LAST CHANCE STATS Contents 1. Warm up 6 1.1. Proof of Pythagorean Theorem 6 1.2. Irrationality of √ 2 6 1.3. Euclid's Proof

Total Page:16

File Type:pdf, Size:1020Kb

LAST CHANCE STATS Contents 1. Warm up 6 1.1. Proof of Pythagorean Theorem 6 1.2. Irrationality of √ 2 6 1.3. Euclid's Proof LAST CHANCE STATS JOSEPH BOYD Contents 1. Warm Up6 1.1. Proof of Pythagoreanp Theorem6 1.2. Irrationality of 26 1.3. Euclid's Proof of the Infinitude of Primes7 1.4. The Potato Paradox7 1.5. The Monty Hall Problem7 1.6. Finding Hamlet in the Digits of π 8 2. Differential Calculus9 2.1. Binomial Theorem9 2.2. (-δ) Definition of a Limit 10 2.3. Differentiating From First Principles 11 2.4. Chain Rule 12 2.5. Product Rule 12 2.6. Rolle's Theorem 13 2.7. Mean Value Theorem 13 3. Linear Algebra 14 3.1. Analytic Form of Inverse 14 3.2. Positive-definite Matrices 15 3.3. Gaussian Elimination 16 3.4. Matrix Decompositions 16 4. Vector Calculus 18 4.1. Preliminary Results 18 4.2. Vector Calculus 20 5. Series 22 5.1. Geometric Series 22 5.2. Taylor Series 22 5.3. π as an Infinite Series 25 6. Infinite Products 27 6.1. Vi`ete'sFormula 27 6.2. The Basel Problem 28 6.3. Wallis' Product 29 6.4. The Method of Eratosthenes 30 1 2 JOSEPH BOYD 6.5. The Euler Product Formula 30 7. Deriving the Golden Ratio 31 7.1. Continued Fractions 31 7.2. Fibonacci Sequences 32 7.3. The Golden Ratio 32 8. The Exponential Function 32 8.1. Deriving the Exponential Function 33 8.2. Other Solutions 34 8.3. Euler's Formula 35 9. Integral Transforms 36 9.1. The Laplace Transform 36 9.2. Fourier Series 37 9.3. The Fourier Transform 38 10. The Factorial Function 38 10.1. Stirling's Approximation 39 10.2. The Gamma Function 40 11. Fundamentals of Statistics 41 11.1. Philosophical Notions of Probability 41 11.2. Fundamental Rules 42 11.3. Bayes' Theorem 44 11.4. Quantiles 45 11.5. Moments 46 11.6. Sample Statistics 47 11.7. Covariance 48 11.8. Correlation 49 11.9. Transformation of Random Variables 49 11.10. Change of Variables 50 11.11. Monte Carlo Statistics 50 12. Common Discrete Probability Distributions 51 12.1. Uniform Distribution 51 12.2. Bernoulli Distribution 52 12.3. Binomial Distribution 52 13. Common Continuous Probability Distributions 52 13.1. Laplace Distribution 52 13.2. Gaussian Distribution 53 13.3. Chi-squared Distribution 54 13.4. Student's T-Distribution 55 14. Hypothesis Testing 55 14.1. Standard Error 55 14.2. Confidence Intervals 56 14.3. Degrees of Freedom 56 14.4. Hypothesis Testing 56 15. The Central Limit Theorem 58 LAST CHANCE STATS 3 15.1. Moment-Generating Functions 58 15.2. Proof of the Central Limit Theorem 58 16. The Law of Large Numbers 59 16.1. Markov Inequality 59 16.2. Chebyshev Inequality 60 16.3. Law of Large Numbers 60 17. Information Theory 60 17.1. Entropy 61 17.2. Kullback-Liebler Divergence 61 17.3. Mutual Information 62 18. Convex Optimisation 62 18.1. Convexity 62 18.2. Necessary and Sufficient Conditions for Optimality 64 18.3. Unconstrained Problems 64 18.4. Equality Constraints 65 18.5. The Method of Lagrange Multipliers 65 18.6. Inequality Constraints 66 18.7. KKT Conditions 66 19. Computability and Complexity 67 19.1. Decision Problems 67 19.2. The Halting Problem 67 19.3. Turing Machines 68 19.4. P versus NP 70 19.5. Complexity Classes 70 20. Discrete Optimisation 71 20.1. Integer Programming Problems 71 20.2. Solution Methods 72 21. Graph Theory 74 21.1. The Seven Bridges of K¨onigsberg 74 21.2. The Three Cottages Problem 75 21.3. NP-complete