Cutting Polygons Into Small Pieces with Chords: Laser-Based Localization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sylvester-Gallai-Like Theorems for Polygons in the Plane
RC25263 (W1201-047) January 24, 2012 Mathematics IBM Research Report Sylvester-Gallai-like Theorems for Polygons in the Plane Jonathan Lenchner IBM Research Division Thomas J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 Research Division Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: [email protected]). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . Sylvester-Gallai-like Theorems for Polygons in the Plane Jonathan Lenchner¤ Abstract Given an arrangement of lines in the plane, an ordinary point is a point of intersection of precisely two of the lines. Motivated by a desire to understand the fine structure of ordinary points in line arrangements, we consider the following problem: given a polygon P in the plane and a family of lines passing into the interior of P, how many ordinary intersection points must there be on or inside of P? We answer this question for a variety of different types of polygons. -
Multi-Armed Bandits with Applications to Markov Decision Processes and Scheduling Problems
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Multi-Armed Bandits with Applications to Markov Decision Processes and Scheduling Problems A Dissertation Presented by Isa M. Muqattash to The Graduate School in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University December 2014 Stony Brook University The Graduate School Isa M. Muqattash We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Jiaqiao Hu { Dissertation Advisor Associate Professor, Department of Applied Mathematics and Statistics Esther Arkin { Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Yuefan Deng Professor, Department of Applied Mathematics and Statistics Luis E. Ortiz Assistant Professor Department of Computer Science, Stony Brook University This dissertation is accepted by the Graduate School. Charles Taber Dean of the Graduate School ii Abstract of the Dissertation Multi-Armed Bandits with Applications to Markov Decision Processes and Scheduling Problems by Isa M. Muqattash Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University 2014 The focus of this work is on practical applications of stochastic multi-armed bandits (MABs) in two distinctive settings. First, we develop and present REGA, a novel adaptive sampling- based algorithm for control of ¯nite-horizon Markov decision pro- cesses (MDPs) with very large state spaces and small action spaces. We apply a variant of the ²-greedy multi-armed bandit algorithm to each stage of the MDP in a recursive manner, thus comput- ing an estimation of the \reward-to-go" value at each stage of the MDP. -
Stony Brook University
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Combinatorics and Complexity in Geometric Visibility Problems A Dissertation Presented by Justin G. Iwerks to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University August 2012 Stony Brook University The Graduate School Justin G. Iwerks We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Joseph S. B. Mitchell - Dissertation Advisor Professor, Department of Applied Mathematics and Statistics Esther M. Arkin - Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Steven Skiena Distinguished Teaching Professor, Department of Computer Science Jie Gao - Outside Member Associate Professor, Department of Computer Science Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Combinatorics and Complexity in Geometric Visibility Problems by Justin G. Iwerks Doctor of Philosophy in Applied Mathematics and Statistics (Operations Research) Stony Brook University 2012 Geometric visibility is fundamental to computational geometry and its ap- plications in areas such as robotics, sensor networks, CAD, and motion plan- ning. We explore combinatorial and computational complexity problems aris- ing in a collection of settings that depend on various notions of visibility. We first consider a generalized version of the classical art gallery problem in which the input specifies the number of reflex vertices r and convex vertices c of the simple polygon (n = r + c). -
Preprocessing Imprecise Points and Splitting Triangulations
