A New Strategy for Improving the Tracking Performance of Magnetic Levitation System in Maglev Train

Total Page:16

File Type:pdf, Size:1020Kb

A New Strategy for Improving the Tracking Performance of Magnetic Levitation System in Maglev Train S S symmetry Article A New Strategy for Improving the Tracking Performance of Magnetic Levitation System in Maglev Train Mingda Zhai , Zhiqiang Long * and Xiaolong Li College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China * Correspondence: [email protected] Received: 18 July 2019; Accepted: 13 August 2019; Published: 16 August 2019 Abstract: The maglev train is a whole new method of transportation without wheels, consisting of 20 groups of symmetry suspension units. The magnetic levitation system plays a major role in suspending the maglev train stably and following the track quickly with the desired gap. However, vertical track irregularity in the maglev train line has a dreadful effect on the tracking performance of the magnetic levitation system. The investigations carried out by our team have revealed that the fluctuation of the suspension gap becomes more and more serious with increases in running speed. In this paper, a mathematical model with consideration of vertical track irregularity is established. In order to overcome and suppress the fluctuation of the suspension gap, we propose a new strategy which includes installing an accelerometer on the electromagnet to address this problem. This strategy has already been successfully implemented and applied to the suspension controller for a magnetic levitation system in the Changsha maglev express. Real operation data indicates the tracking performance of the magnetic levitation system was obviously improved. Keywords: maglev train; symmetry; magnetic levitation system; vertical track irregularity; tracking performance; strategy 1. Introduction In 1814, the first steam locomotive was invented by George Stephenson, renowned as the “Father of Railways”. The Stockton and Darlington Railway was opened to carry passengers in 1825. Rail transport was one of the most important technological inventions of the industrial revolution. Ever since then, the wheel of time has never stopped. Time goes by as fast as a high-speed train, and we have already entered into an age without wheels. The maglev train is a whole new method of transportation without wheels. Plenty of scholars and engineers in Japan, the United States, China and South Korea are carrying out research in related fields and have already achieved many successes [1–3]. It is well known that the Shanghai high-speed maglev train went into operation in 2002. The Incheon airport maglev line of South Korea officially began to carry passengers on 3 February 2016. A superconducting maglev train with a high speed of 603 km/h will come out in 2027. As shown in Figure1, the Changsha maglev express is the first domestic medium-low speed maglev line in China and completely owns the proprietary intellectual property rights. This line stretches over 18.55 km and started trial operations on 6 May 2016. Beijing’s 1st maglev Line S1 is the second domestic medium-low speed maglev line in China and began operating on 31 December 2017. The Qingyuan maglev travel line is under construction, and will go into operation on September 2019. In recent years, the maglev train increasingly began to receive considerable attention and has become an active traffic field. Symmetry 2019, 11, 1053; doi:10.3390/sym11081053 www.mdpi.com/journal/symmetry Symmetry 2019, 11, 1053 2 of 18 Symmetry 2019, 11, x FOR PEER REVIEW 2 of 19 Figure 1. A photograph of the medium-low speed maglev train in Changsha. Compared with conventional railway systems, the medium-low speed maglev train makes full use of electromagnetic electromagnetic force force to to achieve achieve active active suspen suspensionsion and and runs runs the the train train using using a linear a linear motor. motor. It completelyIt completely abandons abandons the the wheel-rail wheel-rail relationship relationship and and achieves achieves non-contact non-contact motion, motion, which which not not only eliminates friction to reduce noise and vibration, but also allows the maglev train to travel through buildings on viaducts smoothly and quietly. What’s more, there are zero emissions to the atmosphere during running. Therefore, Therefore, the the maglev maglev train