Late Cenozoic History of the Interior Basins of Alaska and the Yukon

Total Page:16

File Type:pdf, Size:1020Kb

Late Cenozoic History of the Interior Basins of Alaska and the Yukon U.S. GEOLOGICAL SURVEY CIRCULAR 1026 Late Cenozoic History of the Interior Basins of Alaska and the Yukon Proceedings of a cooperative workshop between earth scientists from Canada and the United States of America AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual"Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL Books OVER THE COUNTER Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S. Geological Survey are available over the terest (such as leaflets, pamphlets, booklets), single copies of Earthquakes counter at the following Geological Survey Public Inquiries Offices, all & Volcanoes, Preliminary Determination of Epicenters, and some mis­ of which are authorized agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from • WASHINGTON, D.C.--Main Interior Bldg., 2600 corridor, 18th and C Sts., NW. U.S. Geological Survey, Books and Open-File Reports • DENVER, Colorado--Federal Bldg., Rm. 169, 1961 Stout St. Federal Center, Box 25425 • LOS ANGELES, California--Federal Bldg., Rm. 7638, 300 N. Denver, CO 80225 Los Angeles St. • MENLO PARK, California--Bldg. 3 (Stop 533), Rm. 3128, Subscriptions to periodicals (Earthquakes & Volcanoes and 345 Middlefield Rd. Preliminary Determination of Epicenters) can be obtained ONLY from • RESTON, Virginia--503 National Center, Rm. 1C402, 12201 the Sunrise Valley Dr. • SALT LAKE CITY, Utah--Federal Bldg., Rm. 8105, 125 Superintendent of Documents South State St. Government Printing Offlce • SAN FRANCISCO, California--Customhouse, Rm. 504, 555 Washington, D.C. 20402 Battery St. • SPOKANE, Washington--U.S. Courthouse, Rm. 678, West (Check or money order must be payable to Superintendent of Docu­ 920 Riverside Ave .. ments.) • ANCHORAGE, Alaska--Rm. 101, 4230 University Dr. • ANCHORAGE, Alaska--Federal Bldg, Rm. E-146, 701 C St. Maps For maps, address mail orders to U.S. Geological Survey, Map Distribution Maps Federal Center, Box 25286 Maps may be purchased over the counter at the U.S. Geologi­ Denver, CO 80225 cal Survey offices where books are sold (all addresses in above list) and at the following Geological Survey offices: Residents of Alaska may order maps from • ROLLA, MJssouri--1400 Independence Rd. Alaska Distribution Section, U.S. Geological Survey, • DENVER, Colorado--Map Distribution, Bldg. 810, Federal New Federal Building- Box 12 Center 101 Twelfth Ave., Fairbanks, AK 99701 • FAIRBANKS, Alaska--New Federal Bldg., 101 Twelfth Ave. Late Cenozoic History of the Interior Basins of Alaska and the Yukon L. DAVID CARTER, THOMAS D. HAMILTON, and JOHN P. GALLOWAY, Editors Proceedings of a cooperative workshop between earth scientists from Canada and the United States of America U.S. GEOLOGICAL SURVEY CIRCULAR 1026 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1989 Free on application to the Books and Open-File Reports Section U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Late Cenozoic history of the interior basins of Alaska and the Yukon I L. David Carter, Thomas D. Hamilton, and John P. Galloway, editors. p. em.- (U.S. Geological Survey circular; 1026) Proceedings of a joint Canadian-American workshop hosted by the U.S. Geological Survey at Anchorage, AK, in Feb. 1987. Bibliography: p. Supt. of Docs. no.: I 19.4/2:1026 1 . Geology, Stratigraphic-Quaternary-Congresses. 2. Geology-Canada­ Beaufort Sea Region-Congresses. 