2002 Steele Prizes

Total Page:16

File Type:pdf, Size:1020Kb

2002 Steele Prizes 2002 Steele Prizes The 2002 Leroy P. Steele Prizes were awarded at the Notices, pages 1216–20, or on the AMS website 108th Annual Meeting of the AMS in San Diego in at http://www.ams.org/prizes-awards/. January 2002. The 2002 Steele Prizes were awarded to YITZHAK The Steele Prizes were established in 1970 in KATZNELSON for Mathematical Exposition, to MARK honor of George David Birkhoff, William Fogg GORESKY and ROBERT MACPHERSON for a Seminal Con- Osgood, and William Caspar Graustein. Osgood tribution to Research, and to MICHAEL ARTIN and was president of the AMS during 1905–06, and ELIAS STEIN for Lifetime Achievement. The text that Birkhoff served in that capacity during 1925–26. The follows presents, for each awardee, the selection prizes are endowed under the terms of a bequest committee’s citation, a brief biographical sketch, from Leroy P. Steele. Up to three prizes are awarded and the awardee’s response upon receiving the prize. each year in the following categories: (1) Mathematical Exposition: for a book or substantial Mathematical Exposition: survey or expository-research paper; (2) Seminal Yitzhak Katznelson Contribution to Research: for a paper, whether re- Citation cent or not, that has proved to be of fundamental Although the subject of harmonic analysis has or lasting importance in its field, or a model of im- gone through great advances since the sixties, portant research; and (3) Lifetime Achievement: Fourier analysis is still its heart and soul. Yitzhak for the cumulative influence of the total mathe- Katznelson’s book on harmonic analysis has with- matical work of the recipient, high level of research stood the test of time. Written in the sixties and over a period of time, particular influence on the revised later in the seventies, it is one of those development of a field, and influence on mathe- “classic” Dover paperbacks that has made the sub- matics through Ph.D. students. Each Steele Prize ject of harmonic analysis accessible to generations carries a cash award of $5,000. of mathematicians at all levels. The Steele Prizes are awarded by the AMS Coun- The book strikes the right balance between the cil acting on the recommendation of a selection concrete and the abstract, and the author has wisely committee. For the 2002 prizes, the members of chosen the most appropriate topics for inclusion. the selection committee were: M. S. Baouendi, The clear and concise exposition and the presence Sun-Yung A. Chang, Michael G. Crandall, Constan- of a large number of exercises make it an ideal tine M. Dafermos, Daniel J. Kleitman, Hugh L. source for anyone who wants to learn the basics Montgomery, Barry Simon, S. R. S. Varadhan (chair), of the subject. and Herbert S. Wilf. Biographical Sketch The list of previous recipients of the Steele Prize Yitzhak Katznelson was born in Jerusalem in 1934. may be found in the November 2001 issue of the He graduated from the Hebrew University with a 466 NOTICES OF THE AMS VOLUME 49, NUMBER 4 Yitzhak Katznelson Mark Goresky Robert MacPherson master’s degree in 1956 and obtained the Dr. és Sci. most concrete terms and allow as much general- degree from the University of Paris in 1959. ity and abstraction as needed for development, After a year as a lecturer at the University of methods, and solutions. California, Berkeley, and a few more at the Hebrew University, Yale University, and Stanford University, Seminal Contribution to Research: he settled in Jerusalem in 1966. Until 1988 he Mark Goresky and Robert MacPherson taught at the Hebrew University, while making Citation extended visits to Stanford and Paris. He is now a In two closely related papers, “Intersection professor of mathematics at Stanford University. homology theory”, Topology 19 (1980), no. 2, Katznelson’s mathematical interests include 135–62 (IH1) and “Intersection homology. II”, Invent. harmonic analysis, ergodic theory (and in Math. 72 (1983), no. 1, 77–129 (IH2), Mark Goresky particular its applications to combinatorics), and Robert MacPherson made a great breakthrough and differentiable dynamics. by discovering how Poincaré duality, which had Response been regarded as a quintessentially manifold What a pleasant surprise! phenomenon, could be effectively extended to I am especially gratified by the committee’s ap- many singular spaces. Viewed topologically, the proval of “the balance between the concrete and the key difficulty had been that Poincaré duality reflects abstract,” which was one of my main concerns the transversality property that holds within a while teaching the course and while developing manifold but which fails in more general spaces. the notes into a book. IH1 introduced “intersection chain complexes”, How should one look at things, and in what gen- which are the subcomplexes of usual chain com- erality? If a statement and its proof apply equally plexes consisting of those chains which satisfy a in an abstract setup, should it be introduced in the transversality condition with respect to the natural most general or the most familiar