train is is sa safe,fe, sound, sound, low-carbon low-carbon and and environmentally environmentally friendly. friendly. This paper isis concernedconcerned chiefly chiefly with with the the study study of of the the magnetic magnetic levitation levitation system system in ain medium-low a medium- lowspeed speed maglev maglev train. train. The The magnetic magnetic levitation levitation system system plays plays a major a major role inrole suspending in suspending the maglev the maglev train trainstably stably and following and following the track the quickly. track quickly. Most scholars Most scholars concentrate concentrate on the research on the onresearch the levitation on the levitationcontrol algorithm control underalgorithm the conditionsunder the ofconditions a straight of track. a straight However, track. vertical However, track irregularityvertical track in irregularitythe maglev trainin the line maglev has a banefultrain line influence has a onba theneful tracking influence performance. on the tracking Unfortunately, performance. many Unfortunately,experts are not concernedmany experts about are this not issue. concerned In order about to address this issue. this issue,In order the to mathematical address this model issue, with the mathematicalconsideration ofmodel vertical with track consideration irregularity of is vertical established track in irregularity this paper. Foris established the benefit in of this improving paper. For the thetracking benefit performance, of improving we proposethe tracking a new performance, strategy of installing we propose an accelerometer a new strate ongy the of electromagnetinstalling an accelerometerto address this on problem. the electromagnet to address this problem. 2. Nominal Nominal Controller of Magnetic Levitation System Magnets of the same same polarity polarity repel repel each each other, other, whil whilee those those of of different different polarity polarity attract attract each each other. other. The medium-low speed maglev train takes advantageadvantage of the attraction between the electromagnet and the F-type F-type track track to to realize realize suspension suspension at at a adefin defineded height. height. A Acomplete complete magl maglevev train train has has 20 20sets sets of electromagnets,of electromagnets, installed installed on on the the bottom bottom of of the the ca carriage.rriage. When When the the current current is is switched switched on, upward electromagnetic force is generated. The F-type track wi willll suck up the base of the vehicle, and the base and the carriagecarriage areare connectedconnected by by air air springs. springs. Thus, Thus, the th magleve maglev train train is ableis able to suspendto suspend itself itself in thein the air, air,against against gravity. gravity. The interactionThe interaction between between electromagnetic electromagnetic force and force gravity and gravity will always will keepalways a dynamic keep a dynamicbalance, levitatingbalance, levitating the maglev the train maglev above train the rail.above No the matter rail. howNo matter the speed how and the railway speed lineand changes,railway linethe gapchanges, between the thegap trackbetween and the the track electromagnet and the electromagnet has to remain has unchanged to remain under unchanged the action under of the actionsuspension of the controller suspension for controller the magnetic for the levitation magnetic system. levitation system. As shown in Figure 22,, thethe magneticmagnetic levitationlevitation controlcontrol systemsystem consists of a suspension controller, a gap sensorsensor andand anan actuator, actuator, which which is is the the electromagnet. electromagnet. The The gap gap sensor sensor measures measures the the gap gap between between the theelectromagnet electromagnet and theand F-type the F-type track constantly.track constantly. The suspension The suspension controller controller calculates calculates the control the quantity control quantityaccording according to the measured to the measured gap signal gap to adjustsignal theto ad currentjust the of current the electromagnet of the electromagnet in real time. in Whenreal time. the Whencurrent the varies, current the intensityvaries, the of theintensity closed-loop of the magneticclosed-loop field magnetic established field between established the electromagnet between the electromagnetand the