3. Geology-Alaska-Beaufort Sea Region­ Congresses. I. Carter, L. David. II. Hamilton, Thomas D. (Thomas Dudley), 1936- . Ill. Galloway, John P. IV. Series: Geological Survey circular; 1026. QE696.L286 1989 89-600059 551.7'9-dc20 CIP CONTENTS INTRODUCTION 1 L. David Carter and Thomas D. Hamilton WORKSHOP PROGRAM 3 WORKSHOPPARTICIPANTS 4 JOINT CANADIAN-AMERICAN INVESTIGATION OF THE CENOZOIC GEOLOGY OF THE LOWLANDS BORDERING THE BEAUFORT SEA 7 Jean-Serge Vincent, L. David Carter, John V. Matthews, Jr., and David M. Hopkins PAPERS Late Pleistocene Spruce (Picea) in Northern Interior Basins of Alaska and the Yukon: Evidence from Marine Deposits in Northern Alaska 11 L. David Carter and Thomas A. Ager Offshore Constraints on the Late Pleistocene Glacial History at the Mouth of the Mackenzie River 15 Steve M. Blasco, Julie Bri.gham-Grette, and Philip R Hill Continental Ice Advances in Northwestern Canada and their Significance to Interior Basins in the Yukon 18 Jean-Serge Vincent Was the Late Pleistocene Northwest Laurentide Ice Sheet Wet-Based? 22 James Beget Quaternary Chronology, Yukon and Western District of Mackenzie 25 Owen L. Hughes The Old Crow and Bluefish Basins, Northern Yukon: Development of the Quaternary History 30 Charles E. Schweger Climatic Change in Eastern Beringia During Oxygen Isotope Stages 2 and 3: Proposed Thermal Events 34 John V. Matthews, Jr., Charles E. Schweger, and Owen L. Hughes Paleosols of Northwestern Canada 39 Charles Tamocai Upper Cenozoic Deposits, Kanuti Flats and Upper Kobuk Trench, Northern Alaska 45 Thomas D. Hamilton Quaternary Deposits at Birch Creek, Northeastern Interior Alaska: The Possibility of Climatic Reconstruction 48 Mary E. Edwards and Patricia F. McDowell Late Quaternary Paleofloods along the Porcupine River, Alaska: Implications for Regional Correlation 51 Robert M. Thorson Contents Ill Late Cenozoic Sedimentary History along Major Fault Zones, Alaska 55 Warren Yeend Paleoglaciology of the Selwyn Lobe of the Cordilleran Ice Sheet and Quaternary Stratigraphy of the East-Central Yukon 60 Lionel E. Jackson, Jr. Late Cenozoic Stratigraphy and Sedimentology of Gravelly Deposits in Central and Southern Yukon 66 Stephen R. Morison Quaternary Stratigraphy of the Fairbanks Area, Alaska 72 Troy L. Pewe Pleistocene Glacial Events, Southeastern Copper River Basin, Alaska 78 Donald R. Nichols A Working Glacial Chronology for the Western Copper River Basin, Alaska 81 John R. Williams Glacial Lake Atna, Copper River Basin, Alaska 85 Oscar J. Ferrians, Jr. History of Late Pleistocene and Holocene Vegetation in the Copper River Basin, South-Central Alaska 89 Thomas A. Ager Pleistocene Vertebrate Localities in the Yukon 93 C. Richard Harington Arctic Microtine Biochronology-Current Status 99 Charles A. Repenning Comment on the Present Status of Dating Loess by Thermoluminescence 103 Glenn W. Berger SUMMARIES OF DISCUSSION SESSIONS 1 0 7 Geochronology 1 0 7 Julie Brigham-Grette Neotectonics in Alaska and Northwestern Canada 1 0 8 Robert M. Thorson Late Tertiary Events 1 0 9 John V. Matthews, Jr. Early and Middle Pleistocene Events 11 0 Thomas D. Hamilton Late Pleistocene Glacial Advances 111 Jean-Serge Vincent Late Pleistocene Interstadial Intervals 112 Charles E Schweger Canadian-American Collaborative Research 113 L. David Carter IV Contents INTRODUCTION By L. David Carter and Thomas D. Hamilton This volume contains the proceedings of a joint Cana­ Geology, and the U.S. Geological Survey participated in dian-American workshop on the late Cenozoic history of the meeting. Twenty of the following papers were prepared the interior basins of Alaska and the Yukon, a meeting that for the workshop and subsequently revised for publication; was hosted by the U.S. Geological Survey at Anchorage, two