Preprocessing Imprecise Points and Splitting Triangulations Marc van Kreveld Maarten L¨offler Joseph S.B. Mitchell Technical Report UU-CS-2009-007 March 2009 Department of Information and Computing Sciences Utrecht University, Utrecht, The Netherlands www.cs.uu.nl ISSN: 0924-3275 Department of Information and Computing Sciences Utrecht University P.O. Box 80.089 3508 TB Utrecht The Netherlands Preprocessing Imprecise Points and Splitting Triangulations∗ Marc van Kreveld Maarten L¨offler Joseph S.B. Mitchell [email protected] [email protected] [email protected] Abstract Traditional algorithms in computational geometry assume that the input points are given precisely. In practice, data is usually imprecise, but information about the imprecision is often available. In this context, we investigate what the value of this information is. We show here how to preprocess a set of disjoint regions in the plane of total complexity n in O(n log n) time so that if one point per set is specified with precise coordinates, a triangulation of the points can be computed in linear time. In our solution, we solve another problem which we believe to be of independent interest. Given a triangulation with red and blue vertices, we show how to compute a triangulation of only the blue vertices in linear time. 1 Introduction Computational geometry deals with computing structure in 2-dimensional space (or higher). The most popular input is a set of points, on which something useful is then computed, for example, a triangulation. Algorithms for these tasks have been developed many years ago, and are provably fast and correct. -
Computational Geometry Lecture Notes1 HS 2012
Computational Geometry Lecture Notes1 HS 2012 Bernd Gärtner <[email protected]> Michael Hoffmann <[email protected]> Tuesday 15th January, 2013 1Some parts are based on material provided by Gabriel Nivasch and Emo Welzl. We also thank Tobias Christ, Anna Gundert, and May Szedlák for pointing out errors in preceding versions. Contents 1 Fundamentals 7 1.1 ModelsofComputation ............................ 7 1.2 BasicGeometricObjects. 8 2 Polygons 11 2.1 ClassesofPolygons............................... 11 2.2 PolygonTriangulation . 15 2.3 TheArtGalleryProblem ........................... 19 3 Convex Hull 23 3.1 Convexity.................................... 24 3.2 PlanarConvexHull .............................. 27 3.3 Trivialalgorithms ............................... 29 3.4 Jarvis’Wrap .................................. 29 3.5 GrahamScan(SuccessiveLocalRepair) . .... 31 3.6 LowerBound .................................. 33 3.7 Chan’sAlgorithm................................ 33 4 Line Sweep 37 4.1 IntervalIntersections . ... 38 4.2 SegmentIntersections . 38 4.3 Improvements.................................. 42 4.4 Algebraic degree of geometric primitives . ....... 42 4.5 Red-BlueIntersections . .. 45 5 Plane Graphs and the DCEL 51 5.1 TheEulerFormula............................... 52 5.2 TheDoubly-ConnectedEdgeList. .. 53 5.2.1 ManipulatingaDCEL . 54 5.2.2 GraphswithUnboundedEdges . 57 5.2.3 Remarks................................. 58 3 Contents CG 2012 6 Delaunay Triangulations 61 6.1 TheEmptyCircleProperty . 64 6.2 TheLawsonFlipalgorithm -
5 PSEUDOLINE ARRANGEMENTS Stefan Felsner and Jacob E
5 PSEUDOLINE ARRANGEMENTS Stefan Felsner and Jacob E. Goodman INTRODUCTION Pseudoline arrangements generalize in a natural way arrangements of straight lines, discarding the straightness aspect, but preserving their basic topological and com- binatorial properties. Elementary and intuitive in nature, at the same time, by the Folkman-Lawrence topological representation theorem (see Chapter 6), they provide a concrete geometric model for oriented matroids of rank 3. After their explicit description by Levi in the 1920’s, and the subsequent devel- opment of the theory by Ringel in the 1950’s, the major impetus was given in the 1970’s by Gr¨unbaum’s monograph Arrangements and Spreads, in which a number of results were collected and a great many problems and conjectures posed about arrangements of both lines and pseudolines. The connection with oriented ma- troids discovered several years later led to further work. The theory is by now very well developed, with many combinatorial and topological results and connections to other areas as for example algebraic combinatorics, as well as a large number of applications in computational geometry. In comparison to arrangements of lines arrangements of pseudolines have the advantage that they are more general and allow for a purely combinatorial treatment. Section 5.1 is devoted to the basic properties of pseudoline arrangements, and Section 5.2 to related structures, such as arrangements of straight lines, configura- tions (and generalized configurations) of points, and allowable sequences of permu- tations. (We do not discuss the connection with oriented matroids, however; that is included in Chapter 6.) In Section 5.3 we discuss the stretchability problem. -
Chapter 12 Pseudotriangulations