F-type trackand the will changeF-type accordingly.track will change The electromagnetic accordingly. forceThe electromagnetic will consequently force vary will and consequentlymake the electromagnet vary and make fall or the float electromagnet to levitate the fall maglev or float train to levitate in the target the maglev gap. train in the target gap. Symmetry 2019, 11, x FOR PEER REVIEW 3 of 19 Symmetry 2019, 11, 1053 3 of 18 Symmetry 2019, 11, x FOR PEER REVIEW 3 of 19 Figure 2. The structure of the magnetic levitation system in the medium-low speed maglev train. Figure 2. TheThe structure structure of the magnetic levitation syst systemem in the medium-low speed maglev train. Because of the symmetry of the magnetic levitation system in medium-low speed maglev trains, the mathematical model of single magnetic levitation system is easily established. If all factors are Because of the symmetry of the the magnetic magnetic levitati levitationon system
Recommended publications
  • Integrating Urban Public Transport Systems and Cycling Summary And
    CPB Corporate Partnership Board Integrating Urban Public Transport Systems and Cycling 166 Roundtable Summary and Conclusions Integrating Urban Public Transport Systems and Cycling Summary and Conclusions of the ITF Roundtable on Integrated and Sustainable Urban Transport 24-25 April 2017, Tokyo Daniel Veryard and Stephen Perkins with contributions from Aimee Aguilar-Jaber and Tatiana Samsonova International Transport Forum, Paris The International Transport Forum The International Transport Forum is an intergovernmental organisation with 59 member countries. It acts as a think tank for transport policy and organises the Annual Summit of transport ministers. ITF is the only global body that covers all transport modes. The ITF is politically autonomous and administratively integrated with the OECD. The ITF works for transport policies that improve peoples’ lives. Our mission is to foster a deeper understanding of the role of transport in economic growth, environmental sustainability and social inclusion and to raise the public profile of transport policy. The ITF organises global dialogue for better transport. We act as a platform for discussion and pre- negotiation of policy issues across all transport modes. We analyse trends, share knowledge and promote exchange among transport decision-makers and civil society. The ITF’s Annual Summit is the world’s largest gathering of transport ministers and the leading global platform for dialogue on transport policy. The Members of the Forum are: Albania, Armenia, Argentina, Australia, Austria,
    [Show full text]
  • Modeling and Simulation of Shanghai MAGLEV Train Transrapid with Random Track Irregularities
    Modeling and Simulation of Shanghai MAGLEV Train Transrapid with Random Track Irregularities Prof. Shu Guangwei M.Sc. Prof. Dr.-Ing. Reinhold Meisinger Prof. Shen Gang Ph.D. Shanghai Institute of Technology, Shanghai, P.R. China Nuremberg University of Applied Sciences, Nuremberg, Germany Tongji University, Shanghai, P.R. China Abstract The MAGLEV Transrapid is a kind of new type high speed train in the world which is levitated and gui- ded over the track using electro magnetic forces. Because the electro magnets are unstable, they ha- ve to be controlled. Since 2002 the worldwide first commercial use of such a high speed train based on German technology is running successfully in Shanghai Pudong Airport, P.R.China. In this paper modeling of the high speed MAGLEV train Transrapid is discussed, which considered the whole mechanical system of one vehicle with optimized suspension parameters and all controlled electro magnet pairs in vertical and lateral directions. The dynamical simulation code is generated with MATLAB/SIMILINK. For the design of the control system, the optimal Linear Quadratic Control for minimum control energy is used for each single electro magnet. The simulation results are presen- ted with the given vertical and lateral random track irregularities. The research work was carried out together with Prof. Shen Gang, Ph.D. during the time Prof. Dr. Meisinger was visiting professor in Shanghai 2006 and Prof. Shu Guangwei, M.Sc. was visiting profes- sor in Nuremberg 2007. ISSN 1616-0762 Sonderdruck Schriftenreihe der Georg-Simon-Ohm-Fachhochschule Nürnberg Nr. 39, Juli 2007 Schriftenreihe Georg-Simon-Ohm-Fachhochschule Nürnberg Seite 3 1.
