Analysis for Business Decisions Course Code: Bus

Total Page:16

File Type:pdf, Size:1020Kb

Analysis for Business Decisions Course Code: Bus NATIONAL OPEN UNIVERSITY OF NIGERIA FACULTY OF MANAGEMENT SCIENCES ANALYSIS FOR BUSINESS DECISIONS COURSE CODE: BUS 406 COURSE TITLE: BUS 406: ANALYSIS FOR BUSINESS DECISIONS 1 COURSE GUIDE Course Writer: Kingsley U. Utam Faculty of Management Sciences Course Editor: HOD of Administration: Dr.(Mrs) Yemisi I. Ogunlela Faculty of Management Science, NOUN . Course Coordinator: Mrs. Ihuoma Ikemba- Efughi Faculty of Management Science, NOUN 2 1.0 INTRODUCTION BUS 406: Analysis For Business is a three credit course for students offering B.Sc. Business Administration in the Faculty of Management Sciences. The course consists of sixteen (16) units, that is, four modules of four (4) units for each module. The material has been developed to suit undergraduate students in Business Administration at the National Open University of Nigeria (NOUN) by using an approach that treats Analysis for Business Decisions. A student who successfully completes the course will surely be in a better position to manage operations of organizations in both private and public organizations. The course guide tells you briefly what the course is about, what course materials you will be using and how you can work your way through these materials. It suggests some general guidelines for the amount of time you are likely to spend on each unit of the course in order to complete it successfully. It also gives you some guidance on your tutor-marked assignments. Detailed information on tutor-marked assignment is found in the separate assignment file which will be available in due course. 2.0 WHAT YOU WILL LEARN IN THIS COURSE This course will introduce you to some fundamental aspects of Analysis for Business Decisions, Elements of Decision Analysis, Types of Decision Situations, Decision Trees, Operational Research, Approach to Decision Analysis, System Analysis, Modelling in OR, Simulation, Cases for OR Analysis, Mathematical Programming, Transportation Model, Assignment Model, Game Theory, Project Management, Inventory Control, Sequencing. 3.0 COURSE AIMS The course aims, among others, are to give you an understanding of the intricacies of Business Decision Analysis and how to apply such knowledge in making real life decisions, and managing production and operations units in both private and public enterprises. The Course will help you to appreciate Rationale behind Analysis for Business Decisions , Elements of Decision Analysis, Types of Decision Situations, Decision Trees, Operational Research, Approach to Decision Analysis, System Analysis, Modelling in OR, Simulation, Cases for OR Analysis, Mathematical Programming, 3 Transportation Model, Assignment Model, Game Theory, Project Management, Inventory Control, Sequencing. The aims of the course will be achieved by your ability to: Identify and explain Elements of Decision Analysis; Identify and use various criteria for solving problems in different decision situations; discuss the decision tree and solve problems involving the general decision tree and the secretary problem; Trace the history and evolution of operation research OR; Explain the different approaches to decision analysis; discuss the concept of system analysis and identify the various categories of systems; Describe model and analyse the different types of models; Defined simulation and highlight the various types of simulation models; Solve different types of problems involving Linear Programming; Explain what transportation problem is all about and solve transportation problems; Discuss the elements of assignment problem solve decision problems using various assignment methods; Apply various techniques in solving gaming problems. Solving inventory problem using the Critical Path Methods (CPM) and the Programme evaluation and Review Techniques (PERT); Identify and solve problems using the sequencing techniques. 