Comparison Between Magnetic Resonance Imaging and Computed Tomography for Stereotactic Coordinate Determination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computed Tomography (CT) National Institutes of Health
NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING Computed Tomography (CT) National Institutes of Health What is a computed tomography (CT) scan? The term “computed tomography”, or CT, refers to a computerized x-ray imaging procedure in which a narrow beam of x-rays is aimed at a patient and quickly rotated around the body, producing signals that are processed by the machine’s computer to generate cross- sectional images—or “slices”—of the body. These slices are called tomographic images and contain more detailed information than conventional x-rays. Once a number of successive slices are collected by the machine’s computer, they can be digitally “stacked” together Source: Terese Winslow to form a three-dimensional image of the patient that allows for easier identification and location of basic structures as well as possible tumors or abnormalities. How does CT work? Unlike a conventional x-ray—which uses a fixed x-ray tube—a CT scanner uses a motorized x-ray source that rotates around the circular opening of a donut-shaped structure called a gantry. During a CT scan, the patient lies on a bed that slowly moves through the gantry while the x-ray tube rotates around the patient, shooting narrow beams of x-rays through the body. Instead of film, CT scanners use special digital x-ray detectors, which are located directly opposite the x-ray source. As the x-rays leave the patient, they are picked up by the detectors and transmitted to a computer. Each time the x-ray source completes one full rotation, the CT computer uses sophisticated mathematical techniques to construct a 2D image slice of the patient. -
Acr–Nasci–Sir–Spr Practice Parameter for the Performance and Interpretation of Body Computed Tomography Angiography (Cta)
The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. Revised 2021 (Resolution 47)* ACR–NASCI–SIR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE AND INTERPRETATION OF BODY COMPUTED TOMOGRAPHY ANGIOGRAPHY (CTA) PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1. -
Optical Coherence Tomography (OCT) Anterior Segment of the Eye
Corporate Medical Policy Optical Coherence Tomography (OCT) Anterior Segment of the Eye File Name: optical_coherence_tomography_(OCT)_anterior_segment_of_the_eye Origination: 2/2010 Last CAP Review: 6/2021 Next CAP Review: 6/2022 Last Review: 6/2021 Description of Procedure or Service Optical Coherence Tomography Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging method that can be used to visualize ocular structures. OCT creates an image of light reflected from the ocular structures. In this technique, a reflected light beam interacts with a reference light beam. The coherent (positive) interference between the 2 beams (reflected and reference) is measured by an interferometer, allowing construction of an image of the ocular structures. This method allows cross-sectional imaging a t a resolution of 6 to 25 μm. The Stratus OCT, which uses a 0.8-μm wavelength light source, was designed to evaluate the optic nerve head, retinal nerve fiber layer, and retinal thickness in the posterior segment. The Zeiss Visante OCT and AC Cornea OCT use a 1.3-μm wavelength light source designed specifically for imaging the a nterior eye segment. Light of this wa velength penetrates the sclera, a llowing high-resolution cross- sectional imaging of the anterior chamber (AC) angle and ciliary body. The light is, however, typically blocked by pigment, preventing exploration behind the iris. Ultrahigh resolution OCT can achieve a spatial resolution of 1.3 μm, allowing imaging and measurement of corneal layers. Applications of OCT OCT of the anterior eye segment is being eva luated as a noninvasive dia gnostic and screening tool with a number of potential a pplications. -
Breast Tomosynthesis: the New Age of Mammography Tomosíntesis: La Nueva Era De La Mamografía
BREAST TOMOSYNTHESIS: THE NEW AGE OF MAMMOGRAPHY TOMOSÍNTESIS: LA NUEVA ERA DE LA MAMOGRAFÍA Gloria Palazuelos1 Stephanie Trujillo2 Javier Romero3 SUMMARY Objective: To evaluate the available data of Breast Tomosynthesis as a complementary tool of direct digital mammography. Methods: A systematic literature search of original and review articles through PubMed was performed. We reviewed the most important aspects of Tomosynthesis in breast imaging: Results: 36 Original articles, 13 Review articles and the FDA and American College of Radiology standards were included. Breast Tomosynthesis has showed a positive impact in breast cancer screening, improving the rate of cancer detection EY WORDS K (MeSH) due to visualization of small lesions unseen in 2D (such as distortion of the architecture) Mammography Tomography and it has greater precision regarding