    [Show full text]
  • Program Book(EN)
    TRANSPORTATION IN CHINA 2025: CONNECTING THE WORLD 中国交通 2025:联通世界 Transportation in China 2025: Connecting the World 1 CONTENTS The 19th COTA International Conference of Transportation Professionals Transportation in China 2025: Connecting the World Welcome Remarks ······································ 4 Organization Council ································· 8 Organizers ······················································ 13 Sponsors ·························································· 17 Instructions for Presenters ························ 19 Instructions for Session Chairs ················ 19 Program at a Glance ··································· 20 Program ··························································· 22 Poster Sessions ············································· 56 General Information ··································· 86 Conference Speakers & Organizers ······· 95 Pre- and Post-CICTP2019 Events ············ 196 • Welcome Remarks It is our great pleasure to welcome you all to the 19th COTA International Conference Welcome of Transportation Professionals (CICTP 2019) in Nanjing, China. The CICTP2019 is jointly Remarks organized by Chinese Overseas Transportation Association (COTA), Southeast University, and Jiaotong International Cooperation Service Center of Ministry of Transport. The CICTP annual conference series was established by COTA back in 2001 and in the past two decades benefited from support from the American Society of Civil Engineers (ASCE), Transportation Research Board (TRB), and many other
    [Show full text]
  • Intercity Bus Transportation System and Its Competition in Malaysia
    Proceedings of the Eastern Asia Society for Transportation Studies, Vol.8, 2011 Intercity Bus Transportation System and its competition in Malaysia Bayu Martanto ADJI Angelalia ROZA PhD Candidate Masters Candidate Center for Transportation Research Center for Transportation Research Faculty of Engineering Faculty of Engineering University of Malaya University of Malaya 50603 Kuala Lumpur, Malaysia 50603 Kuala Lumpur, Malaysia Fax: +603-79552182 Fax: +603-79552182 Email: [email protected] Email: [email protected] Raja Syahira RAJA ABDUL AZIZ Mohamed Rehan KARIM Masters Candidate Professor Center for Transportation Research Center for Transportation Research Faculty of Engineering Faculty of Engineering University of Malaya University of Malaya 50603 Kuala Lumpur, Malaysia 50603 Kuala Lumpur, Malaysia Fax: +603-79552182 Fax: +603-79552182 Email: [email protected] Email: [email protected] Abstract : Intercity transportation in Malaysia is quite similar to other countries, which involve three kinds of modes, namely, bus, rail and air. Among these modes, bus transportation continues to be the top choice for intercity travelers in Malaysia. Bus offers more flexibility compared to the other transport modes. Due to its relatively cheaper fare as compared to the air transport, bus is more affordable to those with low income. However, bus transport service today is starting to face higher competition from rail and air transport due to their attractive factors. The huge challenge faced by intercity bus transport in Malaysia is the management of its services. The intercity bus transport does not fall under one management; unlike rail transport which is managed under Keretapi Tanah Melayu Berhad (KTMB), or air transport which is managed under Malaysia Airports Holdings Berhad (MAHB).
    [Show full text]
  • By James Powell and Gordon Danby
    by James Powell and Gordon Danby aglev is a completely new mode of physically contact the guideway, do not need The inventors of transport that will join the ship, the engines, and do not burn fuel. Instead, they are the world's first wheel, and the airplane as a mainstay magnetically propelled by electric power fed superconducting Min moving people and goods throughout the to coils located on the guideway. world. Maglev has unique advantages over Why is Maglev important? There are four maglev system tell these earlier modes of transport and will radi- basic reasons. how magnetic cally transform society and the world economy First, Maglev is a much better way to move levitation can in the 21st Century. Compared to ships and people and freight than by existing modes. It is wheeled vehicles—autos, trucks, and trains- cheaper, faster, not congested, and has a much revolutionize world it moves passengers and freight at much high- longer service life. A Maglev guideway can transportation, and er speed and lower cost, using less energy. transport tens of thousands of passengers per even carry payloads Compared to airplanes, which travel at similar day along with thousands of piggyback trucks into space. speeds, Maglev moves passengers and freight and automobiles. Maglev operating costs will at much lower cost, and in much greater vol- be only 3 cents per passenger mile and 7 cents ume. In addition to its enormous impact on per ton mile, compared to 15 cents per pas- transport, Maglev will allow millions of human senger mile for airplanes, and 30 cents per ton beings to travel into space, and can move vast mile for intercity trucks.
