Graph Theory Exercises and Problems

Total Page:16

File Type:pdf, Size:1020Kb

Graph Theory Exercises and Problems Bachelor Degree in Informatics Engineering Facultat d’Inform`aticade Barcelona Mathematics 1 Part I: Graph Theory Exercises and problems February 2019 Departament de Matem`atiques Universitat Polit`ecnicade Catalunya The problems of this collection were initially gathered by Anna de Mier and Montserrat Mau- reso. Many of them were taken from the problem sets of several courses taught over the years by the members of the Departament de Matem`aticaAplicada 2. Other exercises came from the bibliography of the course or from other texts, and some of them were new. Since Mathematics 1 was first taught in 2010 several problems have been modified or rewritten by the professors involved in the teaching of the course. We would like to acknowledge the assistance of the scholar Gabriel Bernardino in the writing of the solutions. Translation by Anna de Mier and the scholar Bernat Coma. This problem list has been revised during the academic year 2018/2019. Contents 1 Graphs: basic concepts 1 1.1 Types of graphs. Subgraphs. Operations with graphs. :::::::::::::: 1 1.2 Exercises :::::::::::::::::::::::::::::::::::::::::: 3 2 Walks, connectivity and distance 7 3 Eulerian and Hamiltonian graphs 10 4 Trees 12 Review exercises 15 1 Graphs: basic concepts 1.1 Types of graphs. Subgraphs. Operations with graphs. The following are some important families of graphs that we will use often. Let n be a positive integer and V = fx1; x2; : : : ; xng. The null graph of order n, denoted by Nn, is the graph of order n and size 0. The graph N1 is called the trivial graph. The complete graph of order n, denoted by Kn, is the graph of order n that has all possible edges. We observe that K1 is a trivial graph too. The path graph of order n, denoted by Pn = (V; E), is the graph that has as a set of edges E = fx1x2; x2x3; : : : ; xn−1xng. The cycle graph of order n ≥ 3, denoted by Cn = (V; E), is the graph that has as a set of edges E = fx1x2; x2x3; : : : ; xn−1xn; xnx1g. The wheel graph of order n ≥ 4, denoted by Wn = (V; E), is the graph that has as a set of edges E = fx1x2; x2x3; : : : ; xn−1x1g [ fxnx1; xnx2; : : : ; xnxn−1g. Let r and s be positive integers. A graph is r-regular if all vertices have degree r. A graph G = (V; E) is bipartite if there are two non-empty subsets V1 and V2 such that V = V1 [ V2, V1 \ V2 = ; and, for every edge uv 2 E, we have u 2 V1 and v 2 V2, or vice versa. That is, there are no edges uv with u; v 2 V1 or u; v 2 V2. The sets V1 and V2 are called the stable parts of G. If every vertex from V1 is adjacent to every vertex of V2, we say that the graph is complete bipartite and we denote it by Kr;s, where jV1j = r and jV2j = s. The graph K1;s is called a star graph. 2 Chapter 1. Graphs: basic concepts Subgraphs Let G = (V; E) be a graph. The graph G0 = (V 0;E0) is a subgraph of G if V 0 ⊆ V and E0 ⊂ E. If V 0 = V , it is called a spanning subgraph of G. Let S ⊆ V , S 6= ;. The graph G[S] = (S; E0) with E0 = fuv 2 E : u; v 2 Sg is called the subgraph induced (or spanned) by the set of vertices S . Graphs derived from a graph Consider a graph G = (V; E). The complement of G, denoted by Gc, is the graph with set of vertices V and set of edges Ec = fuvj uv 62 Eg. A graph isomorphic to its complement is called self-complementary. Let S ⊂ V . The graph obtained by deleting the vertices from S, denoted by G − S, is the graph having as vertices those of V n S and as edges those of G that are not incident to any vertex from S. In the case that S = fvg, we denote it G − v. Let S ⊂ E. The graph obtained by deleting the edges from S, denoted by G − S, is the graph obtained from G by removing all the edges from S. That is, G − S = (V; E n S). If S = feg, we write G − e. Let u; v be vertices from G that are not adjacent. The graph obtained by adding the edge uv is the graph G + uv = (V; E [ fuvg). Operations with graphs Consider two graphs G1 = (V1;E1) and G2 = (V2;E2). The union of G1 and G2, denoted by G1 [ G2, is the graph that has as set of vertices V1 [ V2 and as set of edges E1 [ E2. The product of G1 and G2, denoted by G1 × G2, is the graph that has as set of vertices V1 × V2 and whose adjacencies are given by (u1; u2) ∼ (v1; v2) , (u1v1 2 E1 and u2 = v2) or (u1 = v1 and u2v2 2 E2): 1.2. Exercises 3 1.2 Exercises 1.1 For each of the graphs Nn, Kn, Pn, Cn and Wn, give: 1) a drawing for n = 4 and n = 6; 2) the adjacency matrix for n = 5; 3) the order, the size, the maximum degree and the minimum degree in terms of n. 1.2 For each of the following statements, find a graph with the required property, and give its adjacency list and a drawing. 1) A 3-regular graph of order at least 5. 2) A bipartite graph of order 6. 3) A complete bipartite graph of order 7. 4) A star graph of order 7. 1.3 Find out whether the complete graph, the path and the cycle of order n ≥ 1 are bipartite and/or regular. 1.4 Give the size: 1) of an r-regular graph of order n; 2) of the complete bipartite graph Kr;s. 1.5 Let V = fa; b; c; d; e; fg, E = fab; af; ad; be; de; efg and G = (V; E). Determine all the subgraphs of G of order 4 and size 4. 1.6 The following five items refer to the graph G defined as follows. The set of vertices is V = f0; 1; 2; 3; 4; 5; 6; 7; 8g, and two vertices u and v are adjacent if ju − vj 2 f1; 4; 5; 8g. Determine the order and the size of the following subgraphs of G: 1) The subgraph induced by even vertices. 2) The subgraph induced by odd vertices. 3) The subgraph induced by the set f0; 1; 2; 3; 4g. 4) A spanning subgraph with as many edges as possible but without cycles. 1.7 Consider the graph G = (V; E) with V = f1; 2; 3; 4; 5g and E = f12; 13; 23; 24; 34; 45g. Give the set of edges, the incidence and adjacency matrices, and a drawing of the graphs Gc, G − 4, G − 45 and G + 25. 4 Chapter 1. Graphs: basic concepts 1.8 Consider a graph G = (V; E) of order n and size m. Let v be a vertex and e an edge of G. Give the order and the size of Gc, G − v and G − e. 1.9 Find out whether the complement of a regular graph is regular, and whether the comple- ment of a bipartite graph is bipartite. If so, prove it; if not, give a counterexample. 1.10 Give the set of edges and a drawing of the graphs K3 [ P3 and K3 × P3, assuming that the sets of vertices of K3 and P3 are disjoint. 1.11 Consider the graphs G1 = (V1;E1) and G2 = (V2;E2). Give the order, the degree of the vertices and the size of G1 × G2 in terms of those of G1 and G2. 1.12 Prove or disprove the following statements: 1) If G1 and G2 are regular graphs, then G1 × G2 is regular. 2) If G1 and G2 are bipartite graphs, then G1 × G2 is bipartite. 1.13 Draw all the graphs that have V = fa; b; cg as set of vertices. 1.14 Consider graphs whose set of vertices is [7] = f1; 2; 3; 4; 5; 6; 7g. Compute how many of them are there . 1) . with exactly 20 edges. 2) . with exactly 16 edges. 3) . in total. 1.15 For each of the following sequences, find out if there is any graph of order 5 such that the degrees of its vertices are given by that sequence. If so, give an example. 1)3 ; 3; 2; 2; 2. 3)4 ; 3; 3; 2; 2. 5)3 ; 3; 3; 3; 2. 2)4 ; 4; 3; 2; 1. 4)3 ; 3; 3; 2; 2. 6)5 ; 3; 2; 2; 2. 1.16 Prove that if a graph is regular of odd degree, then it has even order. 1.17 Let G be a bipartite graph of order n and regular of degree d ≥ 1. Which is the size of G? Could it be that the order of G is odd? 1.18 Prove that the size of a bipartite graph of order n is at most n2=4. 1.19 Let G be a graph with order 9 so that the degree of each vertex is either 5 or 6. Prove that there are either at least 5 vertices of degree 6 or at least 6 vertices of degree 5. 1.2. Exercises 5 1.20 Alex and Leo are a couple, and they organize a party together with 4 other couples. There are a number of greetings but, naturally, nobody says hello to their own partner.