additional papers were solicited after the workshop in Alaska, in February 1987. The principal aim of the work­ order to expand coverage of topics that proved to be of shop was fostering communication between Canadian and particular interest. Brief synopses of the seven discussion American scientists on problems of late Cenozoic history sessions that followed the presentation of papers were common to both northwestern Canada and Alaska. prepared by discussion leaders, and these also are included The Anchorage workshop was the second in a planned in this volume. series of meetings that are intended to be held at two- or Some of the major rivers, tectonic basins, and faults three-year intervals. The first meeting of this series, which referred to in the papers and discussion-session reports are was hosted by the Geological Survey of Canada, was held shown in figure 1. More detailed maps showing all of the in Calgary, Alberta, in April 1984. Its topic was the cor­ localities and geographic features mentioned in papers relation of Quaternary deposits and events around the dealing with the Yukon can be found in Morison and Smith margin of the Beaufort Sea. A correlation chart that was (1987, figs. 39, 41, and 42). assembled at the meeting and 16 short papers prepared by One central theme that emerged from the workshop is individual participants were published by the Geological the critical role of volcanic ash layers (tephras) in dating Survey of Canada (Heginbottom and Vincent, 1986).
Recommended publications
  • Vegetation and Fire at the Last Glacial Maximum in Tropical South America
    Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher
    [Show full text]
  • The Rock Abrasion Record at Gale Crater: Mars Science Laboratory
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE The rock abrasion record at Gale Crater: Mars 10.1002/2013JE004579 Science Laboratory results from Bradbury Special Section: Landing to Rocknest Results from the first 360 Sols of the Mars Science Laboratory N. T. Bridges1, F. J. Calef2, B. Hallet3, K. E. Herkenhoff4, N. L. Lanza5, S. Le Mouélic6, C. E. Newman7, Mission: Bradbury Landing D. L. Blaney2,M.A.dePablo8,G.A.Kocurek9, Y. Langevin10,K.W.Lewis11, N. Mangold6, through Yellowknife Bay S. Maurice12, P.-Y. Meslin12,P.Pinet12,N.O.Renno13,M.S.Rice14, M. E. Richardson7,V.Sautter15, R. S. Sletten3,R.C.Wiens6, and R. A. Yingst16 Key Points: • Ventifacts in Gale Crater 1Applied Physics Laboratory, Laurel, Maryland, USA, 2Jet Propulsion Laboratory, Pasadena, California, USA, 3Department • Maybeformedbypaleowind of Earth and Space Sciences, College of the Environments, University of Washington, Seattle, Washington, USA, 4U.S. • Can see abrasion textures at range 5 6 of scales Geological Survey, Flagstaff, Arizona, USA, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, LPGNantes, UMR 6112, CNRS/Université de Nantes, Nantes, France, 7Ashima Research, Pasadena, California, USA, 8Universidad de Alcala, Madrid, Spain, 9Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Supporting Information: Austin, Texas, USA, 10Institute d’Astrophysique Spatiale, Université Paris-Sud, Orsay, France, 11Department of • Figure S1 12 fi • Figure S2 Geosciences, Princeton University, Princeton, New Jersey, USA, Centre National de la Recherche Scienti que, Institut 13 • Table S1 de Recherche en Astrophysique et Planétologie, CNRS-Université Toulouse, Toulouse, France, Department of Atmospheric, Oceanic, and Space Science; College of Engineering, University of Michigan, Ann Arbor, Michigan, USA, Correspondence to: 14Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 15Lab N.