terms? strata of a space. More precisely, by introducing a When I came to Paris in 1956 I heard a rumor kind of measure, called a “perversity”, of the that the old way of doing mathematics was being amount of variation from transversality a chain replaced by a new, “abstract” fashion which was the would be allowed, Goresky and MacPherson only proper way of doing things. The rumor was actually introduced a parametrized family of spread mostly by younger students—typically intersection chain complexes. Each of these yielded hugging a freshly-purchased volume of Bourbaki— a corresponding sequence of intersection homol- but seemed confirmed also by the way some ogy groups, and these theories intermediated courses were taught. between homology and cohomology. Starting with As late as 1962, Kahane and Salem found the need methods of local piecewise-linear transversality to apologize (undoubtedly tongue-in-cheek) in the that had been developed by investigations of preface to their exquisite book Ensembles Parfaits M. Cohen, E. Akin, D. Stone, and C. McCrory, IH1 et Séries Trigonométriques for dealing with subject showed that its intersection homology theories matter that might be considered too concrete. were related to each other by a version of Poincaré The balance I tried to strike in the book—and I duality; in particular, the intersection homology believe that I was strongly influenced by Kahane theory which was positioned midway between and Salem—was to set up the subject matter in the homology and cohomology satisfied, when defined, APRIL 2002 NOTICES OF THE AMS 467 a self-duality, as was familiar for manifolds. This functions on the points X(F) of X over F. This is immediately yielded a signature invariant for many the basic ingredient in the geometrization of singular varieties, and that, in turn, was used in IH1 representation theory which has had remarkable to yield, in analogy with the Thom-Milnor treatment successes in recent years. of piecewise linear manifolds, rational character- 3) Paul Segal used the methods of Goresky and istic classes for many triangulated singular varieties. MacPherson and a cobordism theory of singular However, these characteristic classes of singular varieties to show that their rational characteristic varieties naturally were elements in homology classes could in many cases be lifted, after invert- rather than cohomology groups, a distinction which ing 2, to a KO-homology class. Intersection chain for singular varieties was significant. sheaves were extensively used in various collabo- The continuation paper, IH2, reformulated this rations of Cappell, Shaneson, and Weinberger which theory in a natural and powerful sheaf language. extended results of classical Browder-Novikov- This language, suggested by Deligne, gave local Sullivan-Wall surgery theory of manifolds to yield formulations of a version of Poincaré duality for topological classifications of many singular varieties, singular spaces in terms of a Verdier duality of which developed new invariants for singular vari- sheaves. Furthermore, IH2 presented beautiful eties and their transformation groups, which gave axiomatic characterizations of its intersection methods of computing the characteristic classes of chain sheaves. These were all the more valuable as singular varieties, and which related these to knot the achievement of duality for nonsingular spaces invariants. came at the cost of giving up the familiar functo- 4) In investigations of the geometrical combi- rial and homotopy properties that characterized natorics of convex polytopes, the intersection usual homology theories; in particular, intersection homology groups of their associated toric varieties homology theory is not a “homology theory” in have become a fundamental tool. This began with the sense of homotopy theory. R. Stanley’s investigations of the face vectors of poly- IH1 and IH2 made possible investigations across topes. A calculation of the Goresky-MacPherson a great spectrum of mathematics which further characteristic classes of toric varieties was used by extended key classical manifold phenomena and Cappell and Shaneson in obtaining an Euler- methods to singular varieties and used these to MacLaurin formula with remainder for lattice sums solve well-known problems. While it is impossible in polytopes. Recent works of MacPherson and to list all of these, a few important ones in 1) dif- T. Braden on flags of faces of polytopes used results ferential geometry, 2) algebraic geometry and on the intersection chain sheaves of toric varieties. representation theory, 3) geometrical topology, The already astonishing range of research areas and 4) geometrical combinatorics will be indicated. influenced by this seminal work continues to grow. 1) An immediate question was the relation of in- Biographical Sketch: Mark Goresky tersection homology theory to an analytic theory Mark Goresky received his B.Sc. from the Univer- of L2 differential forms and L2 cohomology on sity of British Columbia in 1971 and attended grad- suitable singular varieties with metrics that uate school at Brown University.