Recommended publications
  • On Treewidth and Graph Minors
    On Treewidth and Graph Minors Daniel John Harvey Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy February 2014 Department of Mathematics and Statistics The University of Melbourne Produced on archival quality paper ii Abstract Both treewidth and the Hadwiger number are key graph parameters in structural and al- gorithmic graph theory, especially in the theory of graph minors. For example, treewidth demarcates the two major cases of the Robertson and Seymour proof of Wagner's Con- jecture. Also, the Hadwiger number is the key measure of the structural complexity of a graph. In this thesis, we shall investigate these parameters on some interesting classes of graphs. The treewidth of a graph defines, in some sense, how \tree-like" the graph is. Treewidth is a key parameter in the algorithmic field of fixed-parameter tractability. In particular, on classes of bounded treewidth, certain NP-Hard problems can be solved in polynomial time. In structural graph theory, treewidth is of key interest due to its part in the stronger form of Robertson and Seymour's Graph Minor Structure Theorem. A key fact is that the treewidth of a graph is tied to the size of its largest grid minor. In fact, treewidth is tied to a large number of other graph structural parameters, which this thesis thoroughly investigates. In doing so, some of the tying functions between these results are improved. This thesis also determines exactly the treewidth of the line graph of a complete graph. This is a critical example in a recent paper of Marx, and improves on a recent result by Grohe and Marx.
    [Show full text]
  • Graph Varieties Axiomatized by Semimedial, Medial, and Some Other Groupoid Identities
    Discussiones Mathematicae General Algebra and Applications 40 (2020) 143–157 doi:10.7151/dmgaa.1344 GRAPH VARIETIES AXIOMATIZED BY SEMIMEDIAL, MEDIAL, AND SOME OTHER GROUPOID IDENTITIES Erkko Lehtonen Technische Universit¨at Dresden Institut f¨ur Algebra 01062 Dresden, Germany e-mail: [email protected] and Chaowat Manyuen Department of Mathematics, Faculty of Science Khon Kaen University Khon Kaen 40002, Thailand e-mail: [email protected] Abstract Directed graphs without multiple edges can be represented as algebras of type (2, 0), so-called graph algebras. A graph is said to satisfy an identity if the corresponding graph algebra does, and the set of all graphs satisfying a set of identities is called a graph variety. We describe the graph varieties axiomatized by certain groupoid identities (medial, semimedial, autodis- tributive, commutative, idempotent, unipotent, zeropotent, alternative). Keywords: graph algebra, groupoid, identities, semimediality, mediality. 2010 Mathematics Subject Classification: 05C25, 03C05. 1. Introduction Graph algebras were introduced by Shallon [10] in 1979 with the purpose of providing examples of nonfinitely based finite algebras. Let us briefly recall this concept. Given a directed graph G = (V, E) without multiple edges, the graph algebra associated with G is the algebra A(G) = (V ∪ {∞}, ◦, ∞) of type (2, 0), 144 E. Lehtonen and C. Manyuen where ∞ is an element not belonging to V and the binary operation ◦ is defined by the rule u, if (u, v) ∈ E, u ◦ v := (∞, otherwise, for all u, v ∈ V ∪ {∞}. We will denote the product u ◦ v simply by juxtaposition uv. Using this representation, we may view any algebraic property of a graph algebra as a property of the graph with which it is associated.
