the United States of America on acid-free paper. -
Minor in Paleobiology
Minor in Paleobiology The minor in paleobiology is sponsored by the Department of Biology and is designed to provide students a solid foundation in the evolution and ecology of life in deep geologic time. In addition to classwork in paleontology, geobiology, astrobiology, and paleoanthropology, the minor provides opportunities for fieldwork and independent research. This is an excellent minor to accompany an Earth and Space Sciences, Biological Anthropology, or Biology major as a way of adding additional dimensions to your coursework and academic experience. Required courswork ____/30 cr 18 credits in the minor must be from outside your major. At least 15 credits must be completed at UW. ____ 3 cr. BIOL 354 (AUT and SPR) – Foundations in Evolution and Systematics ____ 1 cr. BIOL 483 – Senior Seminar in Paleobiology Choose one: ____ 5 cr. BIO A 388 - Human Fossils and Evolution ____ 5 cr. BIO A 488 - Primate Evolution ____ 5 cr. ARCHY 470 – The Archaeology of Extinction Complete at least two from this list: ____ 5 cr. BIOL 438 – Quant. Appr. to Paleobio, Morphology, and Systematics ____ 5 cr. BIOL 443 - Evolution of Mammals and Their Ancestors ____ 3/5 cr. BIOL 447 - Greening the Earth ____ 5 cr. BIOL 450/ESS 452 - Vertebrate Paleontology ____ 5 cr. BIOL/ESS 451 - Invertebrate Paleontology Complete at least one from this list: ____ 2 cr. ESS 100 - Dinosaurs ____ 3 cr. ESS 104 - Prehistoric Life ____ 5 cr. ESS 115 – Astrobiology: Life in the Universe ____ 5 cr. ESS 204 – Paleobiology and Geobiology of Mass Extinctions ____ 5 cr. ESS 213 – Evolution of the Earth Complete at least one from this list: ____ 5 cr.