tumor size. In addition, it improves the specificity of Diagnosis mammographic evaluation, decreasing the recall rate. Limitations: Interpretation time, cost and Breast neoplasms low sensitivity to calcifications.Conclusions : Breast Tomosynthesis is a new complementary tool of digital mammography which has showed a positive impact in breast cancer diagnosis in comparison to the conventional 2D mammography. Decreased recall rates could have PALABRAS CLAVE (DeCS) significant impact in costs, early detection and a decrease in anxiety. Mamografía Tomografía Diagnóstico RESUMEN Neoplasias de la mama Objetivo: Evaluar el estado del arte de la tomosíntesis como herramienta complementaria de la mamografía digital directa. Metodología: Se realizó una búsqueda sistemática de la literatura de artículos originales y de revisión a través de PubMed. Se revisaron los aspectos más importantes en cuanto a utilidad y limitaciones de la tomosíntesis en las imágenes de mama. -
Cerebral Palsy and Stereotactic Neurosurgery: Long Term Results
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.52.1.23 on 1 January 1989. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1989;52:23-30 Cerebral palsy and stereotactic neurosurgery: long term results J D SPEELMAN, J VAN MANEN From The Academic Medical Centre, Neurological Department, Amsterdam, The Netherlands SUMMARY A retrospective study was performed on a group of 28 patients with cerebral palsy, who had undergone a stereotactic encephalotomy for hyperkinesia or dystonia. The mean postoperative follow up period was 21 years (range: 12-27). Eighteen patients were available for follow up, nine had died, and one could not be traced. A positive result was obtained in eight ofthe 18 reassessed patients. Determining factors for the outcome were the degree of preoperative disability, side effects of the operation, and ageing since operation. The more favourable results were obtained in patients with hyperkinesia, tremor, and predominantly unilateral dystonia. Cerebral palsy, including the postnatal type, includes a Patiets and methods group of non-progressive disorders occurring at any Protected by copyright. stage of development and maturation of the brain up In the spring of 1986 a retrospective study was carried out to to the age of 4 years, causing impairment of motor analyse the outcome of stereotactic encephalotomy in 28 function. This impairment may include paresis, cerebral palsy patients, who had been operated upon during involuntary movement, lack of coordination or spas- the period 1958-74. Pre-operative clinical and operative data ticity. Other symptoms may contribute to the serious- are shown in table 1. ness of the disability, such as sensory disturbances, At the time of the first operation, eight patients were 5-14 intellectual impairment, reduced vision, deafness, years ofage, 10 patients 15-19 years, and 10 patients 20 years ofage or older. -
Incidence and Treatment of Brain Metastases Arising from Lung, Breast, Or Skin Cancers
INCIDENCE AND TREATMENT OF BRAIN METASTASES ARISING FROM LUNG, BREAST, OR SKIN CANCERS: REAL-WORLD EVIDENCE FROM PRIMARY CANCER REGISTRIES AND MEDICARE CLAIMS by MUSTAFA STEVEN ASCHA Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Clinical Translational Science CASE WESTERN RESERVE UNIVERSITY May 2019 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of MUSTAFA STEVEN ASCHA, MS Candidate for the degree of Doctor of Philosophy Committee Chair Fredrick R. Schumacher, Ph.D. Faculty Advisor Jill S. Barnholtz-Sloan, Ph.D. Committee Member Jeremy S. Bordeaux, M.D. Committee Member Andrew E. Sloan, M.D. Date of Defense March 18, 2019 * We also certify that written approval has been obtained for all proprietary material contained therein. 2 Dedication This work is dedicated to: the women in my family who brave, have braved, or pre-empted breast cancer, whose strength and selflessness inspires and motivates me; to Nizar N. Zein, MD, who ten years ago began mentoring me in the discipline I study with this dissertation; and to Jill S. Barnholtz-Sloan, PhD who three years ago helped me begin and later complete this work. 3 Contents Dedication ............................. .................................................................... ............. 3 List of Tables .............................................................................................. ............. 7 List of Figures ........................................................................................... -
Thermography) for Population Screening and Diagnostic Testing of Breast Cancer