    [Show full text]
  • Counting Independent Sets in Graphs with Bounded Bipartite Pathwidth∗
    Counting independent sets in graphs with bounded bipartite pathwidth∗ Martin Dyery Catherine Greenhillz School of Computing School of Mathematics and Statistics University of Leeds UNSW Sydney, NSW 2052 Leeds LS2 9JT, UK Australia [email protected] [email protected] Haiko M¨uller∗ School of Computing University of Leeds Leeds LS2 9JT, UK [email protected] 7 August 2019 Abstract We show that a simple Markov chain, the Glauber dynamics, can efficiently sample independent sets almost uniformly at random in polynomial time for graphs in a certain class. The class is determined by boundedness of a new graph parameter called bipartite pathwidth. This result, which we prove for the more general hardcore distribution with fugacity λ, can be viewed as a strong generalisation of Jerrum and Sinclair's work on approximately counting matchings, that is, independent sets in line graphs. The class of graphs with bounded bipartite pathwidth includes claw-free graphs, which generalise line graphs. We consider two further generalisations of claw-free graphs and prove that these classes have bounded bipartite pathwidth. We also show how to extend all our results to polynomially-bounded vertex weights. 1 Introduction There is a well-known bijection between matchings of a graph G and independent sets in the line graph of G. We will show that we can approximate the number of independent sets ∗A preliminary version of this paper appeared as [19]. yResearch supported by EPSRC grant EP/S016562/1 \Sampling in hereditary classes". zResearch supported by Australian Research Council grant DP190100977. 1 in graphs for which all bipartite induced subgraphs are well structured, in a sense that we will define precisely.
    [Show full text]
  • Forbidding Subgraphs
    Graph Theory and Additive Combinatorics Lecturer: Prof. Yufei Zhao 2 Forbidding subgraphs 2.1 Mantel’s theorem: forbidding a triangle We begin our discussion of extremal graph theory with the following basic question. Question 2.1. What is the maximum number of edges in an n-vertex graph that does not contain a triangle? Bipartite graphs are always triangle-free. A complete bipartite graph, where the vertex set is split equally into two parts (or differing by one vertex, in case n is odd), has n2/4 edges. Mantel’s theorem states that we cannot obtain a better bound: Theorem 2.2 (Mantel). Every triangle-free graph on n vertices has at W. Mantel, "Problem 28 (Solution by H. most bn2/4c edges. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Wiskundige Opgaven 10, 60 —61, 1907. We will give two proofs of Theorem 2.2. Proof 1. G = (V E) n m Let , a triangle-free graph with vertices and x edges. Observe that for distinct x, y 2 V such that xy 2 E, x and y N(x) must not share neighbors by triangle-freeness. Therefore, d(x) + d(y) ≤ n, which implies that d(x)2 = (d(x) + d(y)) ≤ mn. ∑ ∑ N(y) x2V xy2E y On the other hand, by the handshake lemma, ∑x2V d(x) = 2m. Now by the Cauchy–Schwarz inequality and the equation above, Adjacent vertices have disjoint neigh- borhoods in a triangle-free graph. !2 ! 4m2 = ∑ d(x) ≤ n ∑ d(x)2 ≤ mn2; x2V x2V hence m ≤ n2/4.
    [Show full text]
  • The Labeled Perfect Matching in Bipartite Graphs Jérôme Monnot
    The Labeled perfect matching in bipartite graphs Jérôme Monnot To cite this version: Jérôme Monnot. The Labeled perfect matching in bipartite graphs. Information Processing Letters, Elsevier, 2005, to appear, pp.1-9. hal-00007798 HAL Id: hal-00007798 https://hal.archives-ouvertes.fr/hal-00007798 Submitted on 5 Aug 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Labeled perfect matching in bipartite graphs J´erˆome Monnot∗ July 4, 2005 Abstract In this paper, we deal with both the complexity and the approximability of the labeled perfect matching problem in bipartite graphs. Given a simple graph G = (V, E) with |V | = 2n vertices such that E contains a perfect matching (of size n), together with a color (or label) function L : E → {c1, . , cq}, the labeled perfect matching problem consists in finding a perfect matching on G that uses a minimum or a maximum number of colors. Keywords: labeled matching; bipartite graphs; NP-complete; approximate algorithms. 1 Introduction Let Π be a NPO problem accepting simple graphs G = (V,E) as instances, edge-subsets E′ ⊆ E verifying a given polynomial-time decidable property Pred as solutions, and the solutions cardinality as objective function; the labeled problem associated to Π, denoted by Labeled Π, seeks, given an instance I = (G, L) where G = (V,E) is a simple graph ′ and L is a mapping from E to {c1,...,cq}, in finding a subset E verifying Pred that optimizes the size of the set L(E′)= {L(e): e ∈ E′}.
