Unit – I - Physics for Engineers-Spha1101
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synthesis of Txdot Uses of Real-Time Commercial Traffic Data
Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-12/0-6659-1 4. Title and Subtitle 5. Report Date SYNTHESIS OF TXDOT USES OF REAL-TIME September 2011 COMMERCIAL TRAFFIC DATA Published: January 2012 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Dan Middleton, Rajat Rajbhandari, Robert Brydia, Praprut Report 0-6659-1 Songchitruksa, Edgar Kraus, Salvador Hernandez, Kelvin Cheu, Vichika Iragavarapu, and Shawn Turner 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Texas Transportation Institute The Texas A&M University System 11. Contract or Grant No. College Station, Texas 77843-3135 Project 0-6659 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report: Research and Technology Implementation Office September 2010–August 2011 P. O. Box 5080 14. Sponsoring Agency Code Austin, Texas 78763-5080 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Synthesis of TxDOT Uses of Real-Time Commercial Traffic Routing Data URL: http://tti.tamu.edu/documents/0-6659-1.pdf 16. Abstract Traditionally, the Texas Department of Transportation (TxDOT) and its districts have collected traffic operations data through a system of fixed-location traffic sensors, supplemented with probe vehicles using transponders where such tags are already being used primarily for tolling purposes and where their numbers are sufficient. In recent years, private providers of traffic data have entered the scene, offering traveler information such as speeds, travel time, delay, and incident information. -
Guide for Identifying Mercury Switches/Thermostats in Common Appliances
Guide for Identifying Mercury Switches/Thermostats in Common Appliances Prepared by: Jim Giordani, Burlington Board of Health, Revised 12/27/00 Contact Todd Dresser for Further information at (781) 270-1956 - 1 - Guide for Identifying Mercury Switches/Thermostats In Common Appliances This reference contains guidance for responding to a mercury spill, and how to recycle mercury bearing products. This document also contains specific recommendations for the following types of products: batteries, fluorescent lights, high intensity discharge lamps (HID) lamps, ballasts, thermostats, switches, float switches, sump pumps, silent light switches, washing machines, tilt switches, freezers, flow meters, manometers, barometers, vacuum gauges, flame sensors on gas appliances, rubber flooring containing mercury, and mercury accumulation in sanitary drains. This reference also contains a general checklist of products found to routinely contain mercury. Mercury is a dangerous element in the environment today. It can cause serious health problems such as neurological and kidney damage. Mercury is found in many products that end up in landfills and incinerators allowing the mercury to re-enter the environment and pollute drinking water and contaminate the food chain. The following information is a helpful guide to identify products that contain mercury switches and thermostats. This guide describes where mercury switches and thermostats are located and how to remove and dispose of these properly. Mercury bearing articles should not be thrown in the trash, and serious care should be taken when dealing with this element. Safe Disposal · Store mercury thermostats and switches in a suitable sturdy, sealed container. A five gallon plastic bucket with a lid may work. · Each container must be labeled "Mercury Thermostats or Switches/Universal Waste." · Be careful to keep the devices from breaking and releasing mercury into the environment. -
Mercury Switch-To-Microswitch Retrofit Kit KA349WE Instructions
