University of Texas Bulletin No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stratigraphy, Paleontology and Correlation of Lower Cretaceous Exposures in Southeastern New Mexico Barry S
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/44 Stratigraphy, paleontology and correlation of lower Cretaceous exposures in southeastern New Mexico Barry S. Kues and Spencer G. Lucas, 1993, pp. 245-260 in: Carlsbad Region (New Mexico and West Texas), Love, D. W.; Hawley, J. W.; Kues, B. S.; Austin, G. S.; Lucas, S. G.; [eds.], New Mexico Geological Society 44th Annual Fall Field Conference Guidebook, 357 p. This is one of many related papers that were included in the 1993 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. -
2003 Regional Assessment of Water
2003 Regional Assessment of Water Quality in the Rio Grande Basin United States Section, International Boundary and Water Commission Texas Clean Rivers Program 2003 Regional Assessment of Water Quality in the Rio Grande Basin By Texas Clean Rivers Program United States Section, International Boundary and Water Commission Authority This study and report were undertaken by the United States Section of the International Boundary and Water Commission pursuant to the agreement with the Texas Commission on Environmental Quality under Contract Number 582-2-44870/IBM-01-27 to administer the Texas Clean Rivers Program in the Rio Grande basin. ii Participating Agencies Federal United States Geological Survey Big Bend National Park Service Natural Resource Conservation Service State Texas Commission on Environmental Quality Upper Pecos Soil and Water Conservation District #213 Local The City of El Paso, Public Service Board The City of Laredo Environmental Services Division The City of Laredo Health Department The City of Brownsville The Rio Grande International Study Center Texas A&M Experiment Station, El Paso Texas Cooperative Extension, Fort Stockton The University of Texas at El Paso New Mexico State University El Paso Community College International United States Section, International Boundary and Water Commission iii iv Table of Contents PARTICIPATING AGENCIES III TABLE OF CONTENTS V INDEX OF FIGURES IX INDEX OF TABLES XI LIST OF ACRONYMS XIII EXECUTIVE SUMMARY XV 1.0 INTRODUCTION 1 HISTORY OF THE INTERNATIONAL BOUNDARY AND WATER COMMISSION -
GC 57-2.Indb
Geologia Croatica 57/2 117–137 13 Figs. 3 Pls. ZAGREB 2004 Lower Aptian Rudist Faunas (Bivalvia, Hippuritoidea) from Croatia Jean-Pierre MASSE1, Mukerrem FENERCI-MASSE1, Tvrtko KORBAR2 and Ivo VELIĆ2 Key words: Rudist faunas, Lower Aptian, Lower Cre- – from Svilaja Mt., in the hinterland of Split, caprinid taceous, Adriatic Carbonate Platform, Croatia. facies including a few Offneria sp. and Glossomyo- phorus costatus MASSE, SKELTON & SLIŠKOVIĆ of Early Aptian age was reported by CVETKO- Abstract TEŠOVIĆ et al. (2003). Lower Aptian rudist faunas from Croatia consist of Requienia? zla- tarskii PAQUIER, Toucasia sp., Agriopleura sp., Glossomyophorus The foregoing shows that the Aptian is a key stage costatus MASSE, SKELTON & SLIŠKOVIĆ, Himeraelites sp. and Offneria sp. This assemblage has a clear Southern Tethyan (Arabo– for Lower Cretaceous rudist studies in Croatia, as African) significance and typifies the Early Aptian. Faunas from the well as in adjacent regions: in Slovenia, where Aptian interior of the Adriatic Carbonate Platform in Istria are dominated by caprinids have been described by PLENIČAR & BUS- Requieniidae while those from the northeastern area in the vicinity of ER (1967) and TURNŠEK et al. (1992), and in Bosnia, Tounj–Ogulin, close to the platform margin, exhibit a higher diversity and include, beside requieniids, Caprinidae, Caprotinidae and Mono- where caprinids and caprotinids have been studied by pleuridae, in conjunction with evidence of open marine conditions. MASSE et al. (1984). The objective of the present paper is to specify the taxonomic position of Lower Aptian rudists found in the Kanfanar area of Istria, and the Tounj area of central Croatia (Fig. -