Chapter 12 Pseudotriangulations We have seen that arrangements and visibility graphs are useful and powerful models for motion planning. However, these structures can be rather large and thus expensive to build and to work with. Let us therefore consider a simpli ed problem: for a robot which is positioned in some environment of obstacles, which and where is the next obstacle that it would hit, if it continues to move linearly in some direction? This type of problem is known as a ray shooting query because we imagine to shoot a ray starting from the current position in a certain direction and want to know what is the rst object hit by this ray. If the robot is modeled as a point and the environment as a simple polygon, we arrive at the following problem. Problem 8 (Ray-shooting in a simple polygon.) Given a simple polygon P = (p1, . , pn), a point q 2 R2, and a ray r emanating from q, which is the rst edge of P hit by r? r q P Figure 12.1: An instance of the ray-shooting problem within a simple polygon. In the end, we would like to have a data structure to preprocess a given polygon such that a ray shooting query can be answered eciently for any query ray starting somewhere inside P. As a warmup, let us look at the case that P is a convex polygon. Here the problem is easy: Supposing we are given the vertices of P in an array-like structure, the boundary 103 Chapter 12. -
Stony Brook University
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Integrating Mobile Agents and Distributed Sensors in Wireless Sensor Networks A Dissertation presented by Jiemin Zeng to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science Stony Brook University May 2016 Copyright by Jiemin Zeng 2016 Stony Brook University The Graduate School Jiemin Zeng We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation Jie Gao - Dissertation Advisor Professor, Computer Science Department Joseph Mitchell - Chairperson of Defense Professor, Department of Applied Mathematics and Statistics Esther Arkin Professor, Department of Applied Mathematics and Statistics Matthew P. Johnson - External Member Assistant Professor Department of Mathematics and Computer Science at Lehman College PhD Program in Computer Science at The CUNY Graduate Center This dissertation is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Dissertation Integrating Mobile Agents and Distributed Sensors in Wireless Sensor Networks by Jiemin Zeng Doctor of Philosophy in Computer Science Stony Brook University 2016 As computers become more ubiquitous in the prominent phenomenon of the In- ternet of Things, we encounter many unique challenges in the field of wireless sensor networks. A wireless sensor network is a group of small, low powered sensors with wireless capability to communicate with each other. The goal of these sensors, also called nodes, generally is to collect some information about their environment and report it back to a base station. -
The Symplectic Geometry of Polygons in Euclidean Space
The Symplectic Geometry of Polygons in Euclidean Space Michael Kap ovich and John J Millson March Abstract We study the symplectic geometry of mo duli spaces M of p oly r gons with xed side lengths in Euclidean space We show that M r has a natural structure of a complex analytic space and is complex 2 n analytically isomorphic to the weighted quotient of S constructed by Deligne and Mostow We study the Hamiltonian ows on M ob r tained by b ending the p olygon along diagonals and show the group generated by such ows acts transitively on M We also relate these r ows to the twist ows of Goldman and JereyWeitsman Contents Intro duction Mo duli of p olygons and weighted quotients of conguration spaces of p oints on the sphere Bending ows and p olygons Actionangle co ordinates This research was partially supp orted by NSF grant DMS at University of Utah Kap ovich and NSF grant DMS the University of Maryland Millson The connection with gauge theory and the results of Gold man and JereyWeitsman Transitivity of b ending deformations Bending of quadrilaterals Deformations of ngons Intro duction Let P b e the space of all ngons with distinguished vertices in Euclidean n 3 space E An ngon P is determined by its vertices v v These vertices 1 n are joined in cyclic order by edges e e where e is the oriented line 1 n i segment from v to v Two p olygons P v v and Q w w i i+1 1 n 1 n are identied if and only if there exists an orientation preserving isometry g 3 of E which -
Pseudotriangulations and the Expansion Polytope