    [Show full text]
  • Exclusive Graph Searching Lélia Blin, Janna Burman, Nicolas Nisse
    Exclusive Graph Searching Lélia Blin, Janna Burman, Nicolas Nisse To cite this version: Lélia Blin, Janna Burman, Nicolas Nisse. Exclusive Graph Searching. Algorithmica, Springer Verlag, 2017, 77 (3), pp.942-969. 10.1007/s00453-016-0124-0. hal-01266492 HAL Id: hal-01266492 https://hal.archives-ouvertes.fr/hal-01266492 Submitted on 2 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Exclusive Graph Searching∗ L´eliaBlin Sorbonne Universit´es, UPMC Univ Paris 06, CNRS, Universit´ed'Evry-Val-d'Essonne. LIP6 UMR 7606, 4 place Jussieu 75005, Paris, France [email protected] Janna Burman LRI, Universit´eParis Sud, CNRS, UMR-8623, France. [email protected] Nicolas Nisse Inria, France. Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France. [email protected] February 2, 2016 Abstract This paper tackles the well known graph searching problem, where a team of searchers aims at capturing an intruder in a network, modeled as a graph. This problem has been mainly studied for its relationship with the pathwidth of graphs. All variants of this problem assume that any node can be simultaneously occupied by several searchers.
    [Show full text]
  • Blast Domination for Mycielski's Graph of Graphs
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-8, Issue-6S3, September 2019 Blast Domination for Mycielski’s Graph of Graphs K. Ameenal Bibi, P.Rajakumari AbstractThe hub of this article is a search on the behavior of is the minimum cardinality of a distance-2 dominating set in the Blast domination and Blast distance-2 domination for 퐺. Mycielski’s graph of some particular graphs and zero divisor graphs. Definition 2.3[7] A non-empty subset 퐷 of 푉 of a connected graph 퐺 is Key Words:Blast domination number, Blast distance-2 called a Blast dominating set, if 퐷 is aconnected dominating domination number, Mycielski’sgraph. set and the induced sub graph < 푉 − 퐷 >is triple connected. The minimum cardinality taken over all such Blast I. INTRODUCTION dominating sets is called the Blast domination number of The concept of triple connected graphs was introduced by 퐺and is denoted by tc . Paulraj Joseph et.al [9]. A graph is said to be triple c (G) connected if any three vertices lie on a path in G. In [6] the Definition2.4 authors introduced triple connected domination number of a graph. A subset D of V of a nontrivial graph G is said to A non-empty subset 퐷 of vertices in a graph 퐺 is a blast betriple connected dominating set, if D is a dominating set distance-2 dominating set if every vertex in 푉 − 퐷 is within and <D> is triple connected. The minimum cardinality taken distance-2 of atleast one vertex in 퐷.
    [Show full text]
  • Empirical Comparison of Greedy Strategies for Learning Markov Networks of Treewidth K
    Empirical Comparison of Greedy Strategies for Learning Markov Networks of Treewidth k K. Nunez, J. Chen and P. Chen G. Ding and R. F. Lax B. Marx Dept. of Computer Science Dept. of Mathematics Dept. of Experimental Statistics LSU LSU LSU Baton Rouge, LA 70803 Baton Rouge, LA 70803 Baton Rouge, LA 70803 Abstract—We recently proposed the Edgewise Greedy Algo- simply one less than the maximum of the orders of the rithm (EGA) for learning a decomposable Markov network of maximal cliques [5], a treewidth k DMN approximation to treewidth k approximating a given joint probability distribution a joint probability distribution of n random variables offers of n discrete random variables. The main ingredient of our algorithm is the stepwise forward selection algorithm (FSA) due computational benefits as the approximation uses products of to Deshpande, Garofalakis, and Jordan. EGA is an efficient alter- marginal distributions each involving at most k + 1 of the native to the algorithm (HGA) by Malvestuto, which constructs random variables. a model of treewidth k by selecting hyperedges of order k +1. In The treewidth k DNM learning problem deals with a given this paper, we present results of empirical studies that compare empirical distribution P ∗ (which could be given in the form HGA, EGA and FSA-K which is a straightforward application of FSA, in terms of approximation accuracy (measured by of a distribution table or in the form of a set of training data), KL-divergence) and computational time. Our experiments show and the objective is to find a DNM (i.e., a chordal graph) that (1) on the average, all three algorithms produce similar G of treewidth k which defines a probability distribution Pµ approximation accuracy; (2) EGA produces comparable or better that ”best” approximates P ∗ according to some criterion.