    [Show full text]
  • Chemical Variations in Yellowknife Bay Formation Sedimentary Rocks
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Chemical variations in Yellowknife Bay formation 10.1002/2014JE004681 sedimentary rocks analyzed by ChemCam Special Section: on board the Curiosity rover on Mars Results from the first 360 Sols of the Mars Science Laboratory N. Mangold1, O. Forni2, G. Dromart3, K. Stack4, R. C. Wiens5, O. Gasnault2, D. Y. Sumner6, M. Nachon1, Mission: Bradbury Landing P.-Y. Meslin2, R. B. Anderson7, B. Barraclough4, J. F. Bell III8, G. Berger2, D. L. Blaney9, J. C. Bridges10, through Yellowknife Bay F. Calef9, B. Clark11, S. M. Clegg5, A. Cousin5, L. Edgar8, K. Edgett12, B. Ehlmann4, C. Fabre13, M. Fisk14, J. Grotzinger4, S. Gupta15, K. E. Herkenhoff7, J. Hurowitz16, J. R. Johnson17, L. C. Kah18, N. Lanza19, Key Points: 2 1 20 21 12 16 2 • J. Lasue , S. Le Mouélic , R. Léveillé , E. Lewin , M. Malin , S. McLennan , S. Maurice , Fluvial sandstones analyzed by 22 22 23 19 19 24 25 ChemCam display subtle chemical N. Melikechi , A. Mezzacappa , R. Milliken , H. Newsom , A. Ollila , S. K. Rowland , V. Sautter , variations M. Schmidt26, S. Schröder2,C.d’Uston2, D. Vaniman27, and R. Williams27 • Combined analysis of chemistry and texture highlights the role of 1Laboratoire de Planétologie et Géodynamique de Nantes, CNRS, Université de Nantes, Nantes, France, 2Institut de Recherche diagenesis en Astrophysique et Planétologie, CNRS/Université de Toulouse, UPS-OMP, Toulouse, France, 3Laboratoire de Géologie de • Distinct chemistry in upper layers 4 5 suggests distinct setting and/or Lyon, Université de Lyon, Lyon, France, California Institute of Technology, Pasadena, California, USA, Los Alamos National 6 source Laboratory, Los Alamos, New Mexico, USA, Earth and Planetary Sciences, University of California, Davis, California, USA, 7Astrogeology Science Center, U.S.
    [Show full text]
  • Stratigraphy and Correlation of Glacial Deposits of the Rocky Mountains, the Colorado Plateau and the Ranges of the Great Basin
    STRATIGRAPHY AND CORRELATION OF GLACIAL DEPOSITS OF THE ROCKY MOUNTAINS, THE COLORADO PLATEAU AND THE RANGES OF THE GREAT BASIN Gerald M. Richmond u.s. Geological Survey, Box 25046, Federal Center, MS 913, Denver, Colorado 80225, U.S.A. INTRODUCTION glaciations (Charts lA, 1B) see Fullerton and Rich- mond, Comparison of the marine oxygen isotope The Rocky Mountains, Colorado Plateau, and Basin record, the eustatic sea level record, and the chronology and Range Provinces (Fig. 1) together occupy much of of glaciation in the United States of America (this the western interior United States. These regions volume). include approximately 140 mountain ranges that were glaciated during the Pleistocene. Most of the glaciers Historical Perspective were valley glaciers, but ice caps formed on uplands Following early recognition of deposits of two alpine locally. Discussion of the deposits of all of these ranges glaciations (Gilbert, 1890; Ball, 1908; Capps, 1909; would require monographic analysis. To avoid this, Atwood, 1909), deposits of three glaciations gradually representative ranges in each province are reviewed. became widely recognized (Alden, 1912, 1932, 1953; Atwood and Mather, 1912, 1932; Alden and Stebinger, Purpose and Scope 1913; Blackwelder, 1915; Atwood, 1915; Fryxell, 1930; This report summarizes the evidence for correlation Bradley, 1936). Subsequently drift of the intermediate of the Quaternary glacial deposits in 26 broadly glaciation was shown to represent two glacial advances distributed mountain ranges selected on the basis of (Fryxell, 1930; Horberg, 1938; Richmond, 1948, 1962a; availability of detailed information and length of glacial Moss, 1951a; Nelson, 1954; Holmes and Moss, 1955), record. and the older drift was shown to include deposits of Because the glacial deposits rarely are traceable from three glaciations (Richmond, 1957, 1962a, 1964a).