Reclosers COOPER POWER Effective October 2015 MN280022EN Supersedes S280-40-10 April 2014 SERIES Mercury switch to microswitch retrofit kit KA349WE installation instructions DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY The information, recommendations, descriptions and safety notations in this document are based on Eaton Corporation’s (“Eaton”) experience and judgment and may not cover all contingencies. If further information is required, an Eaton sales office should be consulted. Sale of the product shown in this literature is subject to the terms and conditions outlined in appropriate Eaton selling policies or other contractual agreement between Eaton and the purchaser. THERE ARE NO UNDERSTANDINGS, AGREEMENTS, WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY, OTHER THAN THOSE SPECIFICALLY SET OUT IN ANY EXISTING CONTRACT BETWEEN THE PARTIES. ANY SUCH CONTRACT STATES THE ENTIRE OBLIGATION OF EATON. THE CONTENTS OF THIS DOCUMENT SHALL NOT BECOME PART OF OR MODIFY ANY CONTRACT BETWEEN THE PARTIES. In no event will Eaton be responsible to the purchaser or user in contract, in tort (including negligence), strict liability or other-wise for any special, indirect, incidental or consequential damage or loss whatsoever, including but not limited to damage or loss of use of equipment, plant or power system, cost of capital, loss of power, additional expenses in the use of existing power facilities, or claims against the purchaser or user by its customers resulting from the use -
Household Appliance Mercury Switch Removal Manual
HOUSEHOLD APPLIANCE MERCURY SWITCH REMOVAL MANUAL Chest Freezers Sump and Bilge Pump Float Switches Gas Ranges Washing Machines October 2004 Parts of the following document were reproduced from: VERMONT’S HOUSEHOLD APPLIANCE MERCURY SWITCH REMOVAL MANUAL SPRING 2002 Special thanks to the following people and organizations for help in the development of that manual: Gary Winnie of the Chittenden Solid Waste District (CSWD), Gary Hobbs of the Addison County Solid Waste District (ACSWD), The Northeast Kingdom Waste Management District (NEKWMD), The Association of Home Appliance Manufactures (AHAM), Purdue University, and the Vermont Recycling & Hazardous Waste Coordinators Networks. Any questions, comments, corrections or requests for additional copies should be directed to the: Maine Department of Environmental Protection 17 State House Station Augusta, Maine 04333-0017 Attention: Mercury Products Program Division of Solid Waste Management Telephone: (207) 287-2651 This document is available on the Internet at: www.maine.gov/dep/mercury TABLE OF CONTENTS 1.0 INTRODUCTION 1 2.0 HOUSEHOLD APPLIANCE MERCURY REMOVAL 4 2.1 Chest Freezer 4 2.2 Washing Machines 6 2.3 Gas Ranges 8 2.4 Gas Hot-water Heaters 12 2.5 Sump and Bilge Pumps 13 3.0 MERCURY HANDLING, STORAGE AND DISPOSAL 14 3.1 Handling 14 3.2 Storage 14 3.3 Transportation Requirements 17 3.4 Training Requirements 17 3.5 Disposal 17 3.6 Closure 18 4.0 MERCURY SPILL CLEAN-UP 18 REFERENCES APPENDICES APPENDIX A Regulatory Forms and Instructions APPENDIX B Mercury Spill Clean-up Plan and Spill Kit List APPENDIX C Mercury Switch Transporters & Recyclers for Maine 1.0 INTRODUCTION What is mercury? Mercury is a naturally occurring metal. -
Wien Peaks, Planck Distribution Function and Its Decomposition, The
Applied Physics Research; Vol. 12, No. 4; 2020 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education How to Understand the Planck´s Oscillators? Wien Peaks, Planck Distribution Function and Its Decomposition, the Bohm Sheath Criterion, Plasma Coupling Constant, the Barrier of Determinacy, Hubble Cooling Constant. (24.04.2020) Jiří Stávek1 1 Bazovského 1228, 163 00 Prague, Czech republic Correspondence: Jiří Stávek, Bazovského 1228, 163 00 Prague, Czech republic. E-mail: [email protected] Received: April 23, 2020 Accepted: June 26, 2020 Online Published: July 31, 2020 doi:10.5539/apr.v12n4p63 URL: http://dx.doi.org/10.5539/apr.v12n4p63 Abstract In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Louis de Broglie and David Bohm. Based on the great works of Wilhelm Wien and Max Planck we have presented a new look on the “Wien Peaks” and the Planck Distribution Function and proposed the “core-shell” model of the photon. There are known many “Wien Peaks” defined for different contexts. We have introduced a thermodynamic approach to define the Wien Photopic Peak at the wavelength λ = 555 nm and the Wien Scotopic Peak at the wavelength λ = 501 nm to document why Nature excellently optimized the human vision at those wavelengths. There could be discovered many more the so-called Wien Thermodynamic Peaks for other physical and chemical processes. We have attempted to describe the so-called Planck oscillators as coupled oscillations of geons and dyons. -
