Sludge reduction by aquatic worms in wastewater treatment

withemphasison thepotentialapplicationof Lumbriculus variegatus

Promotor Prof.dr.ir.W.H.Rulkens HoogleraarMilieutechnologie Copromotor Dr.ir.A.Klapwijk Voormaliguniversitairhoofddocent,sectieMilieutechnologie Samenstelling promotiecommissie Prof.dr.H.J.P.Eijsackers WageningenUniversiteit Prof.ir.J.H.J.M.vanderGraafTechnischeUniversiteitDelft Prof.dr.ir.A.J.M.Stams WageningenUniversiteit Dr.ir.P.F.M.Verdonschot Alterra,WageningenUniversiteitenResearchcentrum Sludge reduction by aquatic worms in wastewater treatment

withemphasison thepotentialapplicationof Lumbriculus variegatus Hellen J. H. Elissen

Proefschrift terverkrijgingvandegraadvandoctor opgezagvanderectormagnificus vanWageningenUniversiteit, Prof.dr.M.J.Kropff, inhetopenbaarteverdedigen opdinsdag18december2007 desochtendsteelfuurindeAula Elissen, H. J. H., 2007. Sludge reduction by aquatic worms in wastewater treatment withemphasisonthepotentialapplicationof Lumbriculus variegatus. PhD thesis Wageningen University, Wageningen, the Netherlands with references – withsummariesinEnglishandDutch,192pages. ISBN9789085047773. ╡╡╡Abstract ╞╞╞ Inwastewatertreatmentplants(WWTPs),largeamountsofbiologicalwastesludgeare produced.IntheNetherlands,theapplicationofthissludgeinagricultureordisposalin landfillsisnolongerallowed,mainlybecauseofitshighheavymetalcontent.Thesludge thereforegenerallyisincinerated.Sludgeprocessingcostsareestimatedtobehalfofthe total wastewater treatment costs. This thesis focuses on the application of aquatic worms to reduce the amount and volume of the excess sludge. Several worm , belonging to the , Tubificidae (including Naidinae) or Lumbriculidae have specific characteristics that could make them suitable for such an application. A 2.5yearsurveyoffreeswimmingAeolosomatidaeandNaidinaeinWWTPsshowedthat theirgrowthwashardtocontrolandtheireffectonthetreatmentprocessunclear. The sessile species Lumbriculus variegatus was selected for further research, becauseofitsstableandquantifiablegrowthandsludgereduction.Inaddition,batch experimentsindicatedthat L. variegatus hasmorepotentialforsludgereductionthan sessileTubificidae.Differentmunicipalwastesludgescouldbedigestedby L. variegatus . Thisprocesstypicallywastwiceasfastasendogenoussludgedigestionandonaverage 0.09( ±0.04)mgsludge/mgworm/day(drymatterbased)wasdigested.However,the final reduction percentage was the same for both processes(around50%drymatter based)and17(±6)%couldbeattributedtodigestionbytheworms.Theresultingworm faeces had a distinct compact shape and a highly improved initial settling rate and settleability(lowsludgevolumeindexofaround60mL/g),whichcouldbebeneficialto furtherprocessing.Around7%ofthesludge(drymatterbased)wasconvertedintonew worms after asexual reproduction by division and biomass growth. This proteinrich biomasscaneasilybeseparatedfromthesludgeandreused,e.g.asaquariumfishfood, becausetheconcentrationsofmostheavymetalsinthewormswerelowerthaninthe wastesludge.Areactorsetupforsludgereductionwith L. variegatus wasdeveloped, basedonimmobilizationofthewormsinacarriermaterialandacompleteseparationof waste sludge and worm faeces. It showed promising results in a sequencing batch experiment,butshouldbefurtheroptimizedassludgereductionpercentagesaswellas otherperformanceparametersvariedconsiderably.Theprocesshashighpotentialfor fullscaleapplications,butthefeasibilitydependsontheunknownmaximumeffective worm population density that can be maintained, and the production, reuse possibilitiesandvalueoftheproducedwormbiomass. Keywords :Wastesludgereduction,wastewatertreatment,aquaticworms, Lumbriculus variegatus

╨╨╨╨ Opgedrage aan mien auwers, miene broor en mien groetauwers ╥╥╥

╡╡╡Contents ╞╞╞

Frequently used terms and abbreviations 9

Chapter 1 Introductiontosludgereductionresearchwithaquaticworms 11

Chapter 2 Descriptionsofaquaticwormsinsludgereductionresearch 19

Chapter 3 PopulationdynamicsoffreeswimmingAnnelidainfourDutch wastewatertreatmentplantsinrelationtoprocesscharacteristics 31

Chapter 4 Developmentofatesttoassessthesludgereduction potentialof Lumbriculus variegatus inwastesludge 51

Chapter 5 Factorsinfluencingsludgereductionby Lumbriculus variegatus 65

Chapter 6 Theeffectsofsludgeconsumptionby Lumbriculus variegatus onsludgecharacteristics 91

Chapter 7 Comparisonofsludgereductionbetween Lumbriculus variegatus ,sessileTubificidaeandmixedculturesofboth 111

Chapter 8 Anewreactorconceptforsludgereductionusing Lumbriculus variegatus 125

Chapter 9 Discussionandoutlooktowardsapplicationof Lumbriculus variegatus inwastewatertreatment 135

Summary 151 Samenvatting 157

References 163 Appendix I 181 Appendix II 183

About the author 185 Publications 186 Dankwoord/ Acknowledgments 188

╡╡╡Frequently used terms and abbreviations ╞╞╞ Annelida phylum consisting of segmented terrestrial, freshwaterandmarineworms Aphanoneura Class of Annelida consisting of one (mainly) aquatic family,theAeolosomatidae Ash Inorganic fraction of waste sludge. Calculated by subtractingtheVSSfromtheTSS AT Aerationtankinwastewatertreatmentplant Consumption Ingestion/uptakeofsludgebyworms Digestion by worms Sludge (TSS) breakdown after consumption during worm gut passage due to metabolic processes (e.g. maintenance,growth) D Linear sludge digestion rate by worms (dry matter based;ind 1) Dry weight Deadwormweight,determinedafterdryingovernight at105 °Cinporcelaincrucible Endogenous digestion Sludge (TSS) breakdown due to endogenous respiration —i.e. oxidation of bacterial tissue— in sludge without external substrate (adapted from van Loosdrecht&Henze,1999) Faeces percentage Visualestimationofthewormfaecesasfractionofthe total amount of waste sludge plus worm faeces. A faecespercentageof100%indicatesthatwormshave consumedallthesludgeflocs Free-swimming Common term in wastewater treatment to describe (small) species of aquatic worms (like Naidinae (Tubificidae)andAeolosomatidae)thatareabundant in the mixed liquor (in or on the sludge flocs) of wastewatertreatmentplants G Linearwormbiomassgrowthrate(drymatterbased; ind 1) Gn Linearwormnumbergrowthrate(ind 1).Measureof reproduction n Numberofworms N Number of samples (unless indicated otherwise, e.g. Chapter3)