Geology of Tunceli - Bingöl Region of Eastern Turkey
GEOLOGY OF TUNCELİ - BİNGÖL REGION OF EASTERN TURKEY F. A. AFSHAR Middle East Technical University, Ankara ABSTRACT. — This region is located in the Taurus orogenic belt of the highland district of Eastern Turkey. Lower Permian metasediments and Upper Permian suberystalline limestone are the oldest exposed formations of this region. Lower Cretaceous flysch overlies partly eroded Upper Permian limestone discordantly. The enormous thickness of flysch, tuffs, basaltic - andesitic flows, and limestones constitute deposits of Lower Cretaceous, Upper Cretaceous, and Lower Eocene; the deposits of each of these periods are separated from the others by an unconformity. Middle Eocene limestone is overlain discordantly by Lower Miocene marine limestone which grades upward into lignite-bearing marls of Middle Miocene and red beds of Upper Miocene. After Upper Miocene time, this region has been subjected to erosion and widespread extrusive igneous activities. During Permian this region was part of Tethys geosyncline; in Triassic-Jurassic times it was subjected to orogenesis, uplift and erosion, and from Lower Cretaceous until Middle Eocene it was part of an eugeosyncline. It was affected by Variscan, pre-Gosauan, Laramide, Pyrenean, and Attian orogenies. The entire sedimentary section above the basement complex is intensely folded, faulted, subjected to igneous intrusion, and during five orogenic episodes has been exposed and eroded. INTRODUCTION In the August of 1964 the Mineral Research and Exploration Institute of Turkey assigned the writer to undertake geologic study of the region which is the subject of discussion in this report. This region is located in the highland district of Eastern Turkey, extending from Karasu River in the north to Murat River in the south. -
A Glimpse of Some of the Geology and Mineral Resources: Sierra Blanca
THE EL.PAS0 GEOLOGICAL SOCIETY I I GUIDEBOOK i FIFTH ANNUAL FIELD TRIP I I I I A GLIMPSE OF SOME OF THE I GEOLOGY AND MINERAL RESOURCES I I SIERRA BLANCA-VAN HORN COUNTRY HUDSPETH AND CULBEWSON COUNTIES TEXAS > APRIL 3, 1971 iii TABLE OF CONTENTS F - The Texas Lineament in Eagle Flat, Texas ------------- 28 INTRODUCTION The Trans Pecos region of West Texas has attracted the attention I it deserves as a source of useful minerals both metallic and nsn- metallic. Because of the preoccupation of the people of Texas with petroleum production, many have overlooked the fact that them have been several important metal mines tn this province and that talc deposi ts are s ti1 l being worked here. Undoubtedly othep economic mineral deposits exist in the region awai ting discovery by intensive geological prospecting. The af'fi cers of the El Paso Geological Society and the field trip leadek hope that this trip will heighten inteest in the finding and developing of mineral deposi ts in Trans Pecos Texas. We welcome all our visitcs~sand know that they will wish to jodn us in thanking all those who made thds trip possible. We wish especially to acknowledge the kindness of the Pioneer Talc Company in showing us through the mill at Allamore and allowlng the group to visdt the Texsla- Talc mine. We also wish to thank Mr. Sandy Neal of Van Haon for per- mission to cross the Neal Ranch on the way to the Hazel Wne. John M. Hills, President El Paso Geological Society EL PAS0 GEOLOGICAL SOCIETY OFFICERS John M. -
Environmental Contaminants and Their Effects on Fish in the Rio Grande Basin
Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental Contaminants and their Effects on Fish in the Rio Grande Basin S# S# S# S# S#S#S# S#S#S#S# S# S# # S S# S# # S S# S# S# S# # S# S# S S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# S# # S# S# # S S#S# S S# S# S# S# #S# S# S# S# S#S S# # S# SS# S# S# S#S# Scientific Investigations Report 2004—5108 U.S. Department of the Interior U.S. Geological Survey Front cover. The U.S. map shows the Rio Grande Basin (green) and stations sampled in this study (orange). Shown in gray are major river basins and stations in the conterminous U.S. sampled during other Biomonitoring of Environmental Status and Trends Program (BEST) investigations. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental Contaminants and their Effects on Fish in the Rio Grande Basin By Christopher J. Schmitt, Gail M. Dethloff, Jo Ellen Hinck, Timothy M. Bartish, Vicki S. Blazer, James J. Coyle, Nancy D. Denslow, and Donald E. Tillitt Scientific Investigations Report 2004—5108 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. -
Chapter 1 Far West Texas Description
2021 Far West Texas Water Plan Draft October 2020 CHAPTER 1 FAR WEST TEXAS DESCRIPTION 2021 Far West Texas Water Plan Draft October 2020 This page intentionally left blank. 2021 Far West Texas Water Plan Draft October 2020 1 FAR WEST TEXAS Far West Texas encompasses the most arid region of the State of Texas (Figure 1-1). Residents of this expansive desert environment recognize that water is a scarce and valuable resource that must be developed and managed with great care to ensure the area’s long-term viability. The Region’s economic health and quality of life are dependent on a sustainable water supply that is equitably managed. Chapter 1 presents a broad descriptive overview of Far West Texas including currently existing water management facilities and international water issues. This chapter also summarizes specific planning components that are presented in more detail elsewhere in this Plan, such as projected population and water demand and available water-supply sources to meet these anticipated demands. Also provided in this chapter is a listing of State and Federal agencies, universities, and private organizations that are involved in various aspects of water supply issues. Figure 1-1. Location of Far West Texas 1-1 2021 Far West Texas Water Plan Draft October 2020 1.1 WATER PLANNING AND MANAGEMENT 1.1.1 Regional Water Planning The 2021 Far West Texas Water Plan follows an identical format as the plans prepared by the other 15 water planning regions in the State as mandated by the Texas Legislature and overseen by the Texas Water Development Board. -
Rio Grande Compact Commission Report
3 RIO GRANDE COMPACT COMMISSION REPORT RIO GRANDE COMPACT The State of Colorado, the State of New Mexico, and the State of Texas, desiring to remove all causes of present and future controversy among these States and between citizens of one of these States and citizens of another State with respect to the use of the waters of the Rio Grande above Fort Quitman, Texas, and being moved by considerations of interstate comity, and for the purpose of effecting an equitable apportionment of such waters, have resolved to conclude a Compact for the attainment of these purposes, and to that end, through their respective Governors, have named as their respective Commissioners: For the State of Colorado M. C. Hinderlider For the State of New Mexico Thomas M. McClure For the State of Texas Frank B. Clayton who, after negotiations participated in by S. O. Harper, appointed by the President as the representative of the United States of America, have agreed upon the following articles, to- wit: ARTICLE I (a) The State of Colorado, the State of New Mexico, the State of Texas, and the United States of America, are hereinafter designated “Colorado,” “New Mexico,” “Texas,” and the “United States,” respectively. (b) “The Commission” means the agency created by this Compact for the administration thereof. (c) The term “Rio Grande Basin” means all of the territory drained by the Rio Grande and its tributaries in Colorado, in New Mexico, and in Texas above Fort Quitman, including the Closed Basin in Colorado. (d) The “Closed Basin” means that part of the Rio Grande Basin in Colorado where the streams drain into the San Luis Lakes and adjacent territory, and do not normally contribute to the flow of the Rio Grande. -