    [Show full text]
  • Geologic Maps of the Eastern Alaska Range, Alaska, (44 Quadrangles, 1:63360 Scale)
    Report of Investigations 2015-6 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units by Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner Southeastern Tanana Basin Southern Yukon–Tanana Upland and Terrane Delta River Granite Jarvis Mountain Aurora Peak Creek Terrane Hines Creek Fault Black Rapids Glacier Jarvis Creek Glacier Subterrane - Southern Yukon–Tanana Terrane Windy Terrane Denali Denali Fault Fault East Susitna Canwell Batholith Glacier Maclaren Glacier McCallum Creek- Metamorhic Belt Meteor Peak Slate Creek Thrust Broxson Gulch Fault Thrust Rainbow Mountain Slana River Subterrane, Wrangellia Terrane Phelan Delta Creek River Highway Slana River Subterrane, Wrangellia Terrane Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2015 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner COVER: View toward the north across the eastern Alaska Range and into the southern Yukon–Tanana Upland highlighting geologic, structural, and geomorphic features. View is across the central Mount Hayes Quadrangle and is centered on the Delta River, Richardson Highway, and Trans-Alaska Pipeline System (TAPS). Major geologic features, from south to north, are: (1) the Slana River Subterrane, Wrangellia Terrane; (2) the Maclaren Terrane containing the Maclaren Glacier Metamorphic Belt to the south and the East Susitna Batholith to the north; (3) the Windy Terrane; (4) the Aurora Peak Terrane; and (5) the Jarvis Creek Glacier Subterrane of the Yukon–Tanana Terrane.
    [Show full text]
  • New Constraints on the Age, Geochemistry
    New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada.
    [Show full text]
  • The Paleontology Synthesis Project and Establishing a Framework for Managing National Park Service Paleontological Resource Archives and Data
    Lucas, S.G. and Sullivan, R.M., eds., 2018, Fossil Record 6. New Mexico Museum of Natural History and Science Bulletin 79. 589 THE PALEONTOLOGY SYNTHESIS PROJECT AND ESTABLISHING A FRAMEWORK FOR MANAGING NATIONAL PARK SERVICE PALEONTOLOGICAL RESOURCE ARCHIVES AND DATA VINCENT L. SANTUCCI1, JUSTIN S. TWEET2 and TIMOTHY B. CONNORS3 1National Park Service, Geologic Resources Division, 1849 “C” Street, NW, Washington, D.C. 20240, [email protected]; 2National Park Service, 9149 79th Street S., Cottage Grove, MN 55016, [email protected]; 3National Park Service, Geologic Resources Division, 12795 W. Alameda Parkway, Lakewood, CO 80225, [email protected] Abstract—The National Park Service Paleontology Program maintains an extensive collection of digital and hard copy documents, publications, photographs and other archives associated with the paleontological resources documented in 268 parks. The organization and preservation of the NPS paleontology archives has been the focus of intensive data management activities by a small and dedicated team of NPS staff. The data preservation strategy complemented the NPS servicewide inventories for paleontological resources. The first phase of the data management, referred to as the NPS Paleontology Synthesis Project, compiled servicewide paleontological resource data pertaining to geologic time, taxonomy, museum repositories, holotype fossil specimens, and numerous other topics. In 2015, the second phase of data management was implemented with the creation and organization of a multi-faceted digital data system known as the NPS Paleontology Archives and NPS Paleontology Library. Two components of the NPS Paleontology Archives were designed for the preservation of both park specific and servicewide paleontological resource archives and data. A third component, the NPS Paleontology Library, is a repository for electronic copies of geology and paleontology publications, reports, and other media.