╡9╞

Oligochaeta Class of Annelida consisting of aquatic families like Tubificidae (including the Naidinae) and Lumbriculidae, but also terrestrial families like earthworms Reduction or digestion General term used to describe (TSS or VSS) breakdownofsludgeby(combinationsof)biological, chemical,mechanicalorphysicalmethods Sessile Common term in wastewater treatment to describe species of (larger) aquatic worms (like Tubificidae (exceptfortheNaidinae)andLumbriculidae)thatare mainly found on surfaces in wastewater treatment plants,e.g.thereactorwallsorcarriermaterials Sludge age OrSRT(solidsretentiontime).Theaverageperiodof time the sludge has remained in the system. Also indicatedwith‘θ’ SVI Sludgevolumeindexofsludge(inmL/g).Volumeof1

gofsludgeTSSaftersettlingofthesludgeflocs.SVI 30 istheSVIafter30minutes.SVIvaluesdecreasewith improvedsettleability TSS Total suspended solids. Portion of the total solids retained on a filter with a specified pore size, measuredafterbeingdriedat105°C VSS Volatilesuspendedsolidsororganicfractionof the wastesludge.Thosesolidsthatcanbevolatilizedand burnedoffwhentheTSSareignitedat600°C W/S ratio Worm to sludge ratio (dry matter based; dimensionless) Waste sludge Surplus(activated)sludgeproducedinWWTPs Wet weight Live worm weight, determined after removing adhering water on a perforated piece of aluminium foilontissuepaper Worm faeces Fractionofsludgeexcretedasfaecalpelletsbyworms afterconsumptionanddigestion WWTP Wastewatertreatmentplant Y Yield.Wormbiomassproducedfromsludgedigested by worms only (dry matter based; dimensionless or percentage)

╡10 ╞

╡╡╡Chapter 1╞╞╞ Introductiontosludgereductionresearchwithaquaticworms

╡Chapter 1 ╞

1.1 The problem of waste sludge production in wastewater treatment

In aerobic WWTPs (wastewater treatment plants), large amounts of biological waste sludge are produced with an average sludge production of 0.4 kg VSS (volatile suspended solids) per kg COD (chemical oxygen demand) of incoming wastewater removed (Tchobanoglous et al. , 2003). A worldwide average of 2040 kg dry matter waste sludge is produced per population equivalent per year (Kroiss, 2004). Waste sludgeisacomplexmixtureofwater(uptomorethan95%),bacteria,deadorganicand inorganic materials, containing phosphorous and nitrogen compounds and various pollutants (e.g. heavy metals, organic pollutants and pathogens) (Rulkens, 2004). In Europe,wastewateristreatedinmorethan40,000WWTPs,whichproducearound7 milliontonnesofdrywastesludgeyearly(Roman et al. ,2006;Spinosa,2007).Inthe Netherlands, almost 400 municipal WWTPs currently produce a total amount of 350,000 tonnes dry sludge mass per year (Statistics Netherlands (CBS), 2007). Even thoughproductionintheNetherlandsisexpectedtostabilizethecomingyearswithina range of 5 % (Loeffen & Geraats, 2005), waste sludge production worldwide is only expectedtoincrease(Neyens et al. ,2004).Thecostoftreatmentanddisposalofwaste sludge—frommunicipalaswellasnonmunicipal(industrial)sources—isestimatedto behalfofthetotalcostsofwastewatertreatment(Wei et al. ,2003b;Kroiss,2004).In theNetherlandsforexample,thesecosts(andenvironmental‘costs’intheformoffor example CO 2emissions) mainly result from incineration, but also from the fact that mostoftheproducedwastesludgehastobetransportedtocentralsludgeprocessing plants,whilethiswastesludgeingeneralstillconsistsof7075%water(deJong,2007). Therefore,minimizingsludgeproductionandthecostsforfurtherprocessingofwaste sludgehasahighpriorityinwastewatertreatment(Boehler&Siegrist,2006). InEurope,mostsettledsludgesarestabilised,thickenedbyanaerobicdigestion and then disposed (Roman et al. ,2006).Traditionalmethodsforsludgedisposalare application as fertilizer in agriculture, disposal in landfills or the sea, or incineration (Spinosa, 2004). However, due to stricter regulations —and these regulations will becomeevenstricterduetotheupcomingversionoftheEuropeanUrbanWasteWater Treatment Directive (UWWTD)— there is a strong need to develop technologies for decreasingwastesludgeproductionandalternativesfordisposal,suchasrecyclingof valuablecomponentsinthewastesludge(e.g.Low&Chase,1999;Spinosa,2001;Wei et al. , 2003b). Several authors wrote reviews on current technologies for waste sludge minimization,involvingchemical,physical,mechanicalandbiologicaltechnologiesand combinations thereof (e.g. Wei et al. , 2003b; Ødegaard, 2004; Ramakrishna & Viraraghavan, 2005; Andreottola & Foladori, 2006; PérezElvira et al. , 2006). These technologies for example influence/promote lysiscryptic growth, uncoupling metabolism,anaerobicdigestion,maintenancemetabolismandpredationonbacteriain thesludgematrix.Inaddition,severalauthorswrotereviewsaboutrecoveryoptionsfor materials and energy from waste sludge (e.g. Ødegaard et al. , 2002; Spinosa, 2004; Kroiss,2004;Rulkens,2004;Rulkens&Bien,2004;Hospido et al. ,2005;PérezElvira

╡12 ╞ ╡Introduction ╞

et al. , 2006). These options include nutrients, organic materials, biogas, carbon, fuel andbuildingmaterials.Forexample,104WWTPsinthe Netherlands have anaerobic sludgedigestersforsludgereductionandbiogasgeneration(Coenen et al. ,2005). In conclusion, key factors for improving the processing of waste sludge are reducing the amount of dry solids, reducing the volume and recovering valuable components.