4.0 COURSE OBJECTIVES By the end of this course, you should be able to: Identify and explain Elements of Decision Analysis; Identify and use various criteria for solving problems in different decision situations; discuss the decision tree and solve problems involving the general decision tree and the secretary problem; Trace the history and evolution of operation research OR; Explain the different approaches to decision analysis; discuss the concept of system analysis and identify the various categories of systems; Describe model and analyse the different types of models; Defined simulation and highlight the various types of simulation models; 4 Solve different types of problems involving Linear Programming; Explain what transportation problem is all about and solve transportation problems; Discuss the elements of assignment problem solve decision problems using various assignment methods; Apply various techniques in solving gaming problems. Solving inventory problem using the Critical Path Methods (CPM) and the Programme evaluation and Review Techniques (PERT); Identify and solve problems using the sequencing techniques. 5.0 WORKING THROUGH THIS COURSE To complete this course, you are required to read all study units, attempt all the tutor marked assignments at the end of each study unit. You would need to study carefully, the principles and concepts guiding each of the topics in the course in this material Analysis for Business Decisions provided by the National Open University of Nigeria (NOUN). You will also need to undertake practical exercises for which you need access to a personal computer running a suitable Windows for which you have command over. Each unit contains self-assessment exercises, and at certain points during the course, you will be expected to submit assignments. At the end of the course is a final examination. The course should take you about a total of 20 weeks to complete. Below are the components of the course, what you have to do, and how you should allocate your time to each unit in order to complete the course successfully on time. 6.0 COURSE MATERIALS Major components of the course are: Course Guide Study Units Textbooks Assignment file 5 7.0 STUDY UNITS The study units in this course are as follows: MODULE 1 Unit 1: Elements of Decision Analysis Unit 2: Approaches to Decision Analysis Unit 3: Types of Decision Situations Unit 4: Decision Trees MODULE 2 Unit 5 : Operations Research (OR) Unit 6: Modelling In Operations Research Unit 7: Simulation Unit 8: Systems Analysis MODULE 3 Unit 9: Mathematical Programming (Linear Programming) Unit 10: The Transportation Model Unit 11: Assignment Model Unit 12: Project Management MODULE 3 Unit 13: Sequencing Unit 14: Games Theory Unit 15: Inventory Control Unit 16: Case Analysis 8.0 ASSIGNMENT FILE In this course, you will find all the details of the work you must submit to your tutor for marking. The marks you obtain for these assignments will count towards the final mark you obtain for this course. Further information on assignments will be found in the assignment file itself and later in the section on assessment in this course guide. There are 16 tutor-marked assignments in this course; the student should attempt all the 16. 9.0 PRESENTATION SCHEDULE The presentation schedule included in your course materials gives you the important dates for this year for the completion of tutor-marked assignments (TMAs) and attending tutorials. Remember, you are required to submit all your 6 assignments by the due date. You should guard against falling behind in your work. 10.0 ASSESSMENTS There are two aspects to the assessment of the course: first are the tutor-marked assignments; and second is a written examination. In tackling the assignments, you are expected to apply information, knowledge and techniques gathered during the course. The assignments must be submitted to your tutor for formal assessment in accordance with the deadlines stated in the PresentationSchedule and the Assignment File. The work you submit to your tutor will count for 30% of your total course mark. At the end of the course, you will need to sit for a final written examination of ‘three hours’ duration. This examination will also count for 70% of your total course mark. 11.0 TUTOR-MARKED ASSIGNMENT (TMAs) There are fifteen tutor-marked assignments in this course and you are advised toattempt all. Aside from the course material provided, you are advised to read and research widely using other references (under further reading) which will give you a broader viewpoint and may provide a deeper understanding of the subject. Ensure all completed assignments are submitted on schedule before set deadlines. If for any reasons, you cannot complete your work on time, contact your tutor before the assignment is due to discuss the possibility of an extension. Unless in exceptional circumstances, extensions may not be granted after the due date for the submission of assignments. 