•HCV•TB ABOUT HIV I-BASE

Total Page:16

File Type:pdf, Size:1020Kb

•HCV•TB ABOUT HIV I-BASE HIV•HCV•TB ABOUT HIV i-BASE HIV i-Base is a London-based HIV treatment activist organization. HIV i-Base works in the United Kingdom and internationally to ensure that people living with HIV are actively engaged in their own treatment and medical care and are included in policy discussions about HIV treatment recommendations and access. www.i-base.info ABOUT TAG Treatment Action Group (TAG) is an independent AIDS research and policy think tank fighting for better treatment, a vaccine, and a cure for AIDS. TAG works to ensure that all people with HIV receive lifesaving treatment, care, and information. www.treatmentactiongroup.org 2014 PIPELINE REPORT HIV, HEPATITIS C VIRUS (HCV), AND TUBERCULOSIS (TB) DRUGS, DIAGNOSTICS, VACCINES, PREVENTIVE TECHNOLOGIES, RESEARCH TOWARD A CURE, AND IMMUNE-BASED AND GENE THERAPIES IN DEVELOPMENT By Polly Clayden, Simon Collins, Colleen Daniels, Mike Frick, Mark Harrington, Tim Horn, Richard Jefferys, Karyn Kaplan, Erica Lessem, Lindsay McKenna, and Tracy Swan Edited by Andrea Benzacar JULY 2014 HIV i-BASE/TREATMENT AcTION GROUP AUTHORS Polly Clayden, Simon Collins, Colleen Daniels, Mike Frick, Mark Harrington, Tim Horn, Richard Jefferys, Karyn Kaplan, Erica Lessem, Lindsay McKenna, and Tracy Swan EXECUTIVE EDITOR Andrea Benzacar DESIGNER Lei Chou ACKNOWLEDGMENTS i-Base thanks the Monument Trust and UNITAID for support for this work. Thanks to the TAG staff, board, and donors for supporting the production of the 2014 Pipeline Report. HIV i-Base Treatment Action Group 4th Floor, 57 Great Suffolk Street 261 Fifth Avenue, Suite 2110 London SE1 0BB. New York, NY 10016 Tel + 44 (0) 20 7407 8488 Tel +1 212 253 7922 Fax +1 212 253 7923 http://i-base.info [email protected] www.treatmentactiongroup.org [email protected] ISBN 978-0-9895740-7-5 This report is dedicated to Marvin Oscar Shulman May 17, 1932–January 15, 2014 Photo: Thomas M. Keane Marvin pictured, seated, second from left. A fierce AIDS warrior, principled leader, and beloved friend, Marvin Shulman was an activist’s activist. He dedicated himself completely to the fight against AIDS, first as a member of ACT UP/NY, where he served as treasurer and as a member of the coordinating committee, and later as the first treasurer of TAG. His years of work for both organizations, without ego or fanfare, made possible historic actions leading to changes that continue to save lives today. Without Marvin, there would have been no “Storm the NIH,” no “Seize Control of the FDA,” no giant condom on Jesse Helm’s house…and none of the lifesaving drugs that have changed the landscape of the epidemic in the ensuing years. Marvin was fiercely loyal to his friends and a man of legendary generosity in his personal life as well as in his activism. He was loving, blunt, savagely funny, and deeply courageous. He saved many situations with his ability to call bulls**t for the greater good. He was the best kind of activist because he cared—first, last, and always—about the work. Marvin wanted the AIDS crisis to end. He wanted the ignorance and injustice underlying the crisis to end. He didn’t care who took the credit. And so he just did great things. And so can we all. And so must we all. Marvin’s life and his approach to work were and are a model for other activists, including his colleagues at TAG. Marvin leaves a tremendous legacy. We thank him, and we miss him greatly. TABLE OF CONTENTS Introduction and Executive Summary 1 The Antiretroviral Pipeline 19 Preventive Technologies: Antiretroviral and Vaccine Development 55 Research Toward a Cure and Immune-Based and Gene Therapies 83 Fit for Purpose: Treatment Optimization 103 The Pediatric Antiretroviral Pipeline 131 Hepatitis C Pipeline: BONANZA! The Gold Rush Is Under Way 153 Global Update: Hepatitis C Treatment Activism 179 The Tuberculosis Diagnostics Pipeline 183 Tuberculosis Drug Development Hobbles Forward 197 Playing Catch-Up: Pediatric Tuberculosis Treatment