Recommended publications
  • Bibliography
    Bibliography [1] Emil Artin. Galois Theory. Dover, second edition, 1964. [2] Michael Artin. Algebra. Prentice Hall, first edition, 1991. [3] M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison Wesley, third edition, 1969. [4] Nicolas Bourbaki. Alg`ebre, Chapitres 1-3.El´ements de Math´ematiques. Hermann, 1970. [5] Nicolas Bourbaki. Alg`ebre, Chapitre 10.El´ements de Math´ematiques. Masson, 1980. [6] Nicolas Bourbaki. Alg`ebre, Chapitres 4-7.El´ements de Math´ematiques. Masson, 1981. [7] Nicolas Bourbaki. Alg`ebre Commutative, Chapitres 8-9.El´ements de Math´ematiques. Masson, 1983. [8] Nicolas Bourbaki. Elements of Mathematics. Commutative Algebra, Chapters 1-7. Springer–Verlag, 1989. [9] Henri Cartan and Samuel Eilenberg. Homological Algebra. Princeton Math. Series, No. 19. Princeton University Press, 1956. [10] Jean Dieudonn´e. Panorama des mat´ematiques pures. Le choix bourbachique. Gauthiers-Villars, second edition, 1979. [11] David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, second edition, 1999. [12] Albert Einstein. Zur Elektrodynamik bewegter K¨orper. Annalen der Physik, 17:891–921, 1905. [13] David Eisenbud. Commutative Algebra With A View Toward Algebraic Geometry. GTM No. 150. Springer–Verlag, first edition, 1995. [14] Jean-Pierre Escofier. Galois Theory. GTM No. 204. Springer Verlag, first edition, 2001. [15] Peter Freyd. Abelian Categories. An Introduction to the theory of functors. Harper and Row, first edition, 1964. [16] Sergei I. Gelfand and Yuri I. Manin. Homological Algebra. Springer, first edition, 1999. [17] Sergei I. Gelfand and Yuri I. Manin. Methods of Homological Algebra. Springer, second edition, 2003. [18] Roger Godement. Topologie Alg´ebrique et Th´eorie des Faisceaux.
    [Show full text]
  • Ravi's Speech at the Banquet
    Speech at the Conference on Conformal Geometry and Riemann Surfaces October 27, 2013 Ravi S. Kulkarni October 29, 2013 1 Greetings I am very happy today. I did not know that so many people loved me enough to gather at Queens College to wish me a healthy, long, and productive life over and above the 71 years I have already lived. It includes my teacher Shlomo Sternberg, present here on skype, and my \almost"-teachers Hyman Bass, and Cliff Earle. Alex Lubotzky came from Israel, Ulrich Pinkall from Germany, and Shiga from Japan. If I have counted correctly there are 14 people among the speakers who are above 65, and 5 below 65, of which only 3 in their 30s to 50s. There are many more in the audience who are in their 50s and below. I interpret this as: we old people have done something right. And of course that something right, is that we have done mathematics. The conference of this type is new for the Math department at Queens College, although it had many distinguished mathematicians like Arthur Sard, Leo Zippin, Banesh Hoffman, Edwin Moise, ... before, on its faculty. I find this Conference especially gratifying since I already went back to In- dia in 2001, enjoyed several leaves without pay, and finally retired from Queens College, in Feb 2008. However I keep coming back to Queens college and Grad- uate Center twice a year and enjoy my emeritus positions with all the office and library/computer advantages. For a long time, I felt that people here thought that I was an Indian in America.