12.0 FINAL EXAMINATION AND GRADING The final examination for this course will be of ‘three hours’ duration and have a value of 70% of the total course grade. All areas of the course will be assessed and the examination will consist of questions, which reflect the type of self-testing, practice exercises and tutor-marked problems you have previously encountered. All areas of the course will be assessed. Utilise the time between the conclusion of the last study unit and sitting for the examination to revise the entire course. You may find it useful to review your self-assessment tests, tutor-marked assignments and comments on them before the examination. 13.0 COURSE MARKING SCHEME The work you submit will count for 30% of your total course
Recommended publications
  • 1947–1967 a Conversation with Howard Raiffa
    Statistical Science 2008, Vol. 23, No. 1, 136–149 DOI: 10.1214/088342307000000104 c Institute of Mathematical Statistics, 2008 The Early Statistical Years: 1947–1967 A Conversation with Howard Raiffa Stephen E. Fienberg Abstract. Howard Raiffa earned his bachelor’s degree in mathematics, his master’s degree in statistics and his Ph.D. in mathematics at the University of Michigan. Since 1957, Raiffa has been a member of the faculty at Harvard University, where he is now the Frank P. Ramsey Chair in Managerial Economics (Emeritus) in the Graduate School of Business Administration and the Kennedy School of Government. A pioneer in the creation of the field known as decision analysis, his re- search interests span statistical decision theory, game theory, behavioral decision theory, risk analysis and negotiation analysis. Raiffa has su- pervised more than 90 doctoral dissertations and written 11 books. His new book is Negotiation Analysis: The Science and Art of Collaborative Decision Making. Another book, Smart Choices, co-authored with his former doctoral students John Hammond and Ralph Keeney, was the CPR (formerly known as the Center for Public Resources) Institute for Dispute Resolution Book of the Year in 1998. Raiffa helped to create the International Institute for Applied Systems Analysis and he later became its first Director, serving in that capacity from 1972 to 1975. His many honors and awards include the Distinguished Contribution Award from the Society of Risk Analysis; the Frank P. Ramsey Medal for outstanding contributions to the field of decision analysis from the Operations Research Society of America; and the Melamed Prize from the University of Chicago Business School for The Art and Science of Negotiation.
    [Show full text]
  • Evidence-Based Decisions: the Role of Decision Analysis 11 Dawn Dowding and Carl Thompson
    Evidence-based decisions: the role of decision analysis 11 Dawn Dowding and Carl Thompson CHAPTER CONTENTS Introduction 173 Conclusion 192 What is decision analysis? 174 Exercises 192 The stages in a decision analysis 174 Resources 194 Benefits and limitations of decision Sources 194 analysis 191 References 195 KEY ISSUES What is a decision analysis? How to undertake a decision analysis: ○ structuring a question ○ designing a decision tree ○ extracting probabilities ○ gathering utilities ○ combining information on probability and utility in the process of ‘rolling back’ a decision tree The strengths and weaknesses of decision analysis INTRODUCTION The components of an evidence-based decision include the results of research, a patient’s values or preferences for particular choices, an aware- ness of available resources, and the experience and expertise of the decision maker (DiCenso et al 1998). Having made it this far in the text, you will have grasped that making evidence-based decisions in practice can sometimes be difficult; requiring the use of complex, often incomplete information, and with uncertain decision outcomes (Hunink et al 2001, Tavakoli et al 2000). Paying attention to and integrating the volume of information in practice can often seem overwhelming. Nurses, like all human beings, have limited capacity to manage all of the different components of a complex decision at the same time (Hunink et al 2001, Sarasin 2001). Decision analysis is one approach that can help systematically combine the elements required for an evidence-based decision. 173 11 WHAT IS DECISION ANALYSIS? Decision analysis is based on the normative expected utility theory (EUT; see Chapters 2 and 5; Elwyn et al 2001, Tavakoli et al 2000, Thornton 1996).