Pipeline 217 The Tuberculosis Vaccines Pipeline 233 Introduction and Executive Summary Introduction and Executive Summary By Polly Clayden and Mark Harrington INTRODUCTION Last year we wrote: [Getting] the best drugs to the most people as quickly as possible… requires that the compounds and combination products be: • Discovered and developed in a high-quality research program; • Approved by a national or multinational regulatory authority; • Recommended by national or multinational guidelines groups; • Available in formulations suitable for use in the proposed population; • Affordable to public-sector programs and through private insurance; and • Accessible to patients through local health systems.1 One year later, the research, regulatory, and access landscape for people with HIV, hepatitis C virus (HCV), or tuberculosis (TB) remains one of stark contrasts among the three diseases, and between people with access to affordable health care—whether they live in rich or developing countries—and those without. The research pipelines described in this year’s report show substantial progress in new treatments and preventive interventions against HIV. Revolutionary changes are afoot in the treatment of HCV, which allow—for the first time—the prospect of universal cure and disease eradication—if only cost and access barriers can be overcome. But, in the case of TB, few new diagnostics, even fewer new drugs, poor access, and declining political will create a pipeline woefully underpopulated, slow-moving, and resource-deprived. Here we highlight the first of the essential requirements outlined above, the requirement that new interventions be “discovered and developed in a high- quality research program.” A quick scan of worldwide trials data maintained by the U.S. National Institutes of Health (NIH) at clinicaltrials.gov reveals many disparities between research 1 2014 PIPELINE REPORT and development programs for treatments of HIV, HCV, and TB. Newly approved drugs for the three diseases—dolutegravir (for HIV), sofosbuvir (for HCV), and delamanid (for TB)—have respectively 61, 67, and 6 clinical trials registered to investigate their use. The 61 studies of dolutegravir cover: treatment-naive and -experienced patients (including those with resistance to other integrase inhibitors); comparisons, use, and interactions with the most commonly used antiretrovirals (and a couple of investigative ones); interactions with potential concomitant medicines that include studies with methadone, rifampin, and oral contraceptives; an investigation into how the drug performs in women; use in people with hepatic and renal impairment; pregnancy pharmacokinetics; a pediatric investigation program down to four weeks of age conducted by the International Maternal Pediatric Adolescent AIDS Clinical Trials Group (IMPAACT) network; and pharmacokinetics of the pediatric granule formulation. This list is not exhaustive. Despite the limitations of the registrational studies, with the usual underrepresentation of women, people with coinfections, etc., by the time all the studies are completed as well as several in the planning stage that are not yet registered, we will have a pretty good idea how the drug will perform across a diverse population (Polly Clayden looks at some of these that will help with our understanding of how the drug will perform in low- and middle-income settings in her chapter on antiretroviral dose optimization). Registered sofosbuvir trials are also abundant and include patients with varying treatment experience, liver disease stage, and genotypes. But a closer look reveals limited investigations into regimens with other sponsors’ drugs, nothing in pregnant women or children, few in HIV coinfection (and nothing in other comorbidities), and just one (not yet recruiting) in people who inject drugs. As yet there are very few trials registered by independent investigators (and notably these are usually HIV networks or centers). Tracy Swan details the shortcomings of HCV trial enrollment