    [Show full text]
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Tōhoku Rick Jardine
    INFERENCE / Vol. 1, No. 3 Tōhoku Rick Jardine he publication of Alexander Grothendieck’s learning led to great advances: the axiomatic description paper, “Sur quelques points d’algèbre homo- of homology theory, the theory of adjoint functors, and, of logique” (Some Aspects of Homological Algebra), course, the concepts introduced in Tōhoku.5 Tin the 1957 number of the Tōhoku Mathematical Journal, This great paper has elicited much by way of commen- was a turning point in homological algebra, algebraic tary, but Grothendieck’s motivations in writing it remain topology and algebraic geometry.1 The paper introduced obscure. In a letter to Serre, he wrote that he was making a ideas that are now fundamental; its language has with- systematic review of his thoughts on homological algebra.6 stood the test of time. It is still widely read today for the He did not say why, but the context suggests that he was clarity of its ideas and proofs. Mathematicians refer to it thinking about sheaf cohomology. He may have been think- simply as the Tōhoku paper. ing as he did, because he could. This is how many research One word is almost always enough—Tōhoku. projects in mathematics begin. The radical change in Gro- Grothendieck’s doctoral thesis was, by way of contrast, thendieck’s interests was best explained by Colin McLarty, on functional analysis.2 The thesis contained important who suggested that in 1953 or so, Serre inveigled Gro- results on the tensor products of topological vector spaces, thendieck into working on the Weil conjectures.7 The Weil and introduced mathematicians to the theory of nuclear conjectures were certainly well known within the Paris spaces.
    [Show full text]
  • Part III Essay on Serre's Conjecture
    Serre’s conjecture Alex J. Best June 2015 Contents 1 Introduction 2 2 Background 2 2.1 Modular forms . 2 2.2 Galois representations . 6 3 Obtaining Galois representations from modular forms 13 3.1 Congruences for Ramanujan’s t function . 13 3.2 Attaching Galois representations to general eigenforms . 15 4 Serre’s conjecture 17 4.1 The qualitative form . 17 4.2 The refined form . 18 4.3 Results on Galois representations associated to modular forms 19 4.4 The level . 21 4.5 The character and the weight mod p − 1 . 22 4.6 The weight . 24 4.6.1 The level 2 case . 25 4.6.2 The level 1 tame case . 27 4.6.3 The level 1 non-tame case . 28 4.7 A counterexample . 30 4.8 The proof . 31 5 Examples 32 5.1 A Galois representation arising from D . 32 5.2 A Galois representation arising from a D4 extension . 33 6 Consequences 35 6.1 Finiteness of classes of Galois representations . 35 6.2 Unramified mod p Galois representations for small p . 35 6.3 Modularity of abelian varieties . 36 7 References 37 1 1 Introduction In 1987 Jean-Pierre Serre published a paper [Ser87], “Sur les representations´ modulaires de degre´ 2 de Gal(Q/Q)”, in the Duke Mathematical Journal. In this paper Serre outlined a conjecture detailing a precise relationship between certain mod p Galois representations and specific mod p modular forms. This conjecture and its variants have become known as Serre’s conjecture, or sometimes Serre’s modularity conjecture in order to distinguish it from the many other conjectures Serre has made.