    [Show full text]
  • Readings on the Principles and Applications of Decision Analysis
    STRATEGIC DECISIONS GROUP READINGS ON DION lalaDOS DERDR sd RONALD A.HOWARD & JAMESE.MATHESON VOLUME I: GENERAL COLLECTION STffiICDECISIONSGROUP o o READINGSON fre les and Apphcadons of EDITEDBY RONALD A.HO\IARD & JAlv{ES E.}vIAIHESON VOLI.,ME I: GENERAL COLLECTTON EDI TORS Ronal d A. Howard James E. Matheson PRODUCTION STAFF Rebecca Sul I i vdr, Coord i nator Paul Steinberg, Copy Editor Lesl ie Fleming, Graphics @ 1983 by Strategic Decisions Group. Printed in the United States of America. All rights reserved. No part of this material may be reproduced or used without prior wri tten permission from the authors and /or hol ders of copyr.i ght. CONTENTS VOLUME I: GENERAL COLLECTION foreword.. .o.....o. , vll What is Decision Analysis? viii INTRODUCTION AND OVERVIEW 1 Preface 3 1. The Evolution of Decision Analysis . .. .. .. 5 R. A. Howard 2. An Introduction to Decision Analysis . .17 l. E. Matheson and R. A. Howard 3. Decision Analysis in Systems Engineering . .57 R. A. Howard 4. Decision Analysis: Applied Decision Theory 95 R. A. Howard 5. A Tutorial lntroduction to Decision Theory 115 D. W. North 6.A Tutorial in Decision Analysis . 129 C.5. Sta€;l von Holstein 7.The Science of Decision-Making . 159 R. A. Howard B. An Assessment of Decision Analysis 177 R. A. Howard APPLICATIONS . .203 Preface 205 lnvestment and Strategic Planning 9. Decision Analysis Practice: Examples and lnsights . .....209 J. E. Matheson 10. Decision Analysis of a Facilities lnvestment and Expansion Problem . .227 C. S. Spetzler and R. M. hmora 11. Strategic Planning in an Age of Uncertainty.
    [Show full text]
  • Decision Analysis Society 2015 Frank P. Ramsey Medal
    Decision Analysis Society 2015 Frank P. Ramsey Medal The Frank P. Ramsey Medal is the highest award of the Decision Analysis Society (DAS). It was created to recognize distinguished contributions to the field of decision analysis. The medal is named in honor of Frank Plumpton Ramsey, a Cambridge University mathematician who was one of the pioneers of decision theory in the 20th century. His 1926 essay "Truth and Probability" (published posthumously in 1931) anticipated many of the developments in mathematical decision theory later made by John von Neumann and Oskar Morgenstern, Leonard J. Savage, and others. For this award, decision analysis is defined as a prescriptive approach to provide insight for decision making based on axioms that are logically consistent with the axioms of von Neumann and Morgenstern and of Savage. Key constructs of decision analysis are utility to quantify one’s preferences and probability to quantify the state of one's knowledge. There are overlapping aspects of decision analysis with other fields such as behavioral decision research, probabilistic risk analysis, and engineering and economic analyses. Behavioral decision research addressing how people make decisions that has direct implications for improving the practice of decision analysis is a contribution to decision analysis. Models of uncertain possible consequences from scientific, engineering, and economic modeling that are useful for decision analysis are contributions. Distinguished contributions to the field of decision analysis can be internal, such as theoretical or procedural advances in decision analysis, or external, such as developing or spreading decision analysis in new fields. Thus, the specific award criteria for evaluating potential Ramsey Medal recipients are a candidate's Theoretical, methodological, and procedural contributions to decision analysis Applications of decision analysis (including new uses and in new fields) Other contributions promoting decision analysis (e.g.
    [Show full text]
  • A Quantitative Approach to Choose Among Multiple Mutually Exclusive Decisions: Comparative Expected Utility Theory
    A quantitative approach to choose among multiple mutually exclusive decisions: comparative expected utility theory Zhu, Pengyu [Cluster on Industrial Asset Management, University of Stavanger, N-4036, Stavanger, Norway] Abstract Mutually exclusive decisions have been studied for decades. Many well-known decision theories have been defined to help people either to make rational decisions or to interpret people’s behaviors, such as expected utility theory, regret theory, prospect theory, and so on. The paper argues that none of these decision theories are designed to provide practical, normative and quantitative approaches for multiple mutually exclusive decisions. Different decision-makers should naturally make different choices for the same decision question, as they have different understandings and feelings on the same possible outcomes. The author tries to capture the different understandings and feelings from different decision-makers, and model them into a quantitative decision evaluation process, which everyone could benefit from. The basic elements in classic expected utility theory are kept in the new decision theory, but the influences from mutually exclusive decisions will also be modeled into the evaluation process. This may sound like regret theory, but the new approach is designed to fit multiple mutually exclusive decision scenarios, and it does not require a definition of probability weighting function. The new theory is designed to be simple and straightforward to use, and the results are expected to be rational for each decision- maker. Keywords: mutually exclusive decisions; decision theory; comparative cost of chance; comparative expected utility theory; mathematical analysis; game theory; probability weighting; 1. Introduction Traditionally, decision theories could be divided into descriptive, normative and prescriptive methods, and different methods featured different assessment processes or tools (Bell & Raiffa, 1988; Bell, Raiffa, & Tversky, 1988; Luce & Von Winterfeldt, 1994).