NZHTA TECH BRIEF SERIES July 2004 Volume 3 Number 3 Review of the effectiveness of infrared thermal imaging (thermography) for population screening and diagnostic testing of breast cancer Jane Kerr New Zealand Health Technology Assessment Department of Public Health and General Practice Christchurch School of Medicine Christchurch, NZ. Division of Health Sciences, University of Otago NEW ZEALAND HEALTH TECHNOLOGY ASSESSMENT (NZHTA) Department of Public Health and General Practice Christchurch School of Medicine and Health Sciences Christchurch, New Zealand Review of the effectiveness of infrared thermal imaging (thermography) for population screening and diagnostic testing of breast cancer Jane Kerr NZHTA TECH BRIEF SERIES July 2004 Volume 3 Number 3 This report should be referenced as follows: Kerr, J. Review of the effectiveness of infrared thermal imaging (thermography) for population screening and diagnostic testing of breast cancer. NZHTA Tech Brief Series 2004; 3(3) Titles in this Series can be found on the NZHTA website: http://nzhta.chmeds.ac.nz/thermography_breastcancer.pdf 2004 New Zealand Health Technology Assessment (NZHTA) ISBN 1-877235-64-4 ISSN 1175-7884 i ACKNOWLEDGEMENTS This Tech Brief was commissioned by the National Screening Unit of the New Zealand Ministry of Health. The report was prepared by Dr Jane Kerr (Research Fellow) who selected and critically appraised the evidence. The research protocol for this report was developed by Ms Marita Broadstock (Research Fellow). The literature search strategy was developed and undertaken by Mrs Susan Bidwell (Information Specialist Manager). Mrs Ally Reid (Administrative Secretary) provided document formatting. Internal peer review was provided by Dr Robert Weir (Senior Research Fellow), Dr Ray Kirk (Director) and Ms Broadstock. -
Learn More About X-Rays, CT Scans and Mris (Pdf)
What is the difference between X-Rays, CT Scans, and MRIs? X-Rays are a form of electromagnetic radiation, like light. They are less energetic than gamma rays, and more energetic than ultraviolet light. Because they pass easily through soft tissue, like organs and muscles, but not so easily through hard tissue like bones and teeth, we are most familiar with them being used to look at skeletal structures. Sometimes a person ingests or has injected an X-ray opaque fluid that will fill a space of interest for X-ray imaging. This is called an angiogram. A nuclear scan uses an injected gamma ray emitting substance that accumulates in the organ of interest and a special camera records the gamma rays. A CT Scan is usually a series of X-rays taken from different directions that are then assembled into a three dimensional model of the subject in a computer. CT stands for computed tomography, and tomography means a picture of a slice. Where an X-ray may show edges of soft tissues all stacked on top of each other, the computer in a CT scan can figure out how those edges relate to each other in depth, and so the image has much more soft tissue usability. Another kind of CT scan uses positrons. I have to mention this because positrons are antimatter electrons (Yes, antimatter does exist and it is useful!) In Positon Emission Tomography (PET) a positron emitting radionuclide (radioactive material) is attached to a metabolically useful molecule. This is introduced to the tissue, and as emitted positrons decompose they emit gamma rays which can be traced by the machine and computer back to their points of origin, and an image is formed. -
Image-Guided Stereotactic Neurosurgery: Practices and Pitfalls
Review Article pISSN 2383-5389 / eISSN 2383-8116 Journal of International Society for Simulation Surgery 2015;2(2):58-63 http://dx.doi.org/10.18204/JISSiS.2015.2.2.058 Image-guided Stereotactic Neurosurgery: Practices and Pitfalls Na Young Jung, M.D., Minsoo Kim, M.D., Young Goo Kim, M.D., Hyun Ho Jung, M.D.,Ph.D., Jin Woo Chang, M.D.,Ph.D., Yong Gou Park, M.D., Ph.D., Won Seok Chang, M.D. Department of Neurosurgery, Brain Research Institute, Yonsei Medical Gamma Knife Center, Yonsei University College of Medicine, Seoul, Korea Image-guided neurosurgery (IGN) is a technique for localizing objects of surgical interest within the brain. In the past, its main use was placement of electrodes; however, the advent of computed tomography has led to a rebirth of IGN. Advances in comput- ing techniques and neuroimaging tools allow improved surgical planning and intraoperative information. IGN influences many neurosurgical fields including neuro-oncology, functional disease, and radiosurgery. As development continues, several problems remain to be solved. This article provides a general overview of IGN with a brief discussion of future directions. Key WordsZZStereotactic ㆍNeurosurgery ㆍNeuro-image ㆍPitfall. Received: November 26, 2015 / Revised: November 27, 2015 / Accepted: December 7, 2015 Address for correspondence: Won Seok Chang, M.D. Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea Tel: 82-2-2228-2150, Fax: 82-2-393-9979, E-mail: [email protected] Introduction to approach deep structures in the brain and, perform biopsies, injection, stimulation, implantation, or radiosurgery. In mod- Stereotactic neurosurgery (SNS) is a minimally invasive sur- ern times, brain structures are virtualized in real time, leading gical procedure for diagnosis and treatment of brain lesions, to developments in brain tumor treatment and functional neu- that relies on locating targets relative to an external frame of ref- rosurgery. -