Sirens and Controls
INSTALLATION & OPERATION MANUAL 3990 SERIES SIRENS PATENT PENDING RLS SERIES SIRENS AND CONTROLS Contents: Introduction .....................................................................2 Standard Features ........................................................2 Unpacking & Pre-Installation......................................4 Installation & Mounting ................................................4 Set-Up and Adjustment ...............................................8 Operation...................................................................... 1 0 Maintenance ................................................................ 1 5 Troubleshooting.......................................................... 1 6 Wiring Diagram ........................................................... 1 8 Diagnostic Function................................................... 1 9 Options .......................................................................... 1 9 Specifications.............................................................. 1 9 Parts List ....................................................................... 2 1 Warranty........................................................................ 2 8 Read all instructions and warnings before installing and using. IMPORTANT: INSTALLER This manual must be delivered to the end user of this equipment. Introduction The 3990 series siren is a new series of remote control electronic sirens that has been designed to meet the needs of all emergency vehicles. This series of sirens incorporates the -
A Distributed Spatial Index for Error-Prone Wireless Data Broadcast
Noname manuscript No. (will be inserted by the editor) A Distributed Spatial Index for Error-Prone Wireless Data Broadcast Baihua Zheng1, Wang-Chien Lee2, Ken C. K. Lee2, Dik Lun Lee3, Min Shao2 1 Singapore Management University, Singapore. [email protected] 2 Pennsylvania State University, USA. {wlee,cklee,mshao}@cse.psu.edu 3 The Hong Kong University of Science and Technology, Hong Kong. [email protected] Abstract Information is valuable to users when it is technologies can be classified into two basic approaches: available not only at the right time but also at the right on-demand access and periodic broadcast. On-demand place. To support efficient location-based data access access employs a pull-based approach where a mobile in wireless data broadcast systems, a distributed spa- client initiates a query to the server which in turn pro- tial index (called DSI ) is presented in this paper. DSI cesses the query and returns the result to the client over is highly efficient because it has a linear yet fully dis- a point-to-point channel. On-demand access is suitable tributed structure that naturally shares links in differ- for lightly loaded systems in which wireless channels and ent search paths. DSI is very resilient to the error-prone server processing capacity is not severely contended. wireless communication environment because interrupted search operations based on DSI can be resumed eas- On the other hand, periodic broadcast requires the ily. It supports search algorithms for classical location- server to proactively push data to the clients over a ded- based queries such as window queries and kNN queries icated broadcast channel. -
Replacement Parts