    [Show full text]
  • High Speed Rail and Sustainability High Speed Rail & Sustainability
    High Speed Rail and Sustainability High Speed Rail & Sustainability Report Paris, November 2011 2 High Speed Rail and Sustainability Author Aurélie Jehanno Co-authors Derek Palmer Ceri James This report has been produced by Systra with TRL and with the support of the Deutsche Bahn Environment Centre, for UIC, High Speed and Sustainable Development Departments. Project team: Aurélie Jehanno Derek Palmer Cen James Michel Leboeuf Iñaki Barrón Jean-Pierre Pradayrol Henning Schwarz Margrethe Sagevik Naoto Yanase Begoña Cabo 3 Table of contnts FOREWORD 1 MANAGEMENT SUMMARY 6 2 INTRODUCTION 7 3 HIGH SPEED RAIL – AT A GLANCE 9 4 HIGH SPEED RAIL IS A SUSTAINABLE MODE OF TRANSPORT 13 4.1 HSR has a lower impact on climate and environment than all other compatible transport modes 13 4.1.1 Energy consumption and GHG emissions 13 4.1.2 Air pollution 21 4.1.3 Noise and Vibration 22 4.1.4 Resource efficiency (material use) 27 4.1.5 Biodiversity 28 4.1.6 Visual insertion 29 4.1.7 Land use 30 4.2 HSR is the safest transport mode 31 4.3 HSR relieves roads and reduces congestion 32 5 HIGH SPEED RAIL IS AN ATTRACTIVE TRANSPORT MODE 38 5.1 HSR increases quality and productive time 38 5.2 HSR provides reliable and comfort mobility 39 5.3 HSR improves access to mobility 43 6 HIGH SPEED RAIL CONTRIBUTES TO SUSTAINABLE ECONOMIC DEVELOPMENT 47 6.1 HSR provides macro economic advantages despite its high investment costs 47 6.2 Rail and HSR has lower external costs than competitive modes 49 6.3 HSR contributes to local development 52 6.4 HSR provides green jobs 57
    [Show full text]
  • Beijing Subway Map
    Beijing Subway Map Ming Tombs North Changping Line Changping Xishankou 十三陵景区 昌平西山口 Changping Beishaowa 昌平 北邵洼 Changping Dongguan 昌平东关 Nanshao南邵 Daoxianghulu Yongfeng Shahe University Park Line 5 稻香湖路 永丰 沙河高教园 Bei'anhe Tiantongyuan North Nanfaxin Shimen Shunyi Line 16 北安河 Tundian Shahe沙河 天通苑北 南法信 石门 顺义 Wenyanglu Yongfeng South Fengbo 温阳路 屯佃 俸伯 Line 15 永丰南 Gonghuacheng Line 8 巩华城 Houshayu后沙峪 Xibeiwang西北旺 Yuzhilu Pingxifu Tiantongyuan 育知路 平西府 天通苑 Zhuxinzhuang Hualikan花梨坎 马连洼 朱辛庄 Malianwa Huilongguan Dongdajie Tiantongyuan South Life Science Park 回龙观东大街 China International Exhibition Center Huilongguan 天通苑南 Nongda'nanlu农大南路 生命科学园 Longze Line 13 Line 14 国展 龙泽 回龙观 Lishuiqiao Sunhe Huoying霍营 立水桥 Shan’gezhuang Terminal 2 Terminal 3 Xi’erqi西二旗 善各庄 孙河 T2航站楼 T3航站楼 Anheqiao North Line 4 Yuxin育新 Lishuiqiao South 安河桥北 Qinghe 立水桥南 Maquanying Beigongmen Yuanmingyuan Park Beiyuan Xiyuan 清河 Xixiaokou西小口 Beiyuanlu North 马泉营 北宫门 西苑 圆明园 South Gate of 北苑 Laiguangying来广营 Zhiwuyuan Shangdi Yongtaizhuang永泰庄 Forest Park 北苑路北 Cuigezhuang 植物园 上地 Lincuiqiao林萃桥 森林公园南门 Datunlu East Xiangshan East Gate of Peking University Qinghuadongluxikou Wangjing West Donghuqu东湖渠 崔各庄 香山 北京大学东门 清华东路西口 Anlilu安立路 大屯路东 Chapeng 望京西 Wan’an 茶棚 Western Suburban Line 万安 Zhongguancun Wudaokou Liudaokou Beishatan Olympic Green Guanzhuang Wangjing Wangjing East 中关村 五道口 六道口 北沙滩 奥林匹克公园 关庄 望京 望京东 Yiheyuanximen Line 15 Huixinxijie Beikou Olympic Sports Center 惠新西街北口 Futong阜通 颐和园西门 Haidian Huangzhuang Zhichunlu 奥体中心 Huixinxijie Nankou Shaoyaoju 海淀黄庄 知春路 惠新西街南口 芍药居 Beitucheng Wangjing South望京南 北土城
    [Show full text]