1.2 A biological option for reducing waste sludge production and recovering valuable components

IntheNetherlands,themajorityofWWTPs,especiallythesmallerplants,donothave facilities for anaerobic sludge digestion. In addition, some of the sludge reduction technologiesabovehaveahighpotential,butrequiretheadditionofchemicalsorthe inputofasubstantialamountofextraenergy(e.g.Wei et al. ,2003b;vanRens et al. , 2005; Nowak, 2006). A biological technology for processing waste sludge, that addressesthethreementionedkeyfactorsandintheorymakesuseofthenaturalfood chainonly,iswastesludgereductionbyworms.Thistechnologyapplieswormsthatfeed andgrowonbiologicalwastesludgeanditcanbedivided into sludge reduction with earthworms(vermicomposting)orwithaquaticworms.Whilefeedingonthesludge,its drymassisreducedbymetabolicprocessesintheworms,itsvolumeisreduceddueto compacting of the sludge flocs and at the same time proteinrich worm biomass is produced,withseveralreuseoptionsandthusaddedvalue. Sludge reduction with earthworms is a promising and relatively common technology, especially in developing countries in smallscale settings (e.g. Hornor & Mitchell, 1981; Hartenstein et al. , 1984; Ndegwa & Thompson, 2001; Cardosa & Ramirez,2002;Bajsa et al. ,2003;Bukuru&Jian,2005).Animportantconsideration fortheapplicabilityofthistechnologyisthemoisturecontentofwastesludge,whichis optimal at around 80 % (e.g. Lotzof, 1999; Singh et al. , 2004; Ratsak & Verkuijlen, 2006). The second option is sludge reduction with aquatic worms, the subject of this thesis.ThistechnologyapplieswormsthatnaturallyoccurinWWTPsandthereisno need for sludge thickening as with earthworms. The occurrence of aquatic worms in WWTPsandtheirgrowthonwastesludgehasbeendescribedbyseveralauthorssince morethan60yearsago(e.g.Reynoldson,1939b;Curds&Hawkes,1975;Learner,1979; Poole & Fry, 1980; Aston & Milner, 1981; Densem, 1982; Learner & Chawner, 1998). Papers on the actual application (mostly in laboratory setups) however have mainly appeared in more recent years. Currently, no fullscale systems for sludge reduction with aquatic worms are operational (or the results have not been published). Most researchonsludgereductionbyaquaticwormshasbeenconductedinChina(e.g.Wei et al. ,2003a;Wei&Liu,2005;Liang et al. ,2006a;Liang et al. ,2006b;Wei&Liu,2006; Guo et al. ,2007;Huang et al. ,2007),Japan(e.g.Zhang,1997;Luxmy et al. ,2001)and the Netherlands (e.g. Ratsak, 1994; Rensink & Rulkens, 1997; Janssen et al. , 1998;

╡13 ╞ ╡Chapter 1 ╞

Ratsak,2001;Janssen et al. ,2002).Table1.1showsanoverviewofthemostimportant resultsfromtheseresearches. Table 1.11.1 Overview of the main results from researches on sludge reduction by aquatic worms. Abbreviationsused :A.h.= hemprichi ,C sludge =carboncontentofsludge,N.e.= Nais elinguis , P.a.= Pristina aequiseta ,SVI=sludgevolumeindex,TOC=totalorganiccarbon,TP=totalphosphate, TSS=totalsuspendedsolids,T.t.= Tubifex tubifex ,Tub=sessileTubificidae,VSS=volatilesuspended solids, W/S ratio = calculated approximatemaximummaximum worm to sludge ratio (dry matter based), Y = sludgeyieldinkgTSSperkgCOD removed ,↓=decrease,↑=increase. AuthorAuthorMainwormspecies MainresultsMainresultsControlsControls (+W/Sratio)(+W/Sratio) ChinaChina Wei et al. (2003a) A.h.,P.a.,N.e.(~0.9) Y=0.14 ControlY=0.22 SVI ↓ Wei&Liu(2005) Tub TSS ↓59% ControlTSS ↓14% SVI ↓ Liang et al. (2006a) A.h.(~0.07) TSS ↓3965% Controldeductedin VSS ↓0.56.3mg/mg calculations worm/d Y=0.100.27 ControlY=0.250.49 SVI ↓ Liang et al. (2006b) A.h.,T.t. VSS ↓0.50.8mg Controldeductedin Csludge /mgworm/d calculations Wei&Liu(2006) Tub(~0.6) TSS ↓48(±45)% Nocontrol Guo et al. (2007) Tub TSS ↓46% Nocontrol Huang et al. (2007) T.t.(~0.1) VSS ↓0.20.8mg/mg Controldeductedin worm/d calculations SVI ↑EffluentTP ↑ JapanJapan Zhang(1997) A.h.(~0.07) TSS ↓40% Control Luxmy et al. (2001) Unknownworms Noreduction Control theNetherlandstheNetherlands Rensink&Rulkens Tub COD ↓1867% ControlCOD ↓20% (1997) Y=0.15 ControlY=0.4 SVI ↓ Nitrate,phosphate ↑ Janssen et al. (1998) Tub,A.h.,N.e.(~0.3) TSS ↓1050% ControlTSS ↓1015% Y=0.17 ControlY=0.22 SVI ↓ Nitrate,phosphate ↑ Ratsak(1994&2001) N.e.(~0.4) Sludgedisposalor Control TSS ↓2550% SVI ↓ Janssen et al. (2002) Tub,A.h. TSS ↓30% ControlTSS ↓10%

╡14 ╞ ╡Introduction ╞

Insummary,mostresearchersmentionasubstantialTSSreductionandalower SVI(i.e.improvedsludgesettleability)asaresultofwastesludgedigestionbyworms. Ratsak & Verkuijlen (2006) gave an extensive overview of the applicability of this technologyinfullscalewastewatertreatmentandconcludedthatthemainchallenges liewithinthecontroloftheprocess.Somepointsofconsiderationareunstableworm growth(andsludgedigestion)inrelationtounknownoptimalconditions,surfacearea ofareactor,extraenergyinput(e.g.foraeration)andthefateofheavymetalsthatare presentinwastesludge.Astheypointedout,availabledatafromtheseresearchesare highly variable and sometimes incomplete, contradictory or difficult to interpret. Therefore,acriticalviewonsludgereductionresearchwithaquaticwormsisessential, becauseseveralfactorsareoftenoverlooked,butcauseserious overestimationsofthe abilityofaquaticwormstodigestsludge.Thesefactorsincludethewormtosludgeratio, increased endogenous sludge digestion as a result of increased sludge ages, oxygen concentrationsortemperatures,sludgeaccumulationinreactors,carriermaterials(in fullscaleexperiments)andworms(incaseofpilotscaleexperiments).Itmaywellbe that worm presence often coincides with or results from changes in certain process characteristicsorprocessperformance,butnotcausesthem.Inaddition,eventhough themaximumbiodegradabilityofwastesludgebyvarioustechnologiesliesaround80% (Ramakrishna&Viraraghavan,2005;PérezElvira et al. ,2006),thisdoesnotmeanthat aquatic worms alone are capable of reaching this percentage, as the variable sludge reductionpercentagesof1093%inTable1.1illustrate. 1.3 Past research on waste sludge reduction with aquatic worms in the Netherlands Researchonwastesludgereductionbyaquaticwormsstartedmorethan30yearsagoat theSubdepartmentofEnvironmentalTechnologyatWageningenUniversity.In1973, during a student research aimed at reducing the occurrence of bulking sludge, large populations of the aquatic worm Aeolosoma hemprichi were observed in pilotscale oxidationditchesfedwithsyntheticdairywastewater.Theirhighpopulationdensities caused the sludge to colour red and waste sludge production and effluent COD concentrationsseemedtodecrease.Eventhoughthewormswereinitiallyregardedasa negative factor for the treatment system, their application for waste sludge reduction was considered for the first time. In 1995, this research field became much more relevant, due to the Dutch ‘BOOM’ regulations. These regulations prohibit the application of waste sludge as fertilizer in agriculture, when certain heavy metal concentrationsareexceeded(AppendixII,TableA3).Asaresult,wastesludgewasno longerappliedinagricultureintheNetherlands. Research in the period between 1973 and 2001 focused initially on the free swimming family Aeolosomatidae (mostly A. hemprichi ) and later also on sessile