in her chapter. The tally for delamanid trials is a paltry 10 percent of those for the other two recently approved agents. It is at least encouraging that two of these trials will provide information for use in children with multidrug-resistant TB (MDR-TB). However, approval of delamanid by the European Medicines Agency (EMA) was delayed due to confusingly presented results from the phase II program, which included a two-month study, a six-month study, and an open-label study. The sponsor claimed a mortality benefit for those treated for six rather than two 2 Introduction and Executive Summary months, but neglected to mention that those not surviving or lost to follow-up between the two- and six-month endpoints were excluded from this survival analysis—producing a biased readout.2 The sponsor’s inexperience and the lack of validated treatment options in multidrug-resistant (MDR) TB cannot excuse the poor design and presentation of this phase II program. A phase III study, now fully enrolled, may shed more light on delamanid’s use. The other recently approved drug to treat MDR-TB, Janssen’s bedaquiline, had stronger evidence of efficacy at two and six months, but in the “placebo- controlled C208 trial, however, an imbalance of all-cause mortality has been observed with more deaths reported in the bedaquiline group (10/79 versus 2/81 in the placebo group in C208 Stage 2). Causes of death were varied and all but one occurred after the treatment period with bedaquiline.”3 The U.S. Food and Drug Administration (FDA) carried out a thorough review of each death in the phase II program and could not rule out an association with bedaquiline,4 resulting in a black box warning on the label and a requirement that Janssen open a U.S. patient registry to monitor safety post-marketing.5 The excess mortality seen in phase II should have induced Janssen to accelerate its confirmatory phase III study, which has not yet even begun. Rather than mounting its own phase III study, Janssen is trying to piggyback onto an ongoing USAID/British Medical Research Council (BMRC) study of a modified so-called Bangladesh regimen compared with standard of care (SOC).
Recommended publications
  • The Design, Synthesis and Optimization of Allosteric Hiv-1
    THE DESIGN, SYNTHESIS AND OPTIMIZATION OF ALLOSTERIC HIV-1 INTEGRASE INHIBITORS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Janet Antwi Graduate Program in Pharmaceutical Sciences The Ohio State University 2017 Dissertation Committee: Professor James R. Fuchs, Advisor Professor Werner Tjarks Professor Karl A. Werbovetz Copyright by Janet Antwi 2017 Abstract In the past quarter century, there has been tremendous progress in the discovery of antiretroviral therapy, making HIV/AIDS a manageable chronic disease. However, the HIV virus is relentless and continues to evolve under drug pressure to escape control and continue infection. The enzyme HIV integrase is responsible for the incorporation of viral double stranded DNA into a host chromosomal DNA and has recently become an attractive target in combating HIV resistance. Raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG) are three clinically approved active-site integrase inhibitors. Unfortunately, mutations of the enzyme observed in patients have resulted in resistance to thedrug in the clinic. A new approach to targeting integrase (IN) is the development of allosteric inhibitors that specifically target the protein-protein interaction between IN and its cellular cofactor LEDGF/p75. Recently discovered quinoline-based allosteric integrase inhibitor (ALLINI) B1224436 was the first compound to advance into clinical trials but was discontinued due to poor pharmacokinetic properties including low in vivo clearance. In addition, several reports have revealed the emergence of resistance due to mutation to quinoline based ALLINIs. Applying scaffold hopping approach, several pyridine-based, thiophenes, ii pyrazoles, isoquinolines and other heteroaromatic cores have been studied as ALLINIs.