    [Show full text]
  • Roots of L-Functions of Characters Over Function Fields, Generic
    Roots of L-functions of characters over function fields, generic linear independence and biases Corentin Perret-Gentil Abstract. We first show joint uniform distribution of values of Kloost- erman sums or Birch sums among all extensions of a finite field Fq, for ˆ almost all couples of arguments in Fq , as well as lower bounds on dif- ferences. Using similar ideas, we then study the biases in the distribu- tion of generalized angles of Gaussian primes over function fields and primes in short intervals over function fields, following recent works of Rudnick–Waxman and Keating–Rudnick, building on cohomological in- terpretations and determinations of monodromy groups by Katz. Our results are based on generic linear independence of Frobenius eigenval- ues of ℓ-adic representations, that we obtain from integral monodromy information via the strategy of Kowalski, which combines his large sieve for Frobenius with a method of Girstmair. An extension of the large sieve is given to handle wild ramification of sheaves on varieties. Contents 1. Introduction and statement of the results 1 2. Kloosterman sums and Birch sums 12 3. Angles of Gaussian primes 14 4. Prime polynomials in short intervals 20 5. An extension of the large sieve for Frobenius 22 6. Generic maximality of splitting fields and linear independence 33 7. Proof of the generic linear independence theorems 36 References 37 1. Introduction and statement of the results arXiv:1903.05491v2 [math.NT] 17 Dec 2019 Throughout, p will denote a prime larger than 5 and q a power of p. ˆ 1.1. Kloosterman and Birch sums.
    [Show full text]
  • License Or Copyright Restrictions May Apply to Redistribution; See Https
    License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use EMIL ARTIN BY RICHARD BRAUER Emil Artin died of a heart attack on December 20, 1962 at the age of 64. His unexpected death came as a tremendous shock to all who knew him. There had not been any danger signals. It was hard to realize that a person of such strong vitality was gone, that such a great mind had been extinguished by a physical failure of the body. Artin was born in Vienna on March 3,1898. He grew up in Reichen- berg, now Tschechoslovakia, then still part of the Austrian empire. His childhood seems to have been lonely. Among the happiest periods was a school year which he spent in France. What he liked best to remember was his enveloping interest in chemistry during his high school days. In his own view, his inclination towards mathematics did not show before his sixteenth year, while earlier no trace of mathe­ matical aptitude had been apparent.1 I have often wondered what kind of experience it must have been for a high school teacher to have a student such as Artin in his class. During the first world war, he was drafted into the Austrian Army. After the war, he studied at the University of Leipzig from which he received his Ph.D. in 1921. He became "Privatdozent" at the Univer­ sity of Hamburg in 1923.
    [Show full text]
  • APRIL 2014 ● Official Newsletter of the LSU College of Science E-NEWS
    APRIL 2014 ● Official newsletter of the LSU College of Science e-NEWS NEWS/EVENTS LSU Museum of Natural Science Research Shows Hummingbird Diversity Is Increasing Research relying heavily on the genetic tissue collection housed at LSU’s Museum of Natural Science (one of the world’s largest collections of vertebrate tissues) has provided a newly constructed family tree of hummingbirds, with the research demonstrating that hummingbird diversity appears to be increasing rather than reaching a plateau. The work, started more than 12 years ago at LSU, culminated with a publication in the journal Current Biology. - LSU Office of Research Communications More LSU Geologist's Innovative Use of Magnetic Susceptibility Helps Uncover Burial Site of Notorious Texas Outlaw Brooks Ellwood, Robey H. Clark Distinguished Professor of Geology & Geophysics, was featured in a recent edition of Earth, for his innovative use of magnetic susceptibility (MS) for high- resolution interpretation of sedimentary sequences. Magnetic susceptibility is essentially how easily a material is magnetized in an inducing magnetic field. MS has proved useful for dating archeological sites more than 40,000 years old. One of Ellwood's more unusual applications of MS was when he was approached by Doug Owsley, forensic anthropologist at the Smithsonian Institution, to help search for the burial site of notorious Texas outlaw William Preston Longley, or 'Wild Bill." Ellwood, Owsley and their research team excavate the grave site of More "Wild Bill." LSU Alum, MacArthur Fellow Susan Murphy Gives Porcelli Lectures LSU mathematics graduate and 2013 MacArthur Fellow Susan Murphy was the featured speaker for the 2014 Porcelli Lectures held April 28 in the LSU Digital Media Center.