Graph Problems 75 21.4. Graph Traversal 76 21.5. Shortest Path Problem 77 22. Introduction to Machine Learning 77 22.1. Learning 78 22.2. Training and Prediction 79 23. Bayes and the Beta-Binomial Model 82 24. Generative Classifiers 83 25. Multivariate Normal Distribution 86 25.1. Gaussian Discriminant Analysis 87 26. Linear Regression 88 26.1. Constructing a Loss Function 88 26.2. Method of Least Squares 89 4 JOSEPH BOYD 26.3. The Gram Matrix 90 26.4. Gradient Descent 90 26.5. Model Prediction 93 26.6. Maximum Likelihood Estimation 93 26.7. Non-linear Fits 94 26.8. Bayesian Linear Regression 94 26.9. Robust Linear Regression 95 27. The Simplex Algorithm 97 28. Logistic Regression 99 28.1. Binary Logistic Regression 100 28.2. Multinomial Logistic Regression 102 29. Online Learning and Perceptrons 103 29.1. Online learning 103 30. Neural Networks 104 30.1. Convolutional Neural Networks 107 30.2. Recurrent Neural Networks 111 31. Support Vector Machines 115 31.1. Kernels 115 31.2. Kernelised kNN 115 31.3. Matrix Inversion Lemma 116 31.4. Reformulating Ridge Regression 116 31.5. Decision Boundaries 116 31.6. Sequential Minimal Optimisation 119 31.7. Support Vector Machine Regression 120 32. Decision Trees 120 32.1. Learning Decision Trees 120 32.2. Random Forest 121 32.3. Boosting methods 122 33. Dimensionality Reduction and PCA 122 33.1. Derivation of PCA 122 33.2. Singular Value Decomposition 123 33.3. Multi-dimensional Scaling 124 33.4. t-distributed Stochastic Neighbour Embedding 124 34. Structured Sequence Learning 124 34.1. Hidden Markov Models 124 34.2. Conditional Random Fields 124 34.3. Kalman Filters 124 35. Unsupervised Machine Learning 125 35.1. K-means 125 35.2. Gaussian Mixture Models 126 36. Performance Metrics 127 36.1. ROC Curves 128 37. Computer Architecture 129 LAST CHANCE STATS 5 37.1. Hardware 129 37.2. Software 130 37.3. Digital Circuitry 131 37.4. Operating Systems 132 38. Image Analysis and Processing 134 38.1. Connectivity 135 38.2. Image Scaling 135 38.3. Image Compression 135 38.4. Labeling 136 38.5. Thresholding 136 38.6. Linear Filters 137 38.7. Non-linear Filters 138 38.8. Mathematical Morphology 138 38.9. Segmentation 141 38.10. Feature Extraction 141 38.11. Transformations 142 39. Useless Maths Facts 143 References 145 6 JOSEPH BOYD 1. Warm Up This section presents an assortment of mathematical problems, each embodying an idea that is useful or instructive to the material that follows. 1.1. Proof of Pythagorean Theorem. Consider a square with sides of length c rotated inside a larger square, such that the four corners of the smaller square meet a distinct edge of the larger at a point a units along that edge. The sides of the larger square are therefore of length a + b for some a; b > 0. The area of the four resulting right-angled triangles that 1 fill the empty space are 2 ab apiece. Thus, we have it that, 1 (a + b)2 = c2 + 4 · ab; 2 expanding to, a2 + 2ab + b2 = c2 + 2ab; and finally, a2 + b2 = c2: p p 1.2. Irrationality of 2. Suppose 2 is rational. Then there exist a; b 2 Z, with a > b and gcd(a; b) = 11 such that, a p = 2: b Consequently, a2 = 2: b2 This implies that a2 is even, and therefore that a is even. That is, a = 2k; for some k 2 Z. So, by substitution, 4k2 = 2: b2 Rearranging, b2 = 2k2: However, this now implies that b2 is even, hence b also, implying a common factor between a and b, though by assumption they have no commonp factors, and clearly we can repeat the argument ad infinitum. This contradiction proves 2 is irrational2. 