    [Show full text]
  • Mutational Studies of Novel Screened Molecules Against Wild and Mutated HIV-1 Integrase Using Molecular Docking Studies Pawan Gupta1,2*, Prabha Garg2
    Research Article Mutational studies of novel screened molecules against wild and mutated HIV-1 integrase using molecular docking studies Pawan Gupta1,2*, Prabha Garg2 ABSTRACT Background and Aim: The screened molecules which proposed novel HIV-1 integrase inhibitors were collected from the literature. Mutational studies were performed to check whether these molecules are having good binding affinity against mutated HIV-1 IN or not using molecular docking technique. Materials and Methods: First, homology models of the mutated HIV-1 IN were prepared and subsequently all the models were refined and optimized in MODELLER program. Next, molecular docking studies were performed into the active site of mutated HIV-1 IN models using the proposed inhibitors in AutoDock 4.1 program. The results of these studies were compared with the wild type docking studies. Results: The docking studies were found that some of the screened molecules (ZINC1245110, 131614, 92749, ZINC05181828, and ZINC13147504) followed the same binding patterns (in term of locations, interactions, and binding score) as found with wild type HIV-1 IN. Conclusions: Computationally, the same binding patterns were exhibited by these molecules (ZINC1245110, 131614, 92749, ZINC05181828, and ZINC13147504) against mutated models as wild type. This elucidated that these molecules having susceptibility against the drug-resistant HIV-1 IN. Hence, these molecules may be used as a starting point to design novel inhibitors against mutated HIV-1 IN, which need to be confirmed experimentally. KEY WORDS: Docking, Drug resistance, Homology modeling, HIV-1 integrase, Mutation INTRODUCTION Drug resistance is the inevitable consequence of incomplete suppression of HIV-1 replication. The Human immuno-virus (HIV) causes AIDS.
    [Show full text]
  • Abstract Book Towards an HIV Cure Symposium, 2013 Towards an HIV Cure Symposium 2013 Abstract Book 2
    Abstract Book Towards an HIV Cure Symposium, 2013 Towards an HIV Cure Symposium 2013 Abstract Book 2 Contents Oral Abstract Session 1 4 OA1-1 4 OA1-2 5 OA1-3 6 OA1-4 LB 7 OA1-5 LB 8 Oral Abstract Session 2 9 OA2-1 9 OA2-2 10 OA2-3 11 OA2-4 12 OA2-5 LB 13 OA2-6 LB 14 OA2-7 LB 15 Oral Abstract Session 3 16 OA3-1 16 OA3-2 17 OA3-3 18 OA3-4 LB 19 Oral Abstract Session 4 20 OA4-1 20 OA4-2 22 OA4-3 LB 24 OA4-4 LB 25 Poster Exhibition 26 A5 – Entry (attachment, receptors and co-receptors, penetration and tropism) 26 A8 – Regulation of viral gene expression and replication 27 A9 – Cellular factors necessary for HIV replication 28 A10 – Cellular and tissue reservoirs 31 A11 – Mechanisms of HIV persistence 36 A13 – Strategies to target and eradicate reservoirs 37 A14 – Mucosal transmission 43 A19 – Intrinsic cellular defenses and restriction factors 44 A20 – IFN-I (viral inhibition, immunomodulatory functions) 46 Back to Content page Towards an HIV Cure Symposium 2013 Abstract Book 3 A21 – NK cells and dendritic cells 47 A22 – Monocytes and macrophages 49 A24 – Antibody diversity and function 51 A27 – Cellular immunity 53 A28 – Mucosal immunity 56 A29 – Viral determinants of pathogenesis 57 A30 – Acute and early HIV/SIV infection 58 A41 – Elite controllers 59 A44 – Highly exposed seronegative individuals (HESN) 61 A45 – Correlates of protection 62 A46 – HIV drug development 63 A47 – Mechanisms of anti-retroviral drug resistance 65 A49 – Nucleic acid based HIV and SIV therapy development 67 A50 – Design of approaches targeting inflammation/immune
    [Show full text]
  • Models for Predicting Effective HIV Chemoprevention in Women
    NIH Public Access Author Manuscript J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2016 April 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Acquir Immune Defic Syndr. 2015 April 1; 68(4): 369–376. doi:10.1097/QAI.0000000000000472. Models for Predicting Effective HIV Chemoprevention in Women Melanie R. Nicol, PharmD, PhD1,*, Cindi W. Emerson, B.S., B.A.1,2, Heather M.A. Prince, MPA2,3, Julie A.E. Nelson, PhD2,3, Yuri Fedoriw, MD3, Craig Sykes, M.S.1,2, Elizabeth J Geller, MD3, Kristine B. Patterson, MD3, Myron S Cohen, MD2,3, and Angela D.M. Kashuba, BScPhm, PharmD1,2,3 1Eshelman School of Pharmacy, University of North Carolina at Chapel Hill 2Center for AIDS Research, University of North Carolina at Chapel Hill 3School of Medicine, University of North Carolina at Chapel Hill Abstract Objective—Model systems which rapidly identify tissue drug concentrations protective of HIV infection could streamline the development of chemoprevention strategies. Tissue models are promising, but limited concentration targets exist, and no systematic comparison to cell models or clinical studies has been performed. Design—We explored efficacy of maraviroc (MVC) and tenofovir (TFV) for HIV prevention by comparing Emax models from TZM-bl cells to vaginal tissue explants, and evaluated their predictive capabilities with a dose-challenge clinical study. Methods—HIV-1JR-CSF was utilized for viral challenge. Drug efficacy was assessed using a luciferase reporter assay in TZM-bl cells and real-time PCR to quantify spliced RNA in a tissue explant model.