    [Show full text]
  • Determination and Testing the Domination Numbers of Tadpole Graph, Book Graph and Stacked Book Graph Using MATLAB Ayhan A
    College of Basic Education Researchers Journal Vol. 10, No. 1 Determination and Testing the Domination Numbers of Tadpole Graph, Book Graph and Stacked Book Graph Using MATLAB Ayhan A. khalil Omar A.Khalil Technical College of Mosul -Foundation of Technical Education Received: 11/4/2010 ; Accepted: 24/6/2010 Abstract: A set is said to be dominating set of G if for every there exists a vertex such that . The minimum cardinality of vertices among dominating set of G is called the domination number of G denoted by . We investigate the domination number of Tadpole graph, Book graph and Stacked Book graph. Also we test our theoretical results in computer by introducing a matlab procedure to find the domination number , dominating set S and draw this graph that illustrates the vertices of domination this graphs. It is proved that: . Keywords: Dominating set, Domination number, Tadpole graph, Book graph, stacked graph. إﯾﺟﺎد واﺧﺗﺑﺎر اﻟﻌدد اﻟﻣﮭﯾﻣن(اﻟﻣﺳﯾطر)Domination number ﻟﻠﺑﯾﺎﻧﺎت ﺗﺎدﺑول (Tadpole graph)، ﺑﯾﺎن ﺑوك (Book graph) وﺑﯾﺎن ﺳﺗﺎﻛﯾت ﺑوك (Stacked Book graph) ﺑﺎﺳﺗﻌﻣﺎل اﻟﻣﺎﺗﻼب أﯾﮭﺎن اﺣﻣد ﺧﻠﯾل ﻋﻣر اﺣﻣد ﺧﻠﯾل اﻟﻛﻠﯾﺔ اﻟﺗﻘﻧﯾﺔ-ﻣوﺻل- ھﯾﺋﺔ اﻟﺗﻌﻠﯾم اﻟﺗﻘﻧﻲ ﻣﻠﺧص اﻟﺑﺣث : ﯾﻘﺎل ﻷﯾﺔ ﻣﺟﻣوﻋﺔ ﺟزﺋﯾﺔ S ﻣن ﻣﺟﻣوﻋﺔ اﻟرؤوس V ﻓﻲ ﺑﯾﺎن G ﺑﺄﻧﻬﺎ ﻣﺟﻣوﻋﺔ ﻣﻬﯾﻣﻧﺔ Dominating set إذا ﻛﺎن ﻟﻛل أرس v ﻓﻲ اﻟﻣﺟﻣوﻋﺔ V-S ﯾوﺟد أرس u ﻓﻲS ﺑﺣﯾث uv ﺿﻣن 491 Ayhan A. & Omar A. ﺣﺎﻓﺎت اﻟﺑﯾﺎن،. وﯾﻌرف اﻟﻌدد اﻟﻣﻬﯾﻣن Domination number ﺑﺄﻧﻪ أﺻﻐر ﻣﺟﻣوﻋﺔ أﺳﺎﺳﯾﺔ ﻣﻬﯾﻣﻧﺔ Domination. ﻓﻲ ﻫذا اﻟﺑﺣث ﺳوف ﻧدرس اﻟﻌدد اﻟﻣﻬﯾﻣن Domination number ﻟﺑﯾﺎن ﺗﺎدﺑول (Tadpole graph) ، ﺑﯾﺎن ﺑوك (Book graph) وﺑﯾﺎن ﺳﺗﺎﻛﯾت ﺑوك ( Stacked Book graph).