1 a That is, b is an irreducible fraction. This can be obtained by cancelling out the common factors. Every integer has a unique prime factorisation due to the fundamental theorem of arithmetic. 2This is an example of a proof by contradiction. LAST CHANCE STATS 7 1.3. Euclid's Proof of the Infinitude of Primes. Take any finite set of primes, p1; p2; : : : ; pn. Then, the number, q = p1 × p2 × · · · × pn + 1, is either prime or not prime. If it is prime, we have generated a new prime not in our set. If it is not, it has a prime factor not in our set, as q ≡ 1 (mod pi) for i = 1; 2; : : : ; n. Using this method we can always generate a new prime3. It follows that there are infinitely many primes. 1.4. The Potato Paradox. A potato that is 99% water weighs 100g. It is dried until it is only 98% water. It now weighs only 50g. How can this be? The mistake people typically make is to assume there has been a 1% reduction in the volume of water, rather than a change to the water/non-water ratio. In fact, the ratio of water to non-water content has changed from 1 : 99 to 2 : 98 or 1 : 49. Since the non-water content of the potato has not changed, the water must have lost 50% of its volume, and so the potato now weighs half as much! 1.5. The Monty Hall Problem. This famous paradox, named after an American game show host, has the following problem statement: A game show presents you with the choice of selecting one of three doors. Two of the doors contain a goat (undesirable), whilst the third contains a car. Upon your choice, the game show host, who knows the contents of each of the doors, opens one of the two remaining doors to reveal a goat. He then gives you the option of either sticking with your initial choice, or switching to the one remaining door. Is it advantageous to switch doors? The answer is that it is advantageous, increasing your winning chances from 1=3 to 2=3. The essential realisation is that the host (Monty Hall) has knowledge of the door contents and will always reveal a goat, whether you have chosen the car or not.
Recommended publications
  • Euler's Calculation of the Sum of the Reciprocals of the Squares
    Euler's Calculation of the Sum of the Reciprocals of the Squares Kenneth M. Monks ∗ August 5, 2019 A central theme of most second-semester calculus courses is that of infinite series. Simply put, to study infinite series is to attempt to answer the following question: What happens if you add up infinitely many numbers? How much sense humankind made of this question at different points throughout history depended enormously on what exactly those numbers being summed were. As far back as the third century bce, Greek mathematician and engineer Archimedes (287 bce{212 bce) used his method of exhaustion to carry out computations equivalent to the evaluation of an infinite geometric series in his work Quadrature of the Parabola [Archimedes, 1897]. Far more difficult than geometric series are p-series: series of the form 1 X 1 1 1 1 = 1 + + + + ··· np 2p 3p 4p n=1 for a real number p. Here we show the history of just two such series. In Section 1, we warm up with Nicole Oresme's treatment of the harmonic series, the p = 1 case.1 This will lessen the likelihood that we pull a muscle during our more intense Section 3 excursion: Euler's incredibly clever method for evaluating the p = 2 case. 1 Oresme and the Harmonic Series In roughly the year 1350 ce, a University of Paris scholar named Nicole Oresme2 (1323 ce{1382 ce) proved that the harmonic series does not sum to any finite value [Oresme, 1961]. Today, we would say the series diverges and that 1 1 1 1 + + + + ··· = 1: 2 3 4 His argument was brief and beautiful! Let us admire it below.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • A SIMPLE COMPUTATION of Ζ(2K) 1. Introduction in the Mathematical Literature, One Finds Many Ways of Obtaining the Formula