    [Show full text]
  • Fourth Quarter Product Sales of $2.13 Billion, up 11% Year Over Year
    Gilead Sciences Announces Fourth Quarter and Full Year 2011 Financial Results February 2, 2012 4:06 PM ET - Fourth Quarter Product Sales of $2.13 Billion, up 11% Year over Year - - Full Year 2011 Product Sales of $8.10 Billion, up 10% over 2010 - - Full Year 2011 Non-GAAP EPS of $3.86, up 5% over 2010 - - Full Year 2011 Operating Cash Flows of $3.64 Billion - FOSTER CITY, Calif.--(BUSINESS WIRE)--Feb. 2, 2012-- Gilead Sciences, Inc. (Nasdaq:GILD) announced today its results of operations for the fourth quarter and full year 2011. Total revenues for the fourth quarter of 2011 increased 10 percent to $2.20 billion, from $2.00 billion for the fourth quarter of 2010. Net income for the fourth quarter of 2011 was $665.1 million, or $0.87 per diluted share, compared to $629.4 million, or $0.76 per diluted share for the fourth quarter of 2010. Non-GAAP net income for the fourth quarter of 2011, which excludes after-tax acquisition-related, restructuring and stock-based compensation expenses, was $743.1 million, or $0.97 per diluted share, compared to $779.3 million, or $0.95 per diluted share for the fourth quarter of 2010. Full year 2011 total revenues were $8.39 billion, up 5 percent compared to $7.95 billion for 2010. Net income for 2011 was $2.80 billion, or $3.55 per diluted share, compared to $2.90 billion, or $3.32 per diluted share for 2010. Non-GAAP net income for 2011, which excludes after-tax acquisition-related, restructuring and stock-based compensation expenses, was $3.04 billion, or $3.86 per diluted share, compared to $3.21 billion, or $3.69 per diluted share for 2010.
    [Show full text]
  • This Project Has Been Supported with Unrestriced Grants from Abbvie Gilead Sciences HEXAL Janssen-Cilag MSD Viiv Healthcare By
    This project has been supported with unrestriced grants from AbbVie Gilead Sciences HEXAL Janssen-Cilag MSD ViiV Healthcare By Marcus Altfeld, Hamburg/Boston (USA) Achim Barmeyer, Dortmund Georg Behrens, Hannover Dirk Berzow, Hamburg Christoph Boesecke, Bonn Patrick Braun, Aachen Thomas Buhk, Hamburg Rob Camp, Barcelona (Spain/USA) Rika Draenert, Munich Christian Eggers, Linz (Austria) Stefan Esser, Essen Gerd Fätkenheuer, Cologne Gunar Günther, Windhoek (Namibia) Thomas Harrer, Erlangen Christian Herzmann, Borstel Christian Hoffmann, Hamburg Heinz-August Horst, Kiel Martin Hower, Dortmund Christoph Lange, Borstel Thore Lorenzen, Hamburg Tim Niehues, Krefeld Christian Noah, Hamburg Ramona Pauli, Munich Ansgar Rieke, Koblenz Jürgen Kurt Rockstroh, Bonn Thorsten Rosenkranz, Hamburg Bernhard Schaaf, Dortmund Ulrike Sonnenberg-Schwan, Munich