Thermo Scientific 2021 Parts Price List - Authorized Distributor Clarkson Laboratory & Supply Inc. www.clarksonlab.com E-mail: [email protected] Phone 619-425-1932 Fax: 619-425-7917 Part Number Description 2021 List 000107 CASTER 3" W/MOUNT PLATE Inquire 000108 CASTER 3" W/BRAKE MTG PLATE Inquire 000205 LABEL SAFETY HOT SURFACE IEC * Inquire 000230 CONT 3P 120VAC 30A 600V DP ! Inquire 0003344 PLASTIC NOZZLE Inquire 000340 RELAY START FOR 007909(SERV)! Inquire 000394 XDUCER FLOW 1.5-12 CELCON HE Inquire 0004142 HANDLE * Inquire 000450 KNOB 1.5" WITH LINE BLACK Inquire 000507.29C CHIP PROG CNTRL3 BUS ROUTE Inquire 000507.35C CHIP PROG HX300W D3 Inquire 000507.42C CHIP PTRG REMOTE BOX Inquire 000507.44E CHIP PROG CFT D2 (TC200) Inquire 000507.45C CHIP PROG HX+750 D3 Inquire 000507.63D CHIP PROG EATON 151 D4 Inquire 000507.73B CHIP PROG TC300 BUS ROUTE Inquire 000507.76A CHIP PROG HX D2 D2+I Inquire 000507.79A CHIP PROG SYS3 AMAT D4 Inquire 000507.83A CHIP PROG STEELHEAD 0 30-80C Inquire 000507.86B CHIP PROG SYS3 D4 CES Inquire 000507.88C CHIP PROG HX300 D3 SEMI Inquire 000507.89E CHIP PROG SYS3 D4 Inquire 000507.89E S CHIP PROG SYS3 D4 Inquire 000507.9H PROGRAMMED CHIP STEELHEAD-1 Inquire 000543 LEVEL SWITCH DUAL SS 1.25"316 Inquire 000550 BLANK CHIP MICROPROC 48K PROM Inquire 000550.107F CHIPPROGDIMAX2 Inquire 000550.115B CHIP PROG D3 SWX Inquire 000550.119F CHIP PROG -30 CDU TC-400 Inquire 000550.125E CHIP PROG PUMA TC-400 Inquire 000550.36S CHIP PROG D4 STD HX Inquire 000550.42E CHIP PROG HX75 D4 NOVELLUS+IBM Inquire 000550.53C CHIP -
Starter Guide B a S I C W I R E L E S S L I G H T S W I T C H K I T ( E 8 K - a 1 1 - X X ) Wireless Lighting Control AHD0018C
Starter Guide B A S I C W I R E L E S S L I G H T S W I T C H K I T ( E 8 K - A 1 1 - X X ) Wireless Lighting Control AHD0018C I N T R O D U C T I O N Material Typical Range Masonry 65 ft. (20m), through 3 walls max. Self-powered wireless controls make wireless lighting control simple and reliable. The light switches do not Reinforced concrete 32 ft. (10m), through 1 wall / ceiling max. store power or use batteries; instead, the switches Wood walls / drywalls 98 ft. (30m), through 5 walls max. operate using energy from the motion of a switch press. When pressed, a wireless light switch sends radio signals I N S T A L L A T I O N to a receiver telling the receiver to turn lights/devices on or off. CAUTION: The 120V Relay Receiver is to be installed and/or used in compliance with relevant electrical codes Figure 1. Basic Components and regulations. If you are unsure about any portion of these instructions, please contact a qualified electrician. Wiring The 120V Relay Receiver (E8R-R12BP-1) is wired between the light fixture and the power source. Wireless Light Switch à Relay Receiver à Controlled Device 1. WARNING: To avoid fire, shock, or death, TURN OFF B E N E F I T S POWER at circuit breaker or fuse and verify that it is OFF before installation begins. Make sure that it • Add light switches quickly and easily remains OFF until installation is complete. -
Project #6: Building a Shed
Project #6: Building a Shed Lesson #4: Electrical (20 class periods) Objectives Students will be able to… . Understand the progress of using electricity in housing. Develop and apply basic skills in electrical wiring work. Find at least three codes in the NEC that govern electrical construction. Students practice calculating current, resistance, and voltage. Given the power equation, calculate the power consumed in a circuit or load. Name and identify electrical symbols while reading electrical plans . Layout and install a circuit from blueprints. Identify the tools and equipment used by electricians today. Define terms related to electrical safety. Identify electrical wiring tools and materials. Demonstrate safe working procedures in a construction and shop/lab environment. Work cooperatively as a member of a team. Identify electrical hazards and how to avoid or minimize them in the workplace. Common Core Standards LS 11-12.6 RSIT 11-12.2 RLST 11-12.2 Writing 9-10.5 Geometry 4.0 Residential and Commercial Construction pathway D2.8, D3.1, D11.1, D11.2, D11.3, D11.4, D11.9, D11.11 Problem Solving and Critical Thinking 5.2, 5.3, 5.4 Health and Safety 6.2, 6.3, 6.7, 6.10 Responsibility and Leadership 7.3, 7.4, 7.5, 7.6, 7.7, 9.2, 9.3, 9.6, 9.7 Materials © BITA: A program promoted by California Homebuilding Foundation BUILDING INDUSTRY TECHNOLOGY ACADEMY: YEAR TWO CURRICULUM Electrical history terms handout and worksheet History of Wire and Cable Systems Handout History of Wire and Cable Systems Worksheet YouTube Video https://www.youtube.com/watch?v=SdjyNoWQX5k -