99 Pseudotriangulations G¨unter Rote Freie Universit¨atBerlin, Institut f¨urInformatik 2nd Winter School on Computational Geometry Tehran, March 2–6, 2010 Day 5 Literature: Pseudo-triangulations — a survey. G.Rote, F.Santos, I.Streinu, 2008 98 Outline 1. Motivation: ray shooting 2. Pseudotriangulations: definitions and properties 3. Rigidity, Laman graphs 4. Rigidity: kinematics of linkages 5. Liftings of pseudotriangulations to 3 dimensions 97 1. Motivation: Ray Shooting in a Simple Polygon 97 1. Motivation: Ray Shooting in a Simple Polygon Walking in a triangulation: Walk to starting point. Then walk along the ray. 97 1. Motivation: Ray Shooting in a Simple Polygon Walking in a triangulation: Walk to starting point. Then walk along the ray. O(n) steps in the worst case. 96 Triangulations of a convex polygon 1 12 2 11 3 10 4 9 5 8 6 7 96 Triangulations of a convex polygon 1 1 12 2 12 2 11 3 11 3 10 4 10 4 9 5 9 5 8 6 8 6 7 7 balanced triangulation A path crosses O(log n) triangles. 95 Triangulations of a simple polygon 1 5 2 12 1 12 2 3 11 10 11 4 3 6 8 10 4 9 7 9 5 balanced triangulation: balanced geodesic8 triangulation:6 An edge crosses O(log n) An edge crosses O7 (log n) triangles. pseudotriangles. [Chazelle, Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink 1994] 95 Triangulations of a simple polygon 1 5 2 12 1 12 2 3 11 10 11 4 3 corner 6 8 pseudotriangle 10 4 tail 9 7 9 5 balanced triangulation: balanced geodesic8 triangulation:6 An edge crosses O(log n) An edge crosses O7 (log n) triangles. -
2Majors and Minors.Qxd.KA
APPLIED MATHEMATICS AND STATISTICSSpring 2006: updates since Spring 2005 are in red Applied Mathematics and Statistics (AMS) Major and Minor in Applied Mathematics and Statistics Department of Applied Mathematics and Statistics, College of Engineering and Applied Sciences CHAIRPERSON: James Glimm UNDERGRADUATE PROGRAM DIRECTOR: Alan C. Tucker UNDERGRADUATE SECRETARY: Christine Rota OFFICE: P-139B Math Tower PHONE: (631) 632-8370 E-MAIL: [email protected] WEB ADDRESS: http://naples.cc.sunysb.edu/CEAS/amsweb.nsf Students majoring in Applied Mathematics and Statistics often double major in one of the following: Computer Science (CSE), Economics (ECO), Information Systems (ISE) Faculty Robert Rizzo, Assistant Professor, Ph.D., Yale he undergraduate program in University: Bioinformatics; drug design. Hongshik Ahn, Associate Professor, Ph.D., Applied Mathematics and Statistics University of Wisconsin: Biostatistics; survival David Sharp, Adjunct Professor, Ph.D., Taims to give mathematically ori- analysis. California Institute of Technology: Mathematical ented students a liberal education in quan- physics. Esther Arkin, Professor, Ph.D., Stanford titative problem solving. The courses in University: Computational geometry; combina- Ram P. Srivastav, Professor, D.Sc., University of this program survey a wide variety of torial optimization. Glasgow; Ph.D., University of Lucknow: Integral mathematical theories and techniques equations; numerical solutions. Edward J. Beltrami, Professor Emeritus, Ph.D., that are currently used by analysts and Adelphi University: Optimization; stochastic Michael Taksar, Professor Emeritus, Ph.D., researchers in government, industry, and models. Cornell University: Stochastic processes. science. Many of the applied mathematics Yung Ming Chen, Professor Emeritus, Ph.D., Reginald P. Tewarson, Professor Emeritus, courses give students the opportunity to New York University: Partial differential equa- Ph.D., Boston University: Numerical analysis; develop problem-solving techniques using biomathematics. -
Memory-Constrained Algorithms for Simple Polygons∗
Memory-Constrained Algorithms for Simple Polygons∗ Tetsuo Asanoy Kevin Buchinz Maike Buchinz Matias Kormanx Wolfgang Mulzer{ G¨unter Rote{ Andr´eSchulzk November 17, 2018 Abstract A constant-work-space algorithm has read-only access to an input array and may use only O(1) additional words of O(log n) bits, where n is the input size. We show how to triangulate a plane straight-line graph with n vertices in O(n2) time and constant work- space. We also consider the problem of preprocessing a simple polygon P for shortest path queries, where P is given by the ordered sequence of its n vertices. For this, we relax the space constraint to allow s words of work-space. After quadratic preprocessing, the shortest path between any two points inside P can be found in O(n2=s) time. 1 Introduction In algorithm development and computer technology, we observe two opposing trends: on the one hand, there are vast amounts of computational resources at our fingertips. Alas, this often leads to bloated software that is written without regard to resources and efficiency. On the other hand, we see a proliferation of specialized tiny devices that have a limited supply of memory or power. Software that is oblivious to space resources is not suitable for such a setting. Moreover, even if a small device features a fairly large memory, it may still be preferable to limit the number of write operations. For one, writing to flash memory is slow and costly, and it also reduces the lifetime of the memory. Furthermore, if the input is stored on a removable medium, write-access may be limited for technical or security reasons.