Christoph D. Spinner, Munich Thomas Splettstoesser (Figures), Berlin Matthias Stoll, Hannover Hendrik Streeck, Essen/Boston (USA) Jan Thoden, Freiburg Markus Unnewehr, Dortmund Mechthild Vocks-Hauck, Berlin Jan-Christian Wasmuth, Bonn Michael Weigel, Schweinfurt Thomas Weitzel, Santiago (Chile) Eva Wolf, Munich HIV 2015/16 www.hivbook.com Edited by Christian Hoffmann and Jürgen K. Rockstroh Medizin Fokus Verlag IV Christian Hoffmann, M.D., Ph.D. ICH Stadtmitte (Infektionsmedizinisches Centrum Hamburg) Glockengiesserwall 1 20095 Hamburg, Germany Phone: + 49 40 2800 4200 Fax: + 49 40 2800 42020 [email protected] Jürgen K. Rockstroh, M.D., Ph.D. Department of Medicine I University of Bonn Sigmund-Freud-Strasse 25 53105 Bonn, Germany Phone: + 49 228 287 6558 Fax: + 49 228 287 5034 [email protected] HIV Medicine is an ever-changing field. The editors and authors of HIV 2015/16 have made every effort to provide information that is accurate and complete as of the date of publication.
    [Show full text]
  • Interbiotech Ritonavir
    InterBioTech FT-LSI940 Ritonavir Products Description Product Name: Ritonavir Syn: A 84538; ABT 538; Abbott 84538; NSC 693184; RTV; C₃₇H₄₈N₆O₅S₂ Cat N° : LSI940, 10mg LSI941, 50mg LSI942, 100mg LSI943, 500 mg Inquire >=1 g also available as 10 mM solution (1 mL in DMSO) CAS No.: 155213-67-5 MWt: 720.94 Purity: 99.55% (white solid) Melting Point: 175-178°C Solubility: 10 mM in DMSO; < 0.1 mg/mL in H2O Target: CYP3A4 Pathway: Proteaseome Storage:(L) store the product at -20°C (stable for 3 years) or +4°C (stable for 2 years) (M) Product Name: Ritonavir metabolite ( Desthiazolylmethyloxycarbonyl Ritonavir ) Cat N° : XMH680, 5mg XMH681, 10 mg XMH682, 50 mg CAS No.: 176655-55-3 MWt: 579.8 C₃₇H₄₈N₆O₅S₂ Technical and Scientific Information Ritonavir is an inhibitor of HIV protease used to treat HIV infection and AIDS. Biological activity: Ritonavir is an inhibitor of CYP3A4 mediated testosterone 6β-hydroxylation with mean Ki of 19 nM and also inhibits [1] tolbutamide hydroxylation with IC50 of 4.2 μM . Ritonavir is found to be a potent inhibitor of CYP3A-mediated biotransformations (nifedipine oxidation with IC50 of 0.07 mM, 17alpha-ethynylestradiol 2-hydroxylation with IC50 of 2 mM; terfenadine hydroxylation with IC50 of 0.14 mM). Ritonavir is also an inhibitor of the reactions mediated by [2] CYP2D6 (IC50=2.5 mM) and CYP2C9/10 (IC50=8.0 mM) . Ritonavir results in an increase in cell viability in uninfected human PBMC cultures. Ritonavir markedly decreases the susceptibility of PBMCs to apoptosis correlated with lower levels of caspase-1 expression, decreases in annexin V staining, and reduces caspase-3 activity in uninfected human PBMC cultures.