    [Show full text]
  • Fort Yukon Hunting / Unit 25
    Fort Yukon Hunting / Unit 25 $UFWLF9LOODJH &KDQGDODU :LVHPDQ &KULVWLDQ &ROGIRRW 9HQHWLH &KDON\LWVLN )RUW<XNRQ %HDYHU %LUFK&UHHN 6WHYHQV9LOODJH )RUW+DPOLQ &LUFOH &HQWUDO 5DPSDUW /LYHQJRRG &LUFOH+RW6SULQJV (XUHND 0LQWR )R[ &KHQD )$,5%$1.6 +RW (DJOH 6SULQJV Federal Public Lands Open to Subsistence Use 2014/2016 Federal Subsistence Wildlife Regulations 115 Unit 25 / Hunting (See Unit 25 Fort Yukon map) Unit 25 consists of the Yukon River drainage upstream from (but excluding) the Hamlin Creek drainage; and excluding drainages into the south bank of the Yukon River upstream from the Charley River. Unit 25A consists of the Hodzana River drainage rivers; and drainages into the north bank of the Yukon River upstream from the Narrows; the Chandalar River drainage upstream from Circle, including the islands in the Yukon upstream from (and including) the East Fork drainage; River. the Christian River drainage upstream from Christian; the Unit 25C consists of drainages into the south bank of Sheenjek River drainage upstream from (and including) the the Yukon River upstream from Circle to the Unit 20E Thluichohnjik Creek; the Coleen River drainage; and the boundary; the Birch Creek drainage upstream from the Old Crow River drainage. Steese Highway bridge (milepost 147); the Preacher Creek Unit 25B consists of the Little Black River drainage drainage upstream from (and including) the Rock Creek upstream from (but excluding) the Big Creek drainage; drainage; and the Beaver Creek drainage upstream from the Black River drainage upstream from (and including) (and including) the Moose Creek drainage. the Salmon Fork drainage; the Porcupine River drainage Unit 25D consists of the remainder of Unit 25.
    [Show full text]
  • Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia Emily Simpson East Tennessee State University
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2019 Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia Emily Simpson East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Paleontology Commons Recommended Citation Simpson, Emily, "Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia" (2019). Electronic Theses and Dissertations. Paper 3590. https://dc.etsu.edu/etd/3590 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia ________________________________ A thesis presented to the faculty of the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences with a concentration in Paleontology _______________________________ by Emily Michelle Bruff Simpson May 2019 ________________________________ Dr. Chris Widga, Chair Dr. Blaine W. Schubert Dr. Andrew Joyner Key Words: Paleoecology, land-use, grassy balds, stable isotope ecology, Whitetop Mountain ABSTRACT Paleoecology and Land-Use of Quaternary Megafauna from Saltville, Virginia by Emily Michelle Bruff Simpson Land-use, feeding habits, and response to seasonality by Quaternary megaherbivores in Saltville, Virginia, is poorly understood. Stable isotope analyses of serially sampled Bootherium and Equus enamel from Saltville were used to explore seasonally calibrated (δ18O) patterns in megaherbivore diet (δ13C) and land-use (87Sr/86Sr).
    [Show full text]
  • Paleoecological Comparison Between Late Miocene Localities of China and Greece Based on Hipparion Faunas
    Paleoecological comparison between late Miocene localities of China and Greece based on Hipparion faunas Tao DENG Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044 (China) [email protected] Deng T. 2006. — Paleoecological comparison between late Miocene localities of China and Greece based on Hipparion faunas. Geodiversitas 28 (3) : 499-516. ABSTRACT Both China and Greece have abundant fossils of the late Miocene Hipparion fauna. Th e habitat of the Hipparion fauna in Greece was a sclerophyllous ever- green woodland. Th e Chinese late Miocene Hipparion fauna is represented respectively in the Guonigou fauna (MN 9), the Dashengou fauna (MN 10), and the Yangjiashan fauna (MN 11) from Linxia, Gansu, and the Baode fauna (MN 12) from Baode, Shanxi. According to the evidence from lithology, carbon isotopes, paleobotany, taxonomic framework, mammalian diversity and faunal similarity, the paleoenvironment of the Hipparion fauna in China was a subarid open steppe, which is diff erent from that of Greece. Th e red clay bearing the Hipparion fauna in China is windblown in origin, i.e. eolian deposits. Stable carbon isotopes from tooth enamel and paleosols indicate that C3 plants domi- nated the vegetation during the late Miocene in China. Pollens of xerophilous and sub-xerophilous grasses show a signal of steppe or dry grassland. Forest mammals, such as primates and chalicotheres, are absent or scarce, but grass- land mammals, such as horses and rhinoceroses, are abundant in the Chinese Hipparion fauna. Th e species richness of China and Greece exhibits a similar KEY WORDS trend with a clear increase from MN 9 to MN 12, but the two regions have Hipparion fauna, low similarities at the species level.