    A SIMPLE COMPUTATION OF ζ(2k) OSCAR´ CIAURRI, LUIS M. NAVAS, FRANCISCO J. RUIZ, AND JUAN L. VARONA Abstract. We present a new simple proof of Euler's formulas for ζ(2k), where k = 1; 2; 3;::: . The computation is done using only the defining properties of the Bernoulli polynomials and summing a telescoping series, and the same method also yields integral formulas for ζ(2k + 1). 1. Introduction In the mathematical literature, one finds many ways of obtaining the formula 1 X 1 (−1)k−122k−1π2k ζ(2k) := = B ; k = 1; 2; 3;:::; (1) n2k (2k)! 2k n=1 where Bk is the kth Bernoulli number, a result first published by Euler in 1740. For example, the recent paper [2] contains quite a complete list of references; among them, the articles [3, 11, 12, 14] published in this Monthly. The aim of this paper is to give a new proof of (1) which is simple and elementary, in the sense that it involves only basic one variable Calculus, the Bernoulli polynomials, and a telescoping series. As a bonus, it also yields integral formulas for ζ(2k + 1) and the harmonic numbers. 1.1. The Bernoulli polynomials | necessary facts. For completeness, we be- gin by recalling the definition of the Bernoulli polynomials Bk(t) and their basic properties. There are of course multiple approaches one can take (see [7], which shows seven ways of defining these polynomials). A frequent starting point is the generating function 1 xext X xk = B (t) ; ex − 1 k k! k=0 from which, by the uniqueness of power series expansions, one can quickly obtain many of their basic properties.
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • The Zeta Quotient $\Zeta (3)/\Pi^ 3$ Is Irrational
    The Zeta Quotient ζ(3)/π3 is Irrational N. A. Carella Abstract: This note proves that the first odd zeta value does not have a closed form formula ζ(3) = rπ3 for any rational number r Q. Furthermore, assuming the irrationality of the second odd zeta6 value ζ(5), it is shown that ζ∈(5) = rπ5 for any rational number r Q. 6 ∈ 1 Introduction The first even zeta value has a closed form formula ζ(2) = π2/6, and the first odd zeta value has a nearly closed formula given by the Lerch representation 7π3 1 ζ(3) = 2 , (1) 180 − n3(e2πn 1) nX≥1 − confer (45) for more general version. This representation is a special case of the Ramanujan formula for odd zeta values, see [6], and other generalized version proved in [11]. However, it is not known if there exists a closed form formula ζ(3) = rπ3 with r Q, see [27, p. 167], [18, p. 3] for related materials. ∈ Theorem 1.1. The odd zeta value ζ(3) = rπ3, (2) 6 for any rational number r Q. ∈ The proof of this result is simply a corollary of Theorem 4.4 in Section 4. The basic technique gen- eralizes to other odd zeta values. As an illustration of the versatility of this technique, conditional on the irrationality of the zeta value ζ(5), in Theorem 5.5 it is shown that ζ(5)/π5 is irrational. The preliminary Section 2 and Section 3 develop the required foundation, and the proofs of the various results are presented in Section 4 and Section 5.