    [Show full text]
  • Identification of a Novel Type of Small Molecule Inhibitor Against HIV-1
    BMB Rep. 2015; 48(2): 121-126 BMB www.bmbreports.org Reports Identification of a novel type of small molecule inhibitor against HIV-1 Byung Soo Kim1,#, Jung Ae Park1#,, Min-Jung Kim1, Seon Hee Kim2, Kyung Lee Yu2, & Ji Chang You1,2,* 1Avixgen Inc., 2National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul 137-701, Korea Here we report a new chemical inhibitor against HIV-1 with a anti-HIV-1 drugs targets the HIV-1 protease (2). Additionally, a novel structure and mode of action. The inhibitor, designated class of recently developed inhibitors blocks the activity of in- as A1836, inhibited HIV-1 replication and virus production tegrase, a viral enzyme required for the integration of the with a 50% inhibitory concentration (IC50) of 2.0 μM in an HIV-1 proviral DNA into the host DNA (3). Inhibitors of MT-4 cell-based and cytopathic protection antiviral assay, while non-enzymatic targets, which inhibit the viral entry process ei- its 50% cytotoxic concentration (CC50) was much higher than ther by blocking viral fusion or by acting as an antagonist 50 μM. Examination of the effect of A1836 on in vitro HIV-1 against the host cell receptor CCR5 comprise an additional reverse transcriptase (RT) and integrase showed that neither drug class (4). For the treatment of patients with HIV/AIDS, a were molecular targets of A1836. The characterization and so-called "HAART" (Highly Active AntiRetroviral Therapy) reg- re-infection assay of the HIV-1 virions generated in the pres- imen, which consists of a combination of three or four differ- ence of A1836 showed that the synthesis of early RT products ent approved drugs, is being used currently due to the rapid in the cells infected with the virions was inhibited dose-de- emergence of single drug treatment regimen-resistant strains pendently, due in part to abnormal protein formation within (5, 6).
    [Show full text]
  • The Impact of Modern Antiretroviral Therapy on Lipid Metabolism of HIV-1 Infected Patients
    Chapter 6 The Impact of Modern Antiretroviral Therapy on Lipid Metabolism of HIV-1 Infected Patients Joel da Cunha, Luciana Morganti Ferreira Maselli, Sérgio Paulo Bydlowski and Celso Spada Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61061 1. Introduction The highly active antiretroviral therapy (HAART) is the most efficient and safe alternative against HIV-1 infection, to allow the restoration of the immune system, with consequent reduction in mortality rate, increased survival and quality of life of infected patients. Apart from the great benefits of the use of different HAART regimens, laboratory and clinical experience has shown that HAART can induce severe and considerable adverse effects on metabolic complications of lipid metabolism, characterized by signs of dyslipidemia, increased risk of cardiovascular disease and even an increased risk of atherosclerosis. In this context, the class of protease inhibitors has been associated with a higher level of changes of lipid metab‐ olism and an increased risk for cardiovascular disease. In turn, the search for different therapeutic strategies to reverse HAART-associated lipid disorders has led to the use of less metabolically active antiretroviral drugs without compromising antiretroviral efficacy. Thus, the different interactions of antiretroviral drugs are recommended based on their degree of impact on lipid metabolism. Recently, fusion inhibitors, integrase strand transfer inhibitors, entry inhibitors, have been included in the therapeutic arsenal against HIV-1 infection, and are not associated with metabolic disorders, since their mechanisms of action are different from other classes of antiretrovirals. Instead, the use of hypolipidemic drug therapy (statins, fibrates, inhibitors of intestinal cholesterol) becomes necessary when HAART-associated dyslipidemia occurs or persists for a long period and when alterations in diet, exercise and other HAART strategies are ineffective.