Sir Arthur Eddington and the Foundations of Modern Physics
Sir Arthur Eddington and the Foundations of Modern Physics Ian T. Durham Submitted for the degree of PhD 1 December 2004 University of St. Andrews School of Mathematics & Statistics St. Andrews, Fife, Scotland 1 Dedicated to Alyson Nate & Sadie for living through it all and loving me for being you Mom & Dad my heroes Larry & Alice Sharon for constant love and support for everything said and unsaid Maggie for making 13 a lucky number Gram D. Gram S. for always being interested for strength and good food Steve & Alice for making Texas worth visiting 2 Contents Preface … 4 Eddington’s Life and Worldview … 10 A Philosophical Analysis of Eddington’s Work … 23 The Roaring Twenties: Dawn of the New Quantum Theory … 52 Probability Leads to Uncertainty … 85 Filling in the Gaps … 116 Uniqueness … 151 Exclusion … 185 Numerical Considerations and Applications … 211 Clarity of Perception … 232 Appendix A: The Zoo Puzzle … 268 Appendix B: The Burying Ground at St. Giles … 274 Appendix C: A Dialogue Concerning the Nature of Exclusion and its Relation to Force … 278 References … 283 3 I Preface Albert Einstein’s theory of general relativity is perhaps the most significant development in the history of modern cosmology. It turned the entire field of cosmology into a quantitative science. In it, Einstein described gravity as being a consequence of the geometry of the universe. Though this precise point is still unsettled, it is undeniable that dimensionality plays a role in modern physics and in gravity itself. Following quickly on the heels of Einstein’s discovery, physicists attempted to link gravity to the only other fundamental force of nature known at that time: electromagnetism. -
Observing and Improving the Reliability of Internet Last-Mile Links
ABSTRACT Title of Document: OBSERVING AND IMPROVING THE RELIABILITY OF INTERNET LAST-MILE LINKS Aaron David Schulman, Doctor of Philosophy, 2013 Directed By: Professor Neil Spring Department of Computer Science People rely on having persistent Internet connectivity from their homes and mobile devices. However, unlike links in the core of the Internet, the links that connect people’s homes and mobile devices, known as “last-mile” links, are not redundant. As a result, the reliability of any given link is of paramount concern: when last-mile links fail, people can be completely disconnected from the Internet. In addition to lacking redundancy, Internet last-mile links are vulnerable to failure. Such links can fail because the cables and equipment that make up last-mile links are exposed to the elements; for example, weather can cause tree limbs to fall on overhead cables, and flooding can destroy underground equipment. They can also fail, eventually, because cellular last-mile links can drain a smartphone’s battery if an application tries to communicate when signal strength is weak. In this dissertation, I defend the following thesis: By building on existing infrastruc- ture, it is possible to (1) observe the reliability of Internet last-mile links across different weather conditions and link types; (2) improve the energy efficiency of cellular Inter- net last-mile links; and (3) provide an incrementally deployable, energy-efficient Internet last-mile downlink that is highly resilient to weather-related failures. I defend this thesis by designing, implementing, and evaluating systems. First, I study the reliability of last-mile links during weather events.