    [Show full text]
  • The Application of Utility Theory in the Decision-Making of Marketing Risk Management
    Advances in Economics, Business and Management Research (AEBMR), volume 62 International Academic Conference on Frontiers in Social Sciences and Management Innovation (IAFSM 2018) The Application of Utility Theory in the Decision-Making of Marketing Risk Management Gonglong SHI1,Qian WANG2 (1.School of Management,Xi’an University of Science and Technology, Xi’an,China; 2.College of Safety Science and Engineering,Xi’an University of Science and Technology,Xi’an ,China) [email protected] Abstract: In the increasingly competitive and unpredictable business environment, how to control marketing risk to reduce loss is an important issue in the field of marketing research. On the basis of brief description of marketing risk and basic concept of management, this paper analyzes utility, utility function and utility theory, and illustrates the concrete application of utility theory in marketing risk management decision through an example, and explains some possible problems that may exist in practical application. The conclusion is that utility theory has its theoretical value and advantage in marketing risk management decision, but it still needs further development and improvement in practical application. Keywords: Marketing Risk; Utility Theory; Risk Management; Decision Making 1 Instruction Marketing activities are the fundamental way for enterprises to fulfill market value and realize operating income. The effectiveness of marketing directly affects the survival and development prospects of enterprises. In the face of complex and ever-changing internal and external environments, corporate marketing activities often face many uncertain problems and challenges[1], especially in the face of uncertain environmental risks, companies have limited ability to identify[2], such as within corporate marketing.
    [Show full text]
  • The Founding of Informs: a Decision Analysis Perspective
    OR CHRONICLE THE FOUNDING OF INFORMS: A DECISION ANALYSIS PERSPECTIVE L. ROBIN KELLER University of California, Irvine, California CRAIG W. KIRKWOOD Arizona State University, Tempe, Arizona (Received July 1997; revisions received September 1997, March 1998; accepted March 1998) We provide a decision analysis perspective on the decision making process leading to the merger of The Institute of Management Sciences (TIMS) and the Operations Research Society of America (ORSA) to form the Institute for Operations Research and the Management Sciences (INFORMS). Throughout the merger negotiation era from 1989 until the merger in 1995, discussion regarding a possible merger was framed in an objectives-oriented manner characteristic of decision analysis methods. In addition, as ORSA and TIMS officers, we applied multiobjective decision analysis and financial analysis methods in portions of the planning and negotiation process leading to the formation of INFORMS. The merger process serves as an instructive case study of the uses and limitations of formal decision analysis methods in strategy formulation and implementation. n January 1, 1995, The Institute of Management Sci- activities, a substantial number of people involved in the Oences (TIMS) and the Operations Research Society process did not perceive that OR/MS methods were being of America (ORSA) merged to form the Institute for used. As the remainder of this article shows, the merger Operations Research and the Management Sciences process for TIMS and ORSA serves as an instructive case (INFORMS). As INFORMS began, it had over 11,000 study of the uses and limitations of OR in strategy formu- members from 90 countries, and a $4 million annual oper- lation and implementation.