  • Sounder Commuter Rail (Seattle)
    Public Use of Rail Right-of-Way in Urban Areas Final Report PRC 14-12 F Public Use of Rail Right-of-Way in Urban Areas Texas A&M Transportation Institute PRC 14-12 F December 2014 Authors Jolanda Prozzi Rydell Walthall Megan Kenney Jeff Warner Curtis Morgan Table of Contents List of Figures ................................................................................................................................ 8 List of Tables ................................................................................................................................. 9 Executive Summary .................................................................................................................... 10 Sharing Rail Infrastructure ........................................................................................................ 10 Three Scenarios for Sharing Rail Infrastructure ................................................................... 10 Shared-Use Agreement Components .................................................................................... 12 Freight Railroad Company Perspectives ............................................................................... 12 Keys to Negotiating Successful Shared-Use Agreements .................................................... 13 Rail Infrastructure Relocation ................................................................................................... 15 Benefits of Infrastructure Relocation ...................................................................................
    [Show full text]
  • International Journal for Scientific Research & Development
    IJSRD - International Journal for Scientific Research & Development| Vol. 6, Issue 09, 2018 | ISSN (online): 2321-0613 A Review Paper on High Speed Maglev with Smart Platform Technology Sonali Yadav1 Snehal Jadhav2 Komal Nalawade3 Pradnyawant Kalamkar4 1,2,3BE Student 4Assistant Professor 1,2,3,4Department of Electronics & Telecommunication Engineering 1,2,3,4AITRC Vita, India Abstract— The use of natural resources in our day today life 2) In rainy season we are much familiar with water clogging is increasing which leads to shortage of these resources in the on railway tracks and train delays hence we came up with upcoming generation, mainly in transportation we are an amazing invention of storing all the clogged water and wasting a lot of crude oils and other resources which leads to rain water by rain water harvesting and clogged water in global earthling. The name maglev is derived from magnetic a tank and using all of it for sanitization and cleaning of levitation. Magnetic levitation is a highly advanced trains. In this project we are using sensors to detect the technology [1]. It has various uses. The common point in all water clogs and triggering the pumps relevant to it to applications is the lack of contact and thus no wear and suck all the clogs and hear by preventing train delay. friction [6]. This increases efficiency, reduces maintenance 3) As we all know railway station is an extensive platform costs, and increases the useful life of the system. The which consists of fans, upcoming train indicator, Lights, magnetic levitation technology can be used as an efficient etc.