    [Show full text]
  • On Transcendence Theory with Little History, New Results and Open Problems
    On Transcendence Theory with little history, new results and open problems Hyun Seok, Lee December 27, 2015 Abstract This talk will be dealt to a survey of transcendence theory, including little history, the state of the art and some of the main conjectures, the limits of the current methods and the obstacles which are preventing from going further. 1 Introudction Definition 1.1. An algebraic number is a complex number which is a root of a polynomial with rational coefficients. p p p • For example 2, i = −1, the Golden Ration (1 + 5)=2, the roots of unity e2πia=b, the roots of the polynomial x5 − 6x + 3 = 0 are algebraic numbers. Definition 1.2. A transcendental number is a complex number which is not algebraic. Definition 1.3. Complex numbers α1; ··· ; αn are algebraically dependent if there exists a non-zero polynomial P (x1; ··· ; xn) in n variables with rational co- efficients such that P (α1; ··· ; αn) = 0. Otherwise, they are called algebraically independent. The existence of transcendental numbers was proved in 1844 by J. Liouville who gave explicit ad-hoc examples. The transcendence of constants from analysis is harder; the first result was achieved in 1873 by Ch. Hermite who proved the transcendence of e. In 1882, the proof by F. Lindemann of the transcendence of π gave the final (and negative) answer to the Greek problem of squaring the p circle. The transcendence of 2 2 and eπ, which was included in Hilbert's seventh problem in 1900, was proved by Gel'fond and Schneider in 1934.
    [Show full text]
  • Another Proof of ∑
    P1 1 π2 Another Proof of n=1 n2 = 6 Sourangshu Ghosh∗1 1Department of Civil Engineering, Indian Institute of Technology, Kharagpur 2020 Mathematics Subject Classification: 11M06. Keywords: Zeta Function, Pi, Basel Problem. Abstract In this paper we present a new solution to the Basel problem using a complex line log(1+z) integral of z . 1 Introduction The Basel problem is a famous problem in number theory, first posed by Pietro Mengoli in 1644, and solved by Leonhard Euler in 1735. The Problem remained open for 90 years, π2 until Euler found the exact sum to be 6 , in 1734. He would eventually propose three P1 1 separate solutions to the problem during his lifetime for n=1 n2 . The Basel problem asks for the sum of the series: 1 X 1 1 1 1 = + + + :: n2 12 22 32 n=1 The first proof which was given by Euler used the Weierstrass factorization theorem to rep- resent the sine function as an infinite product of linear factors given by its roots [13]. This same approach can be used to find out values of zeta function at even values using formulas obtained from elementary symmetric polynomials [22]. A solution in similar lines was given by Kortram [19]. Many solutions of the Basel problem use double integral representations of ζ(2) [8][24][25]. Proofs using this method are presented in [3][4][1][12][14]. Choe [9] used the power series expansion of the inverse sine function to find a solution to the problem. Many solutions to the problem use extensive trigonometric inequalities and identities, as presented in [6][2][20][15].
    [Show full text]
  • Some Integrals Related to the Basel Problem
    November 10, 2016 Some integrals related to the Basel problem Khristo N. Boyadzhiev Department of Mathematics and Statistics, Ohio Northern University, Ada, OH 45810, USA [email protected] Abstract. We evaluate several arctangent and logarithmic integrals depending on a parameter. This provides a closed form summation of certain series and also integral and series representation of some classical constants. Key words and phrases, Basel problem, arctan integrals, dilogarithm, trilogarithm, Catalan constant. 2010 Mathematics Subject Classification. Primary 11M06; 30B30; 40A25 1. Introduction The famous Basel problem posed by Pietro Mengoli in 1644 and solved by Euler in 1735 asked for a closed form evaluation of the series 11 1 ... 2322 (see [7], [9], [10]). Euler proved that 11 2 (1) 1 ... . 222 3 6 In the meantime, trying to evaluate this series, Leibniz discovered the representation 1 1 log(1t ) 1 1 dt 1 ... , 22 0 t 23 but was unable to find the numerical value of the integral (see comments in [7]). How to relate this integral to 2 /6 is discussed in [7] and [10]; it is shown that by using the complex logarithm one can solve the Basel problem. There exist, however, other integrals which can be used to quickly prove (1) without complex numbers. Possibly, the best example is the integral 1 arcsin x 1 (2) dxLi ( ) Li ( ) 2 22 0 1 x 2 for | | 1 . Here n Li ( ) 2 2 n1 n is the dilogarithm [12]. Setting 1 in (2), the left hand side becomes 2 1 2 1 arcsin x 280 while the RHS is 1 3 3 1 1 Li (1) Li ( 1) Li (1) (1 ...) 22 2 4 2 4 222 3 and (1) follows immediately.