    [Show full text]
  • Decision Analysis
    ASW/QMB-Ch.04 3/8/01 10:35 AM Page 96 DECISION ANALYSIS CONTENTS 4.1 PROBLEM FORMULATION Influence Diagrams Payoff Tables Decision Trees 4.2 DECISION MAKING WITHOUT PROBABILITIES Optimistic Approach Conservative Approach Minimax Regret Approach 4.3 DECISION MAKING WITH PROBABILITIES Expected Value of Perfect Information 4.4 RISK ANALYSIS AND SENSITIVITY ANALYSIS Risk Analysis Sensitivity Analysis 4.5 DECISION ANALYSIS WITH SAMPLE INFORMATION An Influence Diagram A Decision Tree Decision Strategy Risk Profile Expected Value of Sample Information Efficiency of Sample Information 4.6 COMPUTING BRANCH PROBABILITIES Decision analysis can be used to determine an optimal strategy when a de- Chapter 4 cision maker is faced with several decision alternatives and an uncertain or risk-filled pattern of future events. For example, a global manufacturer might be interested in determining the best location for a new plant. Sup- pose that the manufacturer has identified five decision alternatives corre- sponding to five plant locations in different countries. Making the plant location decision is complicated by factors such as the world economy, de- mand in various regions of the world, labor availability, raw material costs, transportation costs, and so on. In such a problem, several scenarios could be developed to describe how the various factors combine to form the pos- sible uncertain future events. Then probabilities can be assigned to the events. Using profit or cost as a measure of the consequence for each de- cision alternative and each future event combination, the best plant loca- tion can be selected. Even when a careful decision analysis has been conducted, the uncer- tain future events make the final consequence uncertain.
    [Show full text]
  • Modeling Entrepreneurial Decision-Making Process Using Concepts from Fuzzy Set Theory Islem Khefacha* and Lotfi Belkacem
    Khefacha and Belkacem Journal of Global Entrepreneurship Research (2015) 5:13 DOI 10.1186/s40497-015-0031-x RESEARCH Open Access Modeling entrepreneurial decision-making process using concepts from fuzzy set theory Islem Khefacha* and Lotfi Belkacem * Correspondence: [email protected] Abstract Laboratory Research for Economy, Management and Quantitative Entrepreneurship and entrepreneurial culture are receiving an increased amount of Finance IHEC, University of Sousse, attention in both academic research and practice. The different fields of study have 4054 Sousse, Tunisia focused on the analysis of the characteristics of potential entrepreneurs and the firm-creation process. In this paper, we develop and test an economic-psychological model of factors that influence individuals’ intentions to go into business. We introduce a new measure of entrepreneurial intention based on the logic fuzzy techniques. From a practical point of view, this theory offers a natural approach to the resolution of multidimensional and complex problems when the available information is sparse and/or of poor quality. As an illustration, the model is estimated using a data provided by the National Tunisian Global Entrepreneurship Monitor (GEM) 2010 Project, based on the analysis of a sample of 799 cases. A simulation study of the model suggests that entrepreneurial intention is related to a composite of some demographic, competencies, networks and perception factors. This is an important area of concern in entrepreneurship intention which improves our knowledge about the degree to which the individual holds a positive or negative personal valuation about being an entrepreneur. The modeling insights may also be valuable as input to the design of entrepreneurship curricula.
    [Show full text]
  • Decision Support Systems
    Decision Support Systems Marek J. Druzdzel and Roger R. Flynn Decision Systems Laboratory School of Information Sciences and Intelligent Systems Program University of Pittsburgh Pittsburgh, PA 15260 fmarek,[email protected] http://www.sis.pitt.edu/∼dsl To appear in Encyclopedia of Library and Information Science, Second Edition, Allen Kent (ed.), New York: Marcel Dekker, Inc., 2002 1 Contents Introduction 3 Decisions and Decision Modeling 4 Types of Decisions . 4 Human Judgment and Decision Making . 4 Modeling Decisions . 5 Components of Decision Models . 5 Decision Support Systems 6 Normative Systems 7 Normative and Descriptive Approaches . 7 Decision-Analytic Decision Support Systems . 8 Equation-Based and Mixed Systems . 10 User Interfaces to Decision Support Systems 11 Support for Model Construction and Model Analysis . 11 Support for Reasoning about the Problem Structure in Addition to Numerical Calculations 11 Support for Both Choice and Optimization of Decision Variables . 12 Graphical Interface . 12 Summary 12 2 Introduction Making decisions concerning complex systems (e.g., the management of organizational operations, industrial processes, or investment portfolios; the command and control of military units; or the control of nuclear power plants) often strains our cognitive capabilities. Even though individual interactions among a system's variables may be well understood, predicting how the system will react to an external manipulation such as a policy decision is often difficult. What will be, for example, the effect of introducing the third shift on a factory floor? One might expect that this will increase the plant's output by roughly 50 percent. Factors such as additional wages, machine weardown, maintenance breaks, raw material usage, supply logistics, and future demand need also be considered, however, as they all will impact the total financial outcome of this decision.