╡15 ╞ ╡Chapter 1 ╞

Tubificidaemixtures 1.From2001on,theresearchfocusedmainlyonthesessilespecies Lumbriculus variegatus (familyLumbriculidae),becausethisspeciesdisplayed much morestablesludgereductionandwormgrowththanthebeforementionedfamilies(this thesis).Furtherinformationonthecharacteristicsofthesewormfamiliescanbefound inChapter2. The batch or continuous experiments with Aeolosomatidae and sessile Tubificidaeweredonewithsludgesproducedfrommunicipalandnonmunicipal(dairy and beer) wastewaters. A variety of systems was studied, ranging from laboratory glassware to pilotscale trickling filters and activated sludge systems, to fullscale WWTPs. The Aeolosomatidae, which do not need a carrier material, displayed population peaks. After a fast growth period of 34 weeks with enormous population densitiesofupto600specimenspermL,theirindividualsizebecamesmallerandthe populations usually disappeared after some more weeks. There were no clear indications as to what caused these peaks and their disappearance. Growth of sessile Tubificidae, usually in carrier materials that they needed for attachment, was more stable, but populations regularly disappeared also. Beneficial conditions for aquatic wormpopulationsseemedtobe>2mgO 2/L,pH59,lowammoniaconcentrations, temperatures around 1525 °C, low turbulence and sludge retention times lower than thedoublingtimesoftheworms.However,applyingtheseconditionsdidnotguarantee the presence of high worm densities and growth under different conditions was also observed. The most important effects of aquatic worms were decreases in sludge production (up to twice that of a system without worms), SVI and effluent COD and increases in nitrate, phosphate and turbidity of the effluent, but results were variable andsometimescontradictory.Inaddition,verifyingtheseconclusionsnowisnoteasy fromtheavailabledataandisoftenhamperedbychangesinprocessconditionsduring experiments (e.g. sludge loading rate, pH, temperature and sludge age), missing analyticaldetailsandmissingcontrolexperiments. Eventhoughtheresultsobtainedsofarwerepromising,therewerestilltoomany problemsassociatedwithmaintainingstablewormpopulationsandwithconstructing anexperimentalsetupthatexactlyquantifiedthesludgereductioncapacityofaquatic wormsandtheirinfluenceonotherprocesscharacteristics. 1.4 Objective and outline of this thesis Based on the past results, it was too early for scaling up this technology for practical applications in wastewater treatment. Further research at Wageningen University on this technology therefore focused on three main subjects. The natural

1 Free-swimming species are abundant in the mixed liquor (in or on the sludge particles) of WWTPs. Sessile species are mainly present on surfaces in the plants, e.g. the reactor walls or carrier materials. Tubificidae can be subdivided into sessile species (i.e. sessile Tubificidae) and free-swimming species (i.e. Naidinae) (Chapter 2).

╡16 ╞ ╡Introduction ╞

occurrences and population dynamics of aquatic worms in relation to process characteristics and process performance were studied in WWTPs and pilotscale continuous reactors. In batch experiments, the effects of different worm species on sludgereductionandsludgecharacteristicswerestudied.Theresearchwascarriedout in close cooperation with Bas Buys (Subdepartment of Environmental Technology, WageningenUniversity,theNetherlands).Thisthesisdescribespartoftheresearchand specifically aims to identify factors that are important for the application of this technology (especially with the sessile aquatic worm Lumbriculus variegatus) in wastewatertreatment. Chapter 2 givesanoverviewoftheaquaticworms(Aeolosomatidae,Tubificidae (including Naidinae) and L. variegatus ) that are described in this thesis, with short descriptions of their appearance, habitat, food, reproduction and characteristics that make them suitable for sludge reduction processes. Chapter 3 describes a 2.5year survey, in which populations of freeswimming worms in the aeration tanks of four DutchWWTPswerecountedregularly.Therelationofthesepopulationswithprocess characteristics and process performance of the sampled WWTPs was analysed by multivariateanalysestoevaluatetheirapplicabilityinwastewatertreatment. Thesessileaquaticworm L. variegatus ,whichwasfoundinmixturesofsessile Tubificidae, was selected for further investigation. This was based on initial observationsofsludgereductionandgrowthbythisspecies(Buys,2005;owndata),the variabilityinliteraturedataforothersessileandfreeswimmingaquaticwormspecies and the unstable growth of these freeswimming species in the survey described in Chapter3. Chapter 4 (ajointchapterwithBasBuysasfirstauthor)describesbatch experiments that investigated the basic mechanisms of sludge reduction by L. variegatus . Chapter 5 describes batch experiments that evaluated factors, which possibly influence sludge digestion by L. variegatus and worm growth. It focuses on sludge characteristics (sludges from different WWTPs and sludges pretreated by digestion, sterilization or sieving into different particle size classes), worm characteristics (high population densities, high wormtosludgeratiosandwormsize) and process conditions (ferric iron addition and light/dark conditions). Chapter 6 describes batch experiments that investigated the influence of sludge digestion by L. variegatus on sludge characteristics. These characteristics include settleability, dewaterability and degradability of sludge, turbidity of the sludge water phase and concentrationsofproteins,carbohydratesandheavymetals. Chapter 7 describesbatch experiments that compared the sludge reduction capacity and worm growth of L. variegatus withthatofsessileTubificidaeandamixedcultureofbothwormtypes.In addition,heavymetalbioaccumulationbybothwormtypeswascompared. Chapter 8 describes initial batch experiments with a pilotscale reactor for the application of L. variegatus insludgereductionprocesses.Inthissetup,thewormsareimmobilizedina carriermaterialandwastesludgeandwormfaecesareseparated.Finally, Chapter 9 discussestheconsequencesofthedatafoundinthisresearchfortheapplicabilityof L.

╡17 ╞ ╡Chapter 1 ╞

variegatus for sludge reduction in fullscale wastewater treatment. The overall feasibility of this concept and suggestions for further research are discussed as well.