Ijp 18 5 Coward 8.Pdf
Coward 8/25/05 1:54 PM Page 405 A Comparison Between Computerized Tomography, Magnetic Resonance Imaging, and Laser Scanning for Capturing 3-Dimensional Data from an Object of Standard Form Trevor J. Coward, PhD, MPhila/Brendan J. J. Scott, BDS, BSc, PhD, FDSRCS (Ed)b/ Roger M. Watson, BDS, MDS, FDSRCSc/Robin Richards, BSc, MSc, PhDd Purpose: The study’s aim was to compare dimensional measurements on computer images generated from data captured digitally by 3 different methods of the surfaces of a plastic cube of known form to those obtained directly from the cube itself. Materials and Methods: Three-dimensional images were reconstructed of a plastic cube obtained by computerized tomography (CT), magnetic resonance imaging (MRI), and laser scanning. Digital calipers were used to record dimensional measurements be- tween the opposing faces of the plastic cube. Similar dimensional measurements were recorded between the cube faces on each of the reconstructed images. The data were analyzed using a 2-way ANOVA to determine whether there were differences between dimensional measurements on the computer images generated from the digitization of the cube surfaces by the different techniques, and the direct measurement of the cube itself. Results: A significant effect of how the measurements were taken (ie, direct, CT, MRI, and laser scanning) on the overall variation of dimensional measurement (P < .0005) was observed. Post hoc tests (Bonferroni) revealed that these differences were due principally to differences between the laser-scanned images compared to other sources (ie, direct, CT, and MRI). The magnitude of these differences was very small, up to a maximum mean difference of 0.71 mm (CI ± 0.037 mm). -
Positron Emission Tomography
Positron emission tomography A.M.J. Paans Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, The Netherlands Abstract Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology. 1 Introduction The idea of in vivo measurement of biological and/or biochemical processes was already envisaged in the 1930s when the first artificially produced radionuclides of the biological important elements carbon, nitrogen and oxygen, which decay under emission of externally detectable radiation, were discovered with help of the then recently developed cyclotron. These radionuclides decay by pure positron emission and the annihilation of positron and electron results in two 511 keV γ-quanta under a relative angle of 180o which are measured in coincidence. This idea of Positron Emission Tomography (PET) could only be realized when the inorganic scintillation detectors for the detection of γ-radiation, the electronics for coincidence measurements, and the computer capacity for data acquisition and image reconstruction became available. For this reason the technical development of PET as a functional in vivo imaging discipline started approximately 30 years ago. -
Breast Imaging Faqs
Breast Imaging Frequently Asked Questions Update 2021 The following Q&As address Medicare guidelines on the reporting of breast imaging procedures. Private payer guidelines may vary from Medicare guidelines and from payer to payer; therefore, please be sure to check with your private payers on their specific breast imaging guidelines. Q: What differentiates a diagnostic from a screening mammography procedure? Medicare’s definitions of screening and diagnostic mammography, as noted in the Centers for Medicare and Medicaid’s (CMS’) National Coverage Determination database, and the American College of Radiology’s (ACR’s) definitions, as stated in the ACR Practice Parameter of Screening and Diagnostic Mammography, are provided as a means of differentiating diagnostic from screening mammography procedures. Although Medicare’s definitions are consistent with those from the ACR, the ACR's definitions of screening and diagnostic mammography offer additional insight into what may be included in these procedures. Please go to the CMS and ACR Web site links noted below for more in- depth information about these studies. Medicare Definitions (per the CMS National Coverage Determination for Mammograms 220.4) “A diagnostic mammogram is a radiologic procedure furnished to a man or woman with signs and symptoms of breast disease, or a personal history of breast cancer, or a personal history of biopsy - proven benign breast disease, and includes a physician's interpretation of the results of the procedure.” “A screening mammogram is a radiologic procedure furnished to a woman without signs or symptoms of breast disease, for the purpose of early detection of breast cancer, and includes a physician’s interpretation of the results of the procedure.