    [Show full text]
  • Occurrence of the Musk Ox, Symbos Cavifrons, from Southeastern Idaho and Comments on the Genus Bootherium
    Great Basin Naturalist Volume 47 Number 2 Article 9 4-30-1987 Occurrence of the musk ox, Symbos cavifrons, from southeastern Idaho and comments on the genus Bootherium Michael E. Nelson Fort Hays State University, Hays, Kansas James H. Madsen Jr. Antiquities Section, Utah Division of State History, Salt Lake City Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Nelson, Michael E. and Madsen, James H. Jr. (1987) "Occurrence of the musk ox, Symbos cavifrons, from southeastern Idaho and comments on the genus Bootherium," Great Basin Naturalist: Vol. 47 : No. 2 , Article 9. Available at: https://scholarsarchive.byu.edu/gbn/vol47/iss2/9 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. OCCURRENCE OF THE MUSK OX, SYMBOS CAVIFRONS, FROM SOUTHEASTERN IDAHO AND COMMENTS ON THE GENUS BOOTHERIUM Michael E. Nelson' and James H. Madsen, Jr." Abstract.—A set of ovibovine horn cores collected from Pleistocene sediments in southeastern Idaho provides additional evidence for sexual dimorphism in the helmeted musk ox, Symhos cavifrons. Specimens previously assigned to Boothchum sargenti are placed in synonomy with Symbos cavifrons as sexual dimorphs (females). Bootherium bomhifrons is a \alid taxon and is probably not closely related to Symbos. The taxonomic status of the e.xtinct musk figures and descriptions, pronounced that ox, Bootherium, has been questioned since Bootherium cavifrons (= Symbos cavifrons) Leidy (1852a, 1852b) proposed the name for was a male and B.
    [Show full text]
  • From the Late Cretaceous (Campanian) Kanguk Formation of Axel Heiberg Island, Nunavut, Canada, and Its Ecological and Geographical Implications MATTHEW J
    ARCTIC VOL. 67, NO. 1 (MARCH 2014) P. 1 – 9 A Hadrosaurid (Dinosauria: Ornithischia) from the Late Cretaceous (Campanian) Kanguk Formation of Axel Heiberg Island, Nunavut, Canada, and Its Ecological and Geographical Implications MATTHEW J. VAVREK,1 LEN V. HILLS2 and PHILIP J. CURRIE3 (Received 1 October 2012; accepted in revised form 30 May 2013) ABSTRACT. A hadrosaurid vertebra was recovered during a palynological survey of the Upper Cretaceous Kanguk Formation in the eastern Canadian Arctic. This vertebra represents the farthest north record of any non-avian dinosaur to date. Although highly abraded, the fossil nonetheless represents an interesting biogeographic data point. During the Campanian, when this vertebra was deposited, the eastern Canadian Arctic was likely isolated both from western North America by the Western Interior Seaway and from more southern regions of eastern North America by the Hudson Seaway. This fossil suggests that large-bodied hadrosaurid dinosaurs may have inhabited a large polar insular landmass during the Late Cretaceous, where they would have lived year-round, unable to migrate to more southern regions during winters. It is possible that the resident herbivorous dinosaurs could have fed on non-deciduous conifers, as well as other woody twigs and stems, during the long, dark winter months when most deciduous plant species had lost their leaves. Key words: Appalachia, Arctic, Campanian, dinosaur, Laramidia, palaeobiogeography RÉSUMÉ. La vertèbre d’un hadrosauridé a été retrouvée pendant l’étude palynologique de la formation Kanguk remontant au Crétacé supérieur, dans l’est de l’Arctique canadien. Il s’agit de la vertèbre appartenant à un dinosaure non avien qui a été recueillie la plus au nord jusqu’à maintenant.
    [Show full text]