╡18 ╞

╡╡╡Chapter 2 ╞╞╞ Descriptionsofaquaticwormsinsludgereductionresearch

╡Chapter 2 ╞

Abstract Thisthesisreferstovariousspeciesofaquaticworms.Anoverviewofthethreeinvolvedfamilies Aeolosomatidae,Tubificidae(includingthesubfamilyNaidinae)andLumbriculidaeispresented in this chapter. It describes their appearance, natural habitat, food, reproduction and use in researchonsludgereductioninwastewatertreatment.OftheLumbriculidae,only Lumbriculus variegatus is described. This overview shows that each of the described (sub)families has characteristics that are advantageous or disadvantageous for application in sludge reduction processes. Species with the most optimal combination of these characteristics under the conditionsinWWTPsshouldbeselected.Alternatively,specificconditionsinaseparateworm reactorcanbeoptimizedfortheselectedspecies. 2.1 Introduction Thisthesisreferstovariousspeciesofaquaticworms(phylumAnnelida),belongingto thethreefamiliesAeolosomatidae,Tubificidae(includingthesubfamilyNaidinae)and Lumbriculidae. Representatives of these families are commonly found in surveys of naturalwaters.Thischaptergivesashortoverviewoftheirappearance,naturalhabitat, food,reproductionanduseinresearchon sludgereduction in wastewater treatment. The information in this chapter focuses mainly on the species of each family that are importantinthecurrentresearch. Thespeciesunderstudycanbeclassifiedaccordingtotheirmodeofmovementor attachmenttosubstratesintothecategories‘freeswimming’or‘sessile’.Freeswimming species are abundant in the mixed liquor (in or on the sludge particles) of WWTPs (wastewatertreatmentplants),whilesessilespeciesaremainlyfoundonsurfacesinthe plants,e.g.thereactorwallsorcarriermaterials.Innaturalaquaticenvironments,the sessile species typically forage in a headdown position in the sediment. The free swimming species include representatives of the family of Aeolosomatidae and subfamilyNaidinae(familyTubificidae).Thesessilespeciesincluderepresentativesof other Tubificidae than the Naidinae and of the family Lumbriculidae. Even though Naidinae were long regarded as a separate family —the —, and still are classifiedassuchinliteratureonsludgereductionresearch(e.g.Wei&Liu,2006),they recently have been reclassified as subfamily Naidinae within the family Tubificidae basedon18SrDNAsequences(Erseus et al. ,2002).Duetothisrecentreclassification, most literature on Tubificidae does not refer to the Naidinae. In this thesis, ‘sessile Tubificidae’ therefore refers to the sessile species, but not to the freeswimming Naidinae. The information on the family Lumbriculidae focuses on the species Lumbriculus variegatus, becausenoothermembersofthisfamilyarementionedinthe remainderofthisthesis.

╡20 ╞ ╡Species descriptions ╞

2.2 Identification and appearance The following identification keys for aquatic worms were used: Sperber (1950), Brinkhurst(1971),Brinkhurst&Jamieson(1971)andTimm(1999).Exactidentification isoftenonlypossibleafterexaminationofthechaetae(‘bristles’)orreproductiveorgans inmaturespecimens.Therefore,thespecimensaremountedinpolyvinyllactophenolor Canadabalsam(e.g.Sperber,1948;McElhone,1982)andstudiedunderamicroscope. Table2.1showsanoverviewofthefour(sub)familieswiththeirgeneralcharacteristics. Table2.1includeslength,reproduction,motionandaspectsofappearancethatfacilitate identification. Table2.1Table2.1Somegeneralcharacteristicsofaquaticworm(sub)familiesdescribedinthisthesis. (Sub)families(Sub)familiesLength(mm)Length(mm) ReproductionReproduction AppearanceAppearance FreeFreeswimmingswimmingswimming Aeolosomatidae 12 Asexual Transparent,gliding,oildroplets Naidinae 510 Asexual Transparent,swimming,sometimes eyesorproboscis(snout)present SessileSessile SessileTubificidae 2060 Sexual(eggs) Lightred,coiling,wavingtail L. variegatus 4060 Asexual Darkred,escapereflex,steadytail Wormsizes(andweights)canvarygreatlyduringlifehistoryandalsobetween differentfoodsourcesandspeciesofthesame.Togetanindicationofthisrange, an overview of wet and dry weights from literature, Buys (2005) and the author’s observation is given in Table 2.2. Worm dry weight was determined after drying overnightat105°C.ThedrytowetweightpercentageofAeolosomatidaeandNaidinae is around 510 %, and of sessile Tubificidae and L. variegatus around 17 and 13 % respectively. TTTable2.2Table2.2able2.2SomeindividualwetanddryweightsofAeolosomatidae,Naidinae,sessileTubificidaeand L. variegatus fromliteratureandownobservations. Wet Dry FoodsourceFoodsourceReferencesReferences weightweight weight AeolosomatidaeAeolosomatidae (g) (g) Aeolosoma spp. 814 0.23 Sewagesludge Buys(2005),Liang et al. (2006a), owndata 130 0.111 Bacteria&yeast MacMichael et al. (1988) NaidinaeNaidinae (g) (g) Nais spp . 140 1116 Sewagesludge Buys(2005),owndata 110130 Agarbased Lochhead&Learner(1983) 220 Detritus Schönborn(1985) 30 Sediments Petersen et al .(1998) Pristina sp . 90 Agarbased Lochhead&Learner(1983) C. diastrophus 1040 Protozoa Schönborn(1984)

╡21 ╞ ╡Chapter 2 ╞

Table2.2Table2.2Continued. SpeciesSpeciesWet Dry FoodsourceFoodsourceReferencesReferences weightweight weight SessileTubificidaeSessileTubificidae (mg) (mg) T. tubifex 38 Sediments Appleby&Brinkhurst(1970) 223 0.43 Sewagesludge Finogenova&Lobasheva(1987) Limnodrilus spp. 0.120 Sediments Finogenova&Lobasheva(1987), Wiederholm et al. (1987) 0.6 Sediments Reible et al. (1996) L. variegatus (mg) (mg) 518 Fishfood Conrad et al. (2002),Leppänen& Kukkonen(1998a) 1050 17 Sewagesludge Buys(2005),owndata 2.3 Descriptions of free-swimming species 2.3.1 Aeolosomatidae (Class Aphanoneura) Inthepast,Aeolosomatidaewereconsideredtobelongtotheclassof,but based on their distinct and primitive characteristics they were assigned to a separate class,theAphanoneura(e.g.Hessling&Purschke,2000).Insludgereductionresearch however, they still are usually classified as Oligochaeta (e.g. Wei & Liu, 2006). The aeolosomatidspeciesreferredtointhisthesisare Aeolosoma hemprichi , A. variegatum and A. tenebrarum . Appearance Aeolosomatidaearetransparent,afewmmlongandmostofthempossess coloured‘oily’dropletsintheirbody(Stephenson,1930;Singer,1978).Theirmovement canbedescribedas‘gliding’.Theypossessatypicalenlargedciliatedprostomium(head section) (Kamemoto & Goodnight, 1956). Figure 2.1 shows a general view of A. hemprichi .

Figure2.1Figure2.1Generalviewof Aeolosoma hemprichi.