    [Show full text]
  • Lecture 9-10: Extremal Combinatorics 1 Bipartite Forbidden Subgraphs 2 Graphs Without Any 4-Cycle
    MAT 307: Combinatorics Lecture 9-10: Extremal combinatorics Instructor: Jacob Fox 1 Bipartite forbidden subgraphs We have seen the Erd}os-Stonetheorem which says that given a forbidden subgraph H, the extremal 1 2 number of edges is ex(n; H) = 2 (1¡1=(Â(H)¡1)+o(1))n . Here, o(1) means a term tending to zero as n ! 1. This basically resolves the question for forbidden subgraphs H of chromatic number at least 3, since then the answer is roughly cn2 for some constant c > 0. However, for bipartite forbidden subgraphs, Â(H) = 2, this answer is not satisfactory, because we get ex(n; H) = o(n2), which does not determine the order of ex(n; H). Hence, bipartite graphs form the most interesting class of forbidden subgraphs. 2 Graphs without any 4-cycle Let us start with the ¯rst non-trivial case where H is bipartite, H = C4. I.e., the question is how many edges G can have before a 4-cycle appears. The answer is roughly n3=2. Theorem 1. For any graph G on n vertices, not containing a 4-cycle, 1 p E(G) · (1 + 4n ¡ 3)n: 4 Proof. Let dv denote the degree of v 2 V . Let F denote the set of \labeled forks": F = f(u; v; w):(u; v) 2 E; (u; w) 2 E; v 6= wg: Note that we do not care whether (v; w) is an edge or not. We count the size of F in two possible ways: First, each vertex u contributes du(du ¡ 1) forks, since this is the number of choices for v and w among the neighbors of u.
    [Show full text]
  • Discrete Mathematics Rooted Directed Path Graphs Are Leaf Powers
    Discrete Mathematics 310 (2010) 897–910 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Rooted directed path graphs are leaf powers Andreas Brandstädt a, Christian Hundt a, Federico Mancini b, Peter Wagner a a Institut für Informatik, Universität Rostock, D-18051, Germany b Department of Informatics, University of Bergen, N-5020 Bergen, Norway article info a b s t r a c t Article history: Leaf powers are a graph class which has been introduced to model the problem of Received 11 March 2009 reconstructing phylogenetic trees. A graph G D .V ; E/ is called k-leaf power if it admits a Received in revised form 2 September 2009 k-leaf root, i.e., a tree T with leaves V such that uv is an edge in G if and only if the distance Accepted 13 October 2009 between u and v in T is at most k. Moroever, a graph is simply called leaf power if it is a Available online 30 October 2009 k-leaf power for some k 2 N. This paper characterizes leaf powers in terms of their relation to several other known graph classes. It also addresses the problem of deciding whether a Keywords: given graph is a k-leaf power. Leaf powers Leaf roots We show that the class of leaf powers coincides with fixed tolerance NeST graphs, a Graph class inclusions well-known graph class with absolutely different motivations. After this, we provide the Strongly chordal graphs largest currently known proper subclass of leaf powers, i.e, the class of rooted directed path Fixed tolerance NeST graphs graphs.
    [Show full text]
  • Constructing Arbitrarily Large Graphs with a Specified Number Of
    Electronic Journal of Graph Theory and Applications 4 (1) (2019), 1–8 Constructing Arbitrarily Large Graphs with a Specified Number of Hamiltonian Cycles Michael Haythorpea aSchool of Computer Science, Engineering and Mathematics, Flinders University, 1284 South Road, Clovelly Park, SA 5042, Australia michael.haythorpe@flinders.edu.au Abstract A constructive method is provided that outputs a directed graph which is named a broken crown graph, containing 5n − 9 vertices and k Hamiltonian cycles for any choice of integers n ≥ k ≥ 4. The construction is not designed to be minimal in any sense, but rather to ensure that the graphs produced remain non-trivial instances of the Hamiltonian cycle problem even when k is chosen to be much smaller than n. Keywords: Hamiltonian cycles, Graph Construction, Broken Crown Mathematics Subject Classification : 05C45 1. Introduction The Hamiltonian cycle problem (HCP) is a famous NP-complete problem in which one must determine whether a given graph contains a simple cycle traversing all vertices of the graph, or not. Such a simple cycle is called a Hamiltonian cycle (HC), and a graph containing at least one arXiv:1902.10351v1 [math.CO] 27 Feb 2019 Hamiltonian cycle is said to be a Hamiltonian graph. Typically, randomly generated graphs (such as Erdos-R˝ enyi´ graphs), if connected, are Hamil- tonian and contain many Hamiltonian cycles. Although HCP is an NP-complete problem, for these graphs it is often fairly easy for a sophisticated heuristic (e.g. see Concorde [1], Keld Helsgaun’s LKH [4] or Snakes-and-ladders Heuristic [2]) to discover one of the multitude of Hamiltonian cy- cles through a clever search.
    [Show full text]