Albian Rudist Biostratigraphy (Bivalvia), Comanche Shelf to Shelf Margin, Texas
Carnets Geol. 16 (21) Albian rudist biostratigraphy (Bivalvia), Comanche shelf to shelf margin, Texas Robert W. SCOTT 1, 2 2 Yulin WANG 2 Rachel HOJNACKI Yulin WANG 3 Xin LAI 4 Highlights • Barremian-Albian caprinids biostratigraphic zones are revised and integrated with ammonites and benthic foraminifers. • New caprinid rudist species are the key to revising long-held correlations of Albian strata on the Co- manche shelf, Texas. • On the San Marcos Arch, central Texas, the shallow shelf Person Formation is the upper unit of the Fredericksburg Group. • The Person underlies the basal Washita Group sequence boundary Al Sb Wa1 and the Georgetown Formation. Abstract: Rudists were widespread and locally abundant carbonate producers on the Early Cretaceous Comanche Shelf from Florida to Texas, and on Mexican atolls. As members of the Caribbean Biogeogra- phic Province, their early ancestors emigrated from the Mediterranean Province and subsequently evol- ved independently. Comanchean rudists formed biostromes and bioherms on the shelf interior and at the shelf margin. Carbonate stratigraphic units of the Comanche Shelf record rudist evolution during the Barremian through the Albian ages and an established zonal scheme is expanded. This study documents new Albian rudist occurrences from the Middle-Upper Albian Fredericksburg and Washita groups in Central and West Texas. Rudists in cores at and directly behind the shelf margin southeast of Austin and San Antonio, Texas, complement the rudist zonation that is integrated with ammonites and foraminifers. These new rudist data test long-held correlations of the Edwards Group with both the Fredericksburg and Washita groups based solely on lithologies. Rudist and foraminifer biostratigraphy indicate that the Edwards Group is coeval with the Fredericksburg not the Washita Group. -
Evidence for Controlled Deformation During Laramide Orogeny
Geologic structure of the northern margin of the Chihuahua trough 43 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA D GEOL DA Ó VOLUMEN 60, NÚM. 1, 2008, P. 43-69 E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Geologic structure of the northern margin of the Chihuahua trough: Evidence for controlled deformation during Laramide Orogeny Dana Carciumaru1,*, Roberto Ortega2 1 Orbis Consultores en Geología y Geofísica, Mexico, D.F, Mexico. 2 Centro de Investigación Científi ca y de Educación Superior de Ensenada (CICESE) Unidad La Paz, Mirafl ores 334, Fracc.Bella Vista, La Paz, BCS, 23050, Mexico. *[email protected] Abstract In this article we studied the northern part of the Laramide foreland of the Chihuahua Trough. The purpose of this work is twofold; fi rst we studied whether the deformation involves or not the basement along crustal faults (thin- or thick- skinned deformation), and second, we studied the nature of the principal shortening directions in the Chihuahua Trough. In this region, style of deformation changes from motion on moderate to low angle thrust and reverse faults within the interior of the basin to basement involved reverse faulting on the adjacent platform. Shortening directions estimated from the geometry of folds and faults and inversion of fault slip data indicate that both basement involved structures and faults within the basin record a similar Laramide deformation style. Map scale relationships indicate that motion on high angle basement involved thrusts post dates low angle thrusting. This is consistent with the two sets of faults forming during a single progressive deformation with in - sequence - thrusting migrating out of the basin onto the platform. -