╡22 ╞ ╡Species descriptions ╞

Habitat Aeolosomatidaehaveaworldwidedistribution(Stephenson,1930)andmainly are freshwater inhabitants, but can also be found in shallow brackish waters (Jørgensen & Jensen, 1978). They are collected from ponds, lakes and rivers from decaying plant materials (Singer, 1978; Niederlehner et al. , 1984). The optimal temperatureforgrowthandreproductionof A. hemprichi and A. variegatum isbetween 20and30°Candat10°Creproductionstops(Kamemoto&Goodnight,1956).Various authors recorded mass presences of Aeolosomatidae, especially A. hemprichi , in WWTPs (Curds & Hawkes, 1975; Jørgensen & Jensen, 1978). More recently, several authorsdescribedtheuseof A. hemprichi forsludge reduction(Inamori et al. , 1983; Inamori et al. ,1987;Inamori et al., 1990;Kuniyasu et al. ,1997;Zhang,1997;Wei et al. , 2003a;Wei&Liu,2005;Liang et al. ,2006a;Liang et al. ,2006b). Food Aeolosomatidae feed on plant tissue, detritus, Protozoa, bacteria and (Kamemoto&Goodnight,1956;Singer,1978). Reproduction Aeolosomatidae reproduce through asexual transversal fission (paratomy) and sexually mature specimens are rare (Christensen, 1984). Paratomy involvesregenerationofwormsbeforefragmentationandleadstoachainofconnected specimens (zooids). The doubling time of Aeolosomatidae is short and usually lies between1and4days(Kuwahara&Yamamoto,1981;MacMichael et al. ,1988;Inamori et al. ,1990).

2.3.2 Naidinae (Class Oligochaeta, family Tubificidae) The naidine species referred to in this thesis are Nais elinguis , N. communis , N. variabilis , Pristina aequiseta and Chaetogaster diastrophus . However, the representativesofthegenus Nais wereoftennotidentifiedtospecieslevel.Learner et al. (1978)havewrittenanextensivereviewontheecologyofNaidinae. Appearance Most Naidinae are colourless and transparent (Stephenson, 1930) and usually smaller than 1 cm (Learner et al. , 1978). Members of the genus Nais often possess pigmented eyespots, while those of the genus Pristina have an elongated proboscis (Brinkhurst, 1971). Naidinae move by swimming or by crawling (Sperber, 1948).Figure2.2showsageneralviewof Nais sp.

╡23 ╞ ╡Chapter 2 ╞

FigureFigure2.22.22.2Generalviewof Nais sp. Habitat Naidinaearemostlyfreshwaterinhabitantsfoundinrivers,lakesandestuaries, butcanalsobefoundinbrackishwaters(Brinkhurst&Jamieson,1971;Harper et al. , 1981a; Little, 1984). They have a worldwide distribution (Stephenson, 1930). Some species,like N. elinguis ,canbeabundantatorganicallyenrichedsites(Learner et al. , 1978;Petersen et al. , 1998),but ingeneral,theyarelesstoleranttooxygendepletion and pollution than sessile Tubificidae (Learner et al. , 1978; Marshall & Winterbourn, 1979).TheoccurrenceofspeciesthatarealsoinvestigatedinthisthesisinWWTPsand their possible application in sludge reduction processes was mentioned by various authors(e.g.Curds&Hawkes,1975;Learner,1979;Lochhead&Learner,1983;Inamori et al. ,1983;Ratsak,1994;Kuniyasu et al. ,1997;Ratsak,2001;Wei et al. ,2003a;Wei& Liu,2005).Optimaltemperaturesforfeedingandgrowthliearound20°C(Petersen et al. ,1998).At5°C,growthisalmostabsent(Lochhead&Learner,1983).Examplesof typical maximum densities are 70,000 specimens per m2 in freshwater habitats and 200,000specimensperm 2 inpollutedhabitats(Wachs,1967;Szczesny,1974). Food Naidinaecanfeedonbacteria,detritusandalgae,buttheycanalsousedissolved freeaminoacids(McElhone,1978;Harper et al. ,1981a;Harper et al. ,1981b;Bowker et al. ,1985;Schönborn,1985;Petersen et al. ,1998).Somespecies,like C. diastrophus ,are mainlypredatory(e.g.feedingonProtozoa)(Schönborn,1984). Reproduction Naidinaereproduceasexuallybytransversefission(paratomy)allyear round,butincertainseasonstheyalsoreproducesexuallyandproduceeggsincocoons (Christensen,1980).Theirdensitiesdisplaylargeseasonalfluctuations(Smith,1985).It is largely unknown how the percentage of worms reproducing by paratomy or sexual reproduction is related to environmental physicochemical parameters (Smith, 1985; Smith,1986),butasexualreproductionseemstoberelatedtofavourableenvironmental conditions (temperature and food supply), in contrast to sexual reproduction (Loden, 1981;Juget et al. ,1989).Forthespeciesmentionedinthisthesisdensitiesarerelatedto watertemperature,oxygenconcentrations,alkalinity,pH,lackofpredation,abundant foodsupplyandlackofcompetition(e.g.McElhone,1978;Lochhead&Learner,1983;

╡24 ╞ ╡Species descriptions ╞

Smith, 1985; Smith, 1986). Doubling times lie between 2 and 23 days (Lochhead & Learner,1983;Schönborn,1985;Smith,1986). 2.4 Descriptions of sessile species 2.4.1 Sessile Tubificidae (Class Oligochaeta) The tubificid species referred to in this thesis are Tubifex tubifex , Limnodrilus hoffmeisteri , L. udekemianus and L. claparedianus . However, the sessile Tubificidae wereoftennotidentifiedtogenusorspecieslevel. Appearance SessileTubificidaeareusuallyreddishincolour,severalcminlength(up to20cm)andlessthan2mmindiameter(Stephenson,1930;Whitten&Goodnight, 1966a). They move by crawling and typically forage in a headdown position in sediments, with their tails protruding upwards and waving for the uptake of oxygen. When disturbed, they often coil their body (Alsterberg, 1924). Figure 2.3 shows a generalviewofsessileTubificidae.

Figure2.3Figure2.3GeneralviewofsessileTubificidae(mainlytailsof L. udekemianus ).

Habitat SessileTubificidaeincludebothfreshwater(e.g.lakesandoftenslowlyflowing waters) and marine species and are mostly found in muddy and sandy sediments (Appleby&Brinkhurst,1970;Kosiorek,1974).Thefarmoststudiedspeciesis T. tubifex (e.g.Kosiorek,1974;Finogenova&Lobasheva,1987).ThespeciesofsessileTubificidae referred to in this thesis are known for their tolerance to high eutrophic conditions (especially T. tubifex and L. hoffmeisteri ) and are regarded as indicators of organic pollution (Brinkhurst & Kennedy, 1965; Whitley, 1968; Aston, 1973; Chapman & Brinkhurst, 1984). Various authors reported their occurrence in WWTPs and their application(usually T. tubifex )forsludgereductioninwastewatertreatment(Whitten& Goodnight, 1966a; Rensink & Rulkens, 1997; Luxmy et al. , 2001; Wei & Liu, 2005; Liang et al. ,2006b;Wei&Liu,2006;Huang et al. , 2007; Guo et al. , 2007). Sessile Tubificidae populations can reach very high densities of 400,000 specimens per m 2