    [Show full text]
  • The Extraordinary Sums of Leonhard Euler
    TheThe ExtraordinaryExtraordinary SumsSums ofof LeonhardLeonhard EulerEuler YourYour PresentersPresenters • History/Biography: Aaron Boggs • Infinite Series: Jonathan Ross • Number Theory: Paul Jones OverviewOverview ØFirst, and most importantly, Euler is pronounced “oiler”. ØEuler was beyond any doubt an absolute genius. ØEuler was one of the most, if not the the most, prolific mathematicians of all time ranging from basic algebra and geometry to complex number theory. EulerEuler’’ss PlacePlace inin thisthis worldworld ©Euler was born in Switzerland in the city of Basel in 1707. (The same city as the famous Bernoullis) ©Euler’s father was a Calvinist preacher who had had some instruction by the famous Jakob Bernoulli. ©Using his influence and connection to the Bernoullis his father arranged for Euler to study under Johann Bernoulli. Euler’s Early life ªJohann Bernoulli was a tough teacher and was easily irritated by his pupils, including Euler. ªBut even this early in Euler’s life, Johann could see that Euler had a talent for mathematics. ªWhile still in his teens Euler was publishing high quality mathematical papers. ªAnd at age 19, Euler won a prize from the French Academy for his analysis of the optimum placement of masts on a ship. ªNote: at this point in time, Euler had not seen a ship. Moving on Up ¨About this time, in 1725, Johann Bernoulli’s son Nikolaus II moved to St. Petersburg where his other son Daniel was working for the St. Petersburg Academy. ¨There were no math spots open at the time of Euler’s arrival, so he had to begin with an appointment in medicine and physiology in 1727.
    [Show full text]
  • The Basel Problem Numerous Proofs
    Intro Pf 1 Pf 2 Pf 3 Pf 4 Pf 5 References The Basel Problem Numerous Proofs Brendan W. Sullivan Carnegie Mellon University Math Grad Student Seminar April 11, 2013 Brendan W. Sullivan Carnegie Mellon UniversityMath Grad Student Seminar The Basel Problem Intro Pf 1 Pf 2 Pf 3 Pf 4 Pf 5 References Abstract The Basel Problem was first posed in 1644 and remained open for 90 years, until Euler made his first waves in the mathematical community by solving it. During his life, he would present three different solutions to the problem, P 1 which asks for an evaluation of the infinite series k1=1 k2 . Since then, people have continually looked for new, interesting, and enlightening approaches to this same problem. Here, we present 5 different solutions, drawing from such diverse areas as complex analysis, calculus, probability, and Hilbert space theory. Along the way, we’ll give some indication of the problem’s intrigue and applicability. Brendan W. Sullivan Carnegie Mellon UniversityMath Grad Student Seminar The Basel Problem Intro Pf 1 Pf 2 Pf 3 Pf 4 Pf 5 References Analysis: sin x as an 0 Introduction infinite product History 3 Proof: Integral on [0; 1]2 Intrigue 4 Proof: L2[0; 1] and Parseval 1 Proof: sin x and L’Hôpital 5 Proof: Probability Densities 2 Proof: sin x and Maclaurin 6 References Brendan W. Sullivan Carnegie Mellon UniversityMath Grad Student Seminar The Basel Problem Intro Pf 1 Pf 2 Pf 3 Pf 4 Pf 5 References History Pietro Mengoli Italian mathematician and clergyman (1626–1686) [5] PhDs in math and civil/canon law Assumed math chair at Bologna after adviser Cavalieri died Priest in the parish of Santa Maria Maddelena in Bologna Known (nowadays) for work in infinite series: Proved: harmonic series diverges, alternating harmonic series sums to ln 2, Wallis’ product for π is correct Developed many results in limits and sums that laid groundwork for Newton/Leibniz Wrote in “abstruse Latin”; Leibniz was influenced by him [6] Brendan W.