    [Show full text]
  • Inhibitor-Based Therapeutics for Treatment of Viral Hepatitis
    Review Article Inhibitor-Based Therapeutics for Treatment of Viral Hepatitis Debajit Dey and Manidipa Banerjee* Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India Abstract When such inflammation, as manifested in symptoms such as jaundice, nausea, abdominal pain, malaise etc, is caused Viral hepatitis remains a significant worldwide threat, in spite by viral infections, the condition is referred to as viral hepatitis.1 of the availability of several successful therapeutic and vacci- Five hepatotropic viruses – named hepatitis A, B, C, D and nation strategies. Complications associated with acute and E viruses – target liver cells in humans and cause acute and chronic infections, such as liver failure, cirrhosis and hepato- chronic hepatitis. In addition, other viruses such as the cellular carcinoma, are the cause of considerable morbidity adenovirus, cytomegalovirus (CMV) and Epstein-Barr virus and mortality. Given the significant burden on the healthcare (EBV), occasionally cause symptoms of hepatitis.2 system caused by viral hepatitis, it is essential that novel, While an acute infection in healthy, immunocompetent more effective therapeutics be developed. The present review individuals is cleared spontaneously, complications like cir- attempts to summarize the current treatments against viral rhosis, hepatocellular carcinoma (HCC) and fulminant hepatic hepatitis, and provides an outline for upcoming, promising failure (FHF) may arise in immunocompromised individuals, new therapeutics. Development of novel therapeutics requires due to associated secondary reasons such as existing infec- an understanding of the viral life cycles and viral effectors in tions, alcohol abuse, or genetic predisposition.1,3 HCC, the molecular detail. As such, this review also discusses virally- third leading cause of cancer-related deaths worldwide,4 is encoded effectors, found to be essential for virus survival closely associated with hepatitis B virus (HBV) infections.
    [Show full text]
  • 24 March 2011 (24.03.2011) W O 201 1 /03 523 1 a 1
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau „ (10) International Publication Number (43) International Publication Date 24 March 2011 (24.03.2011) W O 201 1 /03 523 1 A 1 (51) International Patent Classification: (74) Agents: WARD, John et al.; Gilead Sciences, Inc., 333 C07D 487/04 (2006.01) Lakeside Drive, Foster City, CA 94404 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 10/049471 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 20 September 2010 (20.09.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Langi English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 61/244,297 2 1 September 2009 (21 .09.2009) US SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US): GILEAD SCIENCES, INC. [US/US]; 333 Lakeside (84) Designated States (unless otherwise indicated, for every Drive, Foster City, CA 94404 (US).
    [Show full text]
  • Current and Future Therapies for Hepatitis C Virus Infection: from Viral Proteins to Host Targets
    Arch Virol DOI 10.1007/s00705-013-1803-7 BRIEF REVIEW Current and future therapies for hepatitis C virus infection: from viral proteins to host targets Muhammad Imran • Sobia Manzoor • Nasir Mahmood Khattak • Madiha Khalid • Qazi Laeeque Ahmed • Fahed Parvaiz • Muqddas Tariq • Javed Ashraf • Waseem Ashraf • Sikandar Azam • Muhammad Ashraf Received: 27 February 2013 / Accepted: 19 June 2013 Ó Springer-Verlag Wien 2013 Abstract Hepatitis C virus (HCV) infection is the most cell-targeting compounds, the most hopeful results have important problem across the world. It causes acute and been demonstrated by cyclophilin inhibitors. The current chronic liver infection. Different approaches are in use to SOC treatment of HCV infection is Peg-interferon, riba- inhibit HCV infection, including small organic compounds, virin and protease inhibitors (boceprevir or telaprevir). The siRNA, shRNA and peptide inhibitors. This review article future treatment of this life-threatening disease must summarizes the current and future therapies for HCV involve combinations of therapies hitting multiple targets infection. PubMed and Google Scholar were searched for of HCV and host factors. It is strongly expected that the articles published in English to give an insight into the near future, treatment of HCV infection will be a combi- current inhibitors against this life-threatening virus. HCV nation of direct-acting agents (DAA) without the involve- NS3/4A protease inhibitors and nucleoside/nucleotide ment of interferon to eliminate its side effects. inhibitors of NS5B polymerase are presently in the most progressive stage of clinical development, but they are linked with the development of resistance and viral Introduction breakthrough. Boceprevir and telaprevir are the two most important protease inhibitors that have been approved HCV is a major health burden affecting about 200 million recently for the treatment of HCV infection.
    [Show full text]