╡25 ╞ ╡Chapter 2 ╞

(Whitten & Goodnight, 1966a) or even more. In addition to their pollution tolerance theyareabletodealwithanoxicconditionsforlongperiods(upto25days)byswitching toananaerobicmetabolism,aswasdescribedfor T. tubifex (Alsterberg,1922;Degn& Kristensen,1981)andsessileTubificidaeingeneral(Whitten&Goodnight,1966a).The optimal temperature of T. tubifex is2025°C(Kosiorek,1974).At4°C, feedingand growthratesof L. hoffmeisteri and T. tubifex areverylow(Appleby&Brinkhurst,1970). TheroleofsessileTubificidaeasbioturbators,i.e.bymixingthesedimentsurfaceand therebyalteringconditions,isoftendescribed(e.g.Reible et al. ,1996;Wegener et al. , 2002;Delmotte et al. ,2007).Inaddition,they(especially T. tubifex andsometimes L. hoffmeisteri ) are used as test organism in bioassays and water quality assessment studies(e.g.Milbrink,1987a;Wiederholm et al. ,1987;Reynoldson et al. ,1991;Millward et al .,2001;Mosleh et al. ,2005).MixturesofsessileTubificidae(mainlyconsistingof Limnodrilus speciesandsome T. tubifex ,butmistakenlycalled‘Tubifex’)aresoldinpet shopsasfishfood. Food Likemostaquaticworms,sessileTubificidaefeedondetritus,andresearchesby Brinkhurst & Chua (1969) and Wavre & Brinkhurst (1971) indicated that they feed mainlyonthebacteriainsediments,whichtheyextractduringthecontinuousingestion ofsedimentparticles. Reproduction Sessile Tubificidae usually reproduce sexually by producing eggs in cocoons,withupto300eggsperwormin100days(Finogenova&Lobasheva,1987). Asexualreproductionbyfragmentationisrarelyobserved,butasexualreproductionby parthenogenesis (involving egg production without fertilization) is also common (Christensen, 1980). The duration of a typical life cycle for T. tubifex is 2062 days (Kosiorek,1974;Finogenova&Lobasheva,1987).

2.4.2 Lumbriculus variegatus (Class Oligochaeta, family Lumbriculidae) ExtensiveinformationonthisspeciescanbefoundonthewebsiteofthelateCharles Drewes(Drewes,2005). Appearance L. variegatus hasaredcolour,butisusuallysomewhatdarkerthansessile Tubificidae.Specimensareonaverage46cmlong(upto17cm)andupto1.5mmin diameter(Drewes,2005).Figure2.4showsageneralviewof L. variegatus specimens.

╡26 ╞ ╡Species descriptions ╞

Figure2.4Figure2.4Generalviewof Lumbriculus variegatus specimens. Its wet weight (mg) to length (in mm) percentage when grown on sludge is around 55 % (Figure 2.5). Weight and length are dependent on the food source (as illustrated by Table 2.2 for several worm species), because worms grown on waste sludgeareingenerallargerthanthosegrownonfishfoodandothersubstratesare(e.g. 510 mg as found by Conrad et al. (2002)). In addition, Gnaiger & Staudigl (1987a) foundadifferentwetweighttolengthpercentageofonly24%onplantsandbacteriaas foodsource.

50

40

30

20 y=0.55x Wetweight(mg)Wetweight(mg) Wetweight(mg)Wetweight(mg) 10 R2=0.71 0 20 30 40 50 60 70

Length(mm) Figure2.5Figure2.5Wetweight(mg)of Lumbriculus variegatus asafunctionoflength(inmm)grownonwaste sludge. LikesessileTubificidae, L. variegatus feedsinaheaddownpositioninsediment, withitstailprotrudingupwardsfortheuptakeofoxygen.However,itdoesnotwaveits tail as sessile Tubificidae, but keeps a fixed position (Drewes, 2005). L. variegatus movesbycrawlingandswimmingforshortdistances(Drewes,1999).Whendisturbed, itdisplaysahighlycharacteristicallyquickescapereflex(Drewes&Fourtner,1989).

╡27 ╞ ╡Chapter 2 ╞

Habitat L. variegatus is a cosmopolitan species, that is mainly found in Europe and NorthAmerica in freshwater and benthic environments, but was also introduced into Asia, Africa, Australia and New Zealand (Brinkhurst & Jamieson, 1971; Pickavance, 1971).Intheseenvironments,itisaverycommonspeciesaswasdescribedforexample for Ireland by Trodd et al. (2005). It can especially be found in leaf litter along the shallowmarginsofmarshesandponds(Drewes,2005).Theabundanceofthisspeciesis usually negatively correlated with the pollution level and nutrient enrichment of the habitat, in contrast to members of the sessile Tubificidae (Marshall & Winterbourn, 1979).Probablyasaresultofthis, L. variegatus isnotcommonlyfoundinWWTPs,but occasionalrecordsofmassoccurrences(forexampleintricklingfilters)exist(Solowiew, 1924;Sperry,1943;Curds&Hawkes,1975;Learner& Chawner,1998).Thereisalso scarceinformationthat L. variegatus cansometimesbefoundatnutrientenrichedsites (Marshall&Winterbourn,1979;Learner&Chawner,1998)andcansurvivefor12hours upto7dayswithoutoxygenbyswitchingtoanaerobicmetabolismaswasalsodescribed for sessile Tubificidae (Putzer et al. , 1990; Reh, 1991; Penttinen, 1997). Natural population densities never exceed 12,000 specimens per m 2 (Cook, 1969; Williams, 2005).Chapman et al. (1999)statethattheoptimaltemperaturerangefor L. variegatus is2025°C,whichisthesameasfor T. tubifex .Quinn et al. (1994)foundLT50values (i.e.thelethaltemperaturefor50%oftheworms)of2730°C.Thesetestwere acclimatizedto15°Cpriortotesting,anditwassuspectedthatraisingthistemperature increased their tolerance to higher temperatures. Nevertheless, L. variegatus is consideredathermalsensitivespecies.Leppänen&Kukkonen(1998a)describedthat L. variegatus stops reproducing at 6 °C. L. variegatus can sometimes be found in the sessile Tubificidae mixtures from pet shops. Stephenson (1930) also described mixed populations. L. variegatus is commercially available from specialized laboratory suppliers,becauseitisoneofthemostfrequentlyusedstandardbenthictestorganisms for bioaccumulation and toxicity assays (e.g. Leppänen, 1999; Ingersoll et al. , 2000; Williams,2005). Food L. variegatus feedsonalgaeandmostlikelyonamixtureoffoodparticlesthat accumulate in benthic environments, like decaying plant material, bacteria and fungi (Moore,1978;Williams,2005). Reproduction L. variegatus reproduces almost exclusively by fragmentation (architomy)andsubsequentregeneration(Christensen,1980).Architomydiffersfrom paratomy(asinAeolosomatidaeandNaidinae)andismoreprimitive.Doublingtimesof L. variegatus growing in sediments lie between 14 and 40 days (Williams, 2005). Sexually mature specimens of L. variegatus are extremely rare but a few authors mentioned sexual reproduction in laboratory cultures (Drewes, 2004) or marshes (Lesiuk&Drewes,1999).Itisnotclearifsexualreproductionislinkedtoaparticular season and there is no consensus between different authors (Pickavance, 1971). The same is true for asexual reproduction and the exact factors controlling the fragmentation of L. variegatus . Leppänen & Kukkonen (1998b) found that the minimumwetweightrequiredforasexualreproductionis9mg(whichcorrespondstoa