    [Show full text]
  • Unit VI Superconductivity JIT Nashik Contents
    Unit VI Superconductivity JIT Nashik Contents 1 Superconductivity 1 1.1 Classification ............................................. 1 1.2 Elementary properties of superconductors ............................... 2 1.2.1 Zero electrical DC resistance ................................. 2 1.2.2 Superconducting phase transition ............................... 3 1.2.3 Meissner effect ........................................ 3 1.2.4 London moment ....................................... 4 1.3 History of superconductivity ...................................... 4 1.3.1 London theory ........................................ 5 1.3.2 Conventional theories (1950s) ................................ 5 1.3.3 Further history ........................................ 5 1.4 High-temperature superconductivity .................................. 6 1.5 Applications .............................................. 6 1.6 Nobel Prizes for superconductivity .................................. 7 1.7 See also ................................................ 7 1.8 References ............................................... 8 1.9 Further reading ............................................ 10 1.10 External links ............................................. 10 2 Meissner effect 11 2.1 Explanation .............................................. 11 2.2 Perfect diamagnetism ......................................... 12 2.3 Consequences ............................................. 12 2.4 Paradigm for the Higgs mechanism .................................. 12 2.5 See also ...............................................
    [Show full text]
  • Hydrogen-Rail (Hydrail) Development
    H2@Rail Workshop Hydrogen-Rail (hydrail) Development Andreas Hoffrichter, PhD Burkhardt Professor in Railway Management Executive Director of the Center for Railway Research and Education [email protected] H2@Rail Workshop, Lansing, MI March 27, 2019 Contents • Current rail energy consumption and emissions • Hybrids • Primary power plant efficiencies • Hydrail development • Past and on-going research - 2 - Michigan State University, 2019 Current Rail Energy Efficiency and GHG DOT (2018), ORNL (2018) - 3 - Michigan State University, 2019 Regulated Exhaust Emissions • The US Environmental Protection Agency (EPA) has regulated the exhaust emissions from locomotives • Four different tiers, depending on construction year of locomotive • Increasingly stringent emission reduction requirements • Tier 5 is now in discussion (see next slide) • Achieving Tier 4 was already very challenging for manufacturers (EPA, 2016) - 4 - Michigan State University, 2019 Proposed Tier 5 Emission Regulation • California proposed rail emission regulation to be adopted at the federal level (California Air Resources Board, 2017) - 5 - Michigan State University, 2019 Class I Railroad Fuel Cost 2016 (AAR, 2017) • Interest from railways in alternatives high when diesel cost high, interest low when diesel cost low • When diesel cost are high, often fuel surcharges introduced to shippers • Average railroad diesel price for the last 10 years ~US$2.50 per gallon (AAR, 2017) - 6 - Michigan State University, 2019 Dynamic Braking • Traction motors are used as generators • Generated electricity is: – Converted to heat in resistors, called rheostatic braking – Fed back into wayside infrastructure or stored on-board of train, called regenerative braking • Reduces brake shoe/pad wear, e.g., replacement every 18 month rather than every18 days (UK commuter train example) • Can reduces energy consumption.
    [Show full text]
  • Effect of Hyperloop Technologies on the Electric Grid and Transportation Energy
    Effect of Hyperloop Technologies on the Electric Grid and Transportation Energy January 2021 United States Department of Energy Washington, DC 20585 Department of Energy |January 2021 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Department of Energy |January 2021 [ This page is intentionally left blank] Effect of Hyperloop Technologies on Electric Grid and Transportation Energy | Page i Department of Energy |January 2021 Executive Summary Hyperloop technology, initially proposed in 2013 as an innovative means for intermediate- range or intercity travel, is now being developed by several companies. Proponents point to potential benefits for both passenger travel and freight transport, including time-savings, convenience, quality of service and, in some cases, increased energy efficiency. Because the system is powered by electricity, its interface with the grid may require strategies that include energy storage. The added infrastructure, in some cases, may present opportunities for grid- wide system benefits from integrating hyperloop systems with variable energy resources.
    [Show full text]