    [Show full text]
  • Introduction to Decision Analysis for Public Policy Decision-Making
    British Decision to Develop Radar During WWII Introduction to Decision Analysis for Public Policy Decision-Making Ross D. Shachter Management Science and Engineering Stanford University 1 © Ross D. Shachter MS&E 290, Public Policy Analysis 2 British Decision to Develop Radar During WWII The Serenity Prayer Choice between Infrared and Radar to detect God grant me German bombers the serenity to accept Churchill protégé advocated the things I cannot change, Uncertainties infrared, which would have the courage to change been ineffective the things I can, and Decisions Consequence: infrared the wisdom to know the difference. Decision Analysis would not have prevented a German invasion Reinhold Niebuhr (1892-1971) Right decision by chance Inspired by Friedrich Oetinger and Boethius. © Ross D. Shachter MS&E 290, Public Policy Analysis 3 © Ross D. Shachter MS&E 290, Public Policy Analysis 4 Action Actional Thought Thought Bayesian Perspective Some of our actions merit thought and reflection. We measure our beliefs about thosee uncertain Not all of our thoughts are focused on possibilities we care about using probabilities. interventions we can make in our world. Those probabilities are based on our current state Decision analysis lets us think clearly about a of information, &, from life experience, expert complex problem so that we can choose those opinions, and observation. actions that yield our preferred prospect. (There are no “objective” probabilities.) The quality of a decision is determined by the The possibilities are distinctions we impose on the process we use, not by the eventual outcome. world. We define them with enough clarity that A good decision can lead to a bad outcome.
    [Show full text]
  • Management= Application of Decision Analysis
    MANAGEMENT= APPLICATION OF DECISION ANALYSIS W. A. BUEHRING, W.K. FOELL, R.L. KEENEY MAY 1976 Research Reports provide the formal record of research conducted by the International Institute for Applied Systems Analysis. They are carefully reviewed before publication and represent, in the Institute's best judgment, competent scientific work. Views or opinions expressed herein, however, do not necessarily reflect those of the National Member Organizations support- ing the Institute or of the Institute itself. International Institute for Applied Systems Analysis 2361 Laxenbum, Austria This report is onc of a scries describing a innltidiscip1ina1.y multirrnlional 11,ZS.A rescarch study on the hlanagerne~lt of Energy/E~lviro~rmcirtSystems. Tht: primary objertiv-c ooC thc rcsearclr is thc dcvelopmt:nt of quar~titativctools for rcgional encrgy and environment po1ic.y design and analysis--or, in a broader sellsc, the development of a coherent, realistic approach to energy/envirorrrnt:nt rnanagcnle~~t.Particular atten- tion is bcing devoted to the design and use of these tools at thc rcgional level. The outputs of this rescarch program include concepts, applicd methodologies, and casc studies. During 1975, case studies were emphasized; they focussed on three greatly differing regions, ~iamely.the German Democratic Rep~~bli~,the RhGnc-Alpes region in southern France, and the state of Wisconsin in the U.S.A. The IIASA research was conducted within a network of collaborating institutions composed of the Institut fiir Energetlk, Leipzig; the Institut Econon~iqueet Juridique dc I'khergie, Grenoble; and the University of Wisconsin-Madison. This report is concerned with the means for more efficierltly embedding the energy/ environment models and information systcms into the decision and policy design struc- ture of a region.
    [Show full text]