╡28 ╞ ╡Species descriptions ╞

lengthof2cminFigure2.5)andthatreproductionisfollowedbya67daynonfeeding period. They also found that the wet weight and frequency at which worms divide increaseswithfavourablecultureconditionsandthismayexplainwhyLesiuk&Drewes (1999)mentionedalengthof4cm,beforeasexualreproductiontookplace. 2.5 Conclusions Each of the (sub)families described above has specific characteristics that are advantageousforapplicationinsludgereductionprocesses.Thesecharacteristicsarefor examplethefastgrowthoffreeswimmingAeolosomatidaeandNaidinae,thepollution tolerance of sessile Tubificidae and the continuous asexual reproduction of L. variegatus . At the same time, each (sub)family also has characteristics that may be disadvantageous for application in sludge reduction processes: The growth of AeolosomatidaeandNaidinaeseemshardtocontrol,sessileTubificidaeneedasuitable environment for egg deposition and L. variegatus is not often found at organically enrichedsites. Eachcharacteristicwillhaveconsequencesforsludgereductionandwormgrowthinan experimentalsetuporpracticalapplication.Researchonapplicationofthesefamilies forsludgereductionthereforehastofocusonfindingthespecieswiththemostoptimal combination of characteristics under the specific process conditions in WWTPs. Alternatively,whenaseparatereactorforsludgereductionwithwormsisconstructed, theprocessconditionscanbeoptimizedfortheselectedwormspecies. Acknowledgments WethankPietVerdonschot(Alterra,WageningenUniversityandResearchCentre)for his valuable comments on this chapter and an anonymous reviewer of Chapter 3 for pointingouttherecentreclassificationofNaidinae.

╡29 ╞

╡╡╡Chapter 3 ╞╞╞ Population dynamics of freeswimming Annelida in four Dutch wastewatertreatmentplantsinrelationtoprocesscharacteristics

Based on submitted paper for Hydrobiologia (Elissen, Peeters, Buys, Klapwijk & Rulkens)

╡Chapter 3 ╞

Abstract Freeswimming Annelida, belonging to the Aeolosomatidae and Naidinae (Tubificidae), occasionally occur in very high densities in WWTPs (wastewater treatment plants) and are nowadaysappliedforwastesludgereduction,buttheirpopulationgrowthisuncontrollable.To getmoreinsightinthepopulationdynamicsofthesefreeswimmingAnnelida,andrelatetheir presence to process characteristics, nine ATs (aeration tanks) of four Dutch WWTPs were regularly sampled over a 2.5year period. For each species or genus, peak periods in worm population growth were defined and population doubling times and halflives calculated, and comparedtothoseinnaturalsystems.Dataoftheprocesscharacteristicswereprovidedbythe plant operators. By means of multivariate analysis, these process characteristics, as well as sampledWWTP,samplingyearandsamplingmonthwererelatedforthefirsttimetotheworm populationsinfullscaleWWTPs. The species composition in the WWTPs was limited and the most abundant free swimming Annelida were Aeolosoma hemprichi, A. tenebrarum, A. variegatum, Nais spp., Pristina aequiseta and Chaetogaster diastrophus. This latter species had never been found before in WWTPs. Worm absence was sometimes related to the presence of anoxic zones. Worms were present all year round, even in winter, but no yearly recurrences of population peakswereobserved,probablyasaresultofstablefoodsupplyandtemperature,andthelackof predation in the WWTPs. Peak periods were similar between the ATs of each WWTP. The duration of the peak periods was on average 23 months for all species and the population doublingtimesinthepeakperiodswerelow(onaverage26days),whichalsocorrespondstoa stablefavourableenvironment.ThedisappearanceofwormpopulationsfromtheWWTPswas presumablycausedbydecliningasexualreproductionandsubsequentremovalwiththewaste sludge. Multivariateanalysisindicatedthat36%ofthevariabilityinwormpopulationswasdue tovariationsinsampledWWTP,samplingyearandmonthonly.Inaddition,nomorethan4% ofthevariabilityinwormpopulationswasrelatedtovariationsinprocesscharacteristicsonly, ofwhichsludgesettleabilitywasthemostimportantcharacteristic.Thepresenceofmostworm species was associated with better sludge settleability. In conclusion, our data from fullscale WWTPssuggestthatpopulationgrowthoffreeswimmingAnnelidastillseemsuncontrollable andthattheireffectsontreatmentperformanceareunclear,whichmakesstableapplicationin wastewatertreatmentforsludgereductiondifficult. 3.1 Introduction Severalspeciesofworms,mainlybelongingtothefamilyTubificidae(including the subfamily Naidinae) are associated with polluted environments characterized by organic enrichment and oxygen depletion (e.g. Aston, 1973; Schönborn, 1985). Their speciesdistributionisregardedasanindicatorofenvironmentalquality(Chapman et al. , 1982a). Specific examples of these extreme environments are aerobic WWTPs (wastewater treatment plants). The main processes in these plants are aerobic conversion of organic components from municipal or nonmunicipal (industrial) wastewater into biomass (activated sludge), water and CO 2, and nutrient removal.

╡32 ╞ ╡Population dynamics of free-swimming worms ╞

Protozoa are the most common and welldescribed bacterivorous grazers in WWTPs (Curds & Hawkes, 1975; Ratsak, 1994) and several authors described their role as indicatorsofplantperformanceandtheirinfluenceonprocesscharacteristicsofthese WWTPs (e.g. Madoni et al. , 1993; MartínCereceda et al. , 1996; Lee et al. , 2004). However,thepresenceandroleofmetazoanorganisms(Annelida,butalsoNematoda andRotifera)inseveraltypesofWWTPswereonlyoccasionallystudiedinthepast.Itis notexactlyknownhowAnnelidaendupinWWTPs,butitislikelythattheyoriginate fromsurroundingwaterbodiesoraretransportedbybirdsintotheATs(aerationtanks) (Milbrink&Timm,2001). Annelida in WWTPs can be classified as ‘freeswimming’ (in the sludge) or ‘sessile’(onsurfacesintheplants,e.g.thereactorwallsorcarriermaterials).Theyoften belong to the class Aphanoneura (Aeolosomatidae) or to the class Oligochaeta (Tubificidae,Enchytraeidae,LumbriculidaeandLumbricidae)(Curds&Hawkes,1975). Withintheseclasses,thefamilyAeolosomatidaeandsubfamilyNaidinae(Tubificidae) aremostlyfreeswimmingspecies,whiletheotherfamiliesandremainingsubfamiliesof the Tubificidae are more sessile. Annelida feed on organic material in the activated sludge, but some species like Chaetogaster diastrophus feed mainly on Protozoa (Schönborn,1984). ResearchonAnnelidainfullscaleWWTPshasmainlyfocusedon biofiltersystemsoractivatedsludgesystems. For biofilter systems (e.g