Finlay, Caliza……
LÉXICO ESTRATIGRÁFICO DE MÉXICO Finlay, Caliza……....................................................................Cretácico Temprano (Albiano) Referencia(s): Richardson, G.B., 1904, Report of a reconnaissance in Trans-Pecos north of the Texas and Pacific Railway: University of Texas Bulletin, 23, 119 p. Baker, C.L., 1927, Exploratory geology of part of southwestern Trans-Pecos, Texas: University of Texas Bulletin, 2745, 70 p. Historia nomenclatural de la unidad: Richardson (1904 en Arenas-Partida, 1982) utiliza por primera vez el nombre Caliza Finlay para describir las calizas que afloran en el flanco norte de las montañas Finlay, Texas. Cabe mencionar que en esta propuesta, el autor no asigna su localidad tipo. Posteriormente, Baker (1927 en Monreal y Longoria, 1999) realiza un estudio más detallado en el que extiende la distribución geográfica de la unidad y propone la localidad estudiada por Richardson (1904) como su localidad tipo. Años después, algunos autores utilizan informalmente el nombre caliza Guante para nombrar en campo, las rocas con la misma posición estratigráfica que las de la Caliza Finlay en la Sierra Los Fresnos, norte de Sierra Pilares y Sierra El Porvenir en Chihuahua (Nichols, 1958; Ferrel, 1958; Harwell, 1959). Debido a ello, Atwill (1960 en Monreal y Longoria, 1999) realiza una investigación exhaustiva y con base en la continuidad lateral y similitud litológica de los estratos de las unidades Guante y Finlay, sugiere que se trata de la misma unidad y propone el desuso y reemplazo del término Caliza Guante por Caliza Finlay. Finalmente, Monreal y Longoria (1999) documentan que varios autores (Rodríguez-Torres y Guerrero, 1969; Rodríguez-Torres, 1969; Córdoba, 1968, 1969; Córdoba et al., 1970; De Ford y Haenggi, 1970) sugieren que la Caliza Finlay debe utilizarse como una unidad formal para el noreste de Chihuahua. -
The Mesozoic Mesozoic Things to Think About
The Mesozoic Mesozoic Things to think about • Breakup of Pangea and its relationship to sealevel and climate • Dominance of reptiles • Origin of birds • Origin of mammals • Origin of flowers (angiosperms) • Expansion of insects • Life in the seas assumes an (almost) modern form 1 2 3 4 5 Triassic Period 248 to 206 Million Years Ago 6 The Connecticut River Valley 7 Dinosaur Footprints of the Connecticut Valley Edward Hitchcock Fossil Fish of the Connecticut Valley 8 Jurassic Period 206 to 144 Million Years Ago 9 Cretaceous Period 144 to 65 Million Years Ago 10 11 Mesozoic Ammonites 12 Cretaceous Heteromorph Ammonites Nipponites mirabilis Kamchatka, Russia Macroscaphites sp. Baculites sp. Didymoceras stevensoni Rudistid Bivalves: Jurassic- Cretaceous 13 Durania cornupastoris at Abu Roash, Western Desert near Gizah, Egypt Fringing Upper Cretaceous rudist reef reservoirs flanking basement highs, Augila oil field, eastern Libya Reef-forming rudist (Radiolites) from Sarvak Formation, Cenomanian, south Iran. 14 Biostrome of hippuritid rudists at Montagne des Cornes; Santonian, Pyrenees, France Rudistid Buildups 15 Biostrome of Vaccinites vesiculosus (Woodward, 1855); Campanian of Saiwan, Oman Monopleura marcida Albian, Viotía, Greece 16 Chalk 17 Pterosaurs Mosasaurs 18 Plesiosaurs Ichthyosaurs 19 A Dinosaur Family Tree (aka Phylogeny) 20 Sauropods Theropods 21 Dilong paradoxus Early Cretaceous, China A feathered tyrannosaurid? 22 A Dinosaur Family Tree (aka Phylogeny) Ornithopods (aka Hadrosaurs) 23 Thyreophorans (aka Ankylosaurs, etc) Margincephalians (aka Ceratopsians) 24 A Dinosaur Family Tree (aka Phylogeny) The Liaoning Fauna: An early Cretaceous Lagerstatten Some highlights: -- feathered dinosaurs -- preserved internal organs -- oldest placental mammal 25 The Liaoning Fauna The Liaoning Fauna Caudipteryx. Microraptor gui MICRORAPTOR zhaoianus.