    [Show full text]
  • 01 Euler and Ζ(S) 1. Euler and the Basel Problem
    (September 14, 2015) 01 Euler and ζ(s) Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http://www.math.umn.edu/~garrett/m/mfms/notes 2015-16/01 Euler and zeta.pdf] 1. Euler and zeta 2. Euler product expansion of sin x 3. Quantitative infinitude of primes 4. Proof of Euler product 5. Appendix: product expansion of sin x Infinite sums that telescope can be understood in simpler terms. The archetype is 1 1 1 1 1 1 1 1 1 + + + ::: = − + − + − + ::: = 1 1 · 2 2 · 3 3 · 4 1 2 2 3 3 4 Other subtler examples analyze-able via trigonometric functions give more interesting answers, but these are still elementary, the archetype being [1] 1 1 1 x x3 x5 Z x dt π − − + ::: = − + − ::: = = arctan 1 = 2 1 3 5 1 3 5 x=1 0 1 + t x=1 4 As late as 1735, no one knew how to express in simpler terms 1 1 1 1 1 + + + + + ::: 12 22 32 42 52 This was the Basel problem, after the town in Switzerland home to the Bernoullis, collectively a dominant force in European mathematics at the time. L. Euler solved the problem, winning him useful notoriety at an early age, but more notably introducing larger ideas, as follows. 1. Euler and the Basel Problem Given non-zero numbers a1; : : : ; an, a polynomial with constant term 1 having these numbers as roots is x x x 1 1 1 1 1 xn 1 − 1 − ::: 1 − = 1 − ( ::: + )x + ( + + + :::)x2 + ::: + (−1)n a1 a2 an a1 an a1a2 a1a3 a2a3 a1 : : : an sin πx Imagine that πx has an analogous product expansion, in terms of its zeros at ±1; ±2; ±3;:::, up to a normalizing constant needing determination: using the power series expansion of sin x, (πx)3 1 (πx) − + ::: sin πx Y x2 X 1 3! = = C · 1 − = C · x − x3 + ::: πx πx n2 n2 n=1 n Assuming this works, equating constant terms gives C = 1, and equating coefficients of x2 gives π2 X 1 = 6 n2 P 1 Slightly messier manipulations yield all values n2k .
    [Show full text]
  • Irrationality of the Zeta Constants Ζ(2N) N 1
    Irrationality of the Zeta Constants N. A. Carella Abstract: A general technique for proving the irrationality of the zeta constants ζ(2n + 1),n 1, ≥ from the known irrationality of the beta constants L(2n + 1,χ) is developed in this note. The irrationality of the zeta constants ζ(2n),n 1, and ζ(3) are well known, but the irrationality ≥ results for the zeta constants ζ(2n + 1),n 2, are new, and seem to show that these are irrational ≥ numbers. By symmetry, the irrationality of the beta constants L(2n,χ) are derived from the known rrationality of the zeta constants ζ(2n). Keyword: Irrational number, Transcendental number, Beta constant, Zeta constant, Uniform dis- tribution. AMS Mathematical Subjects Classification: 11J72; 11A55. 1 Introduction As the rationality or irrationality nature of a number is an arithmetic property, it is not surprising to encounter important constants, whose rationality or irrationality is linked to the properties of the in- tegers and the distribution of the prime numbers, for example, the number 6/π2 = 1 p−2 . p≥2 − An estimate of the partial sum of the Dedekind zeta function of quadratic numbers fields will be Q arXiv:1212.4082v7 [math.GM] 22 Jun 2018 utilized to develop a general technique for proving the irrationality of the zeta constants ζ(2n + 1) from the known irrationality of the beta constants L(2n+1,χ), 1 = n N. This technique provides 6 ∈ another proof of the first odd case ζ(3), which have well known proofs of irrationalities, see [2], [7], [34], et al, and an original proof for the other odd cases ζ(2n + 1),n 2, which seems to confirm ≥ the irrationality of these number.
    [Show full text]