    [Show full text]
  • Algebra + Homotopy = Operad
    Symplectic, Poisson and Noncommutative Geometry MSRI Publications Volume 62, 2014 Algebra + homotopy = operad BRUNO VALLETTE “If I could only understand the beautiful consequences following from the concise proposition d 2 0.” —Henri Cartan D This survey provides an elementary introduction to operads and to their ap- plications in homotopical algebra. The aim is to explain how the notion of an operad was prompted by the necessity to have an algebraic object which encodes higher homotopies. We try to show how universal this theory is by giving many applications in algebra, geometry, topology, and mathematical physics. (This text is accessible to any student knowing what tensor products, chain complexes, and categories are.) Introduction 229 1. When algebra meets homotopy 230 2. Operads 239 3. Operadic syzygies 253 4. Homotopy transfer theorem 272 Conclusion 283 Acknowledgements 284 References 284 Introduction Galois explained to us that operations acting on the solutions of algebraic equa- tions are mathematical objects as well. The notion of an operad was created in order to have a well defined mathematical object which encodes “operations”. Its name is a portemanteau word, coming from the contraction of the words “operations” and “monad”, because an operad can be defined as a monad encoding operations. The introduction of this notion was prompted in the 60’s, by the necessity of working with higher operations made up of higher homotopies appearing in algebraic topology. Algebra is the study of algebraic structures with respect to isomorphisms. Given two isomorphic vector spaces and one algebra structure on one of them, 229 230 BRUNO VALLETTE one can always define, by means of transfer, an algebra structure on the other space such that these two algebra structures become isomorphic.
    [Show full text]
  • Prospects in Topology
    Annals of Mathematics Studies Number 138 Prospects in Topology PROCEEDINGS OF A CONFERENCE IN HONOR OF WILLIAM BROWDER edited by Frank Quinn PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY 1995 Copyright © 1995 by Princeton University Press ALL RIGHTS RESERVED The Annals of Mathematics Studies are edited by Luis A. Caffarelli, John N. Mather, and Elias M. Stein Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources Printed in the United States of America by Princeton Academic Press 10 987654321 Library of Congress Cataloging-in-Publication Data Prospects in topology : proceedings of a conference in honor of W illiam Browder / Edited by Frank Quinn. p. cm. — (Annals of mathematics studies ; no. 138) Conference held Mar. 1994, at Princeton University. Includes bibliographical references. ISB N 0-691-02729-3 (alk. paper). — ISBN 0-691-02728-5 (pbk. : alk. paper) 1. Topology— Congresses. I. Browder, William. II. Quinn, F. (Frank), 1946- . III. Series. QA611.A1P76 1996 514— dc20 95-25751 The publisher would like to acknowledge the editor of this volume for providing the camera-ready copy from which this book was printed PROSPECTS IN TOPOLOGY F r a n k Q u in n , E d it o r Proceedings of a conference in honor of William Browder Princeton, March 1994 Contents Foreword..........................................................................................................vii Program of the conference ................................................................................ix Mathematical descendants of William Browder...............................................xi A. Adem and R. J. Milgram, The mod 2 cohomology rings of rank 3 simple groups are Cohen-Macaulay........................................................................3 A.
    [Show full text]
  • Number Theory, Analysis and Geometry
    Number Theory, Analysis and Geometry Dorian Goldfeld • Jay Jorgenson • Peter Jones Dinakar Ramakrishnan • Kenneth A. Ribet John Tate Editors Number Theory, Analysis and Geometry In Memory of Serge Lang 123 Editors Dorian Goldfeld Jay Jorgenson Department of Mathematics Department of Mathematics Columbia University City University of New York New York, NY 10027 New York, NY 10031 USA USA [email protected] [email protected] Peter Jones Dinakar Ramakrishnan Department of Mathematics Department of Mathematics Yale University California Institute of Technology New Haven, CT 06520 Pasadena, CA 91125 USA USA [email protected] [email protected] Kenneth A. Ribet John Tate Department of Mathematics Department of Mathematics University of California at Berkeley Harvard University Berkeley, CA 94720 Cambridge, MA 02138 USA USA [email protected] [email protected] ISBN 978-1-4614-1259-5 e-ISBN 978-1-4614-1260-1 DOI 10.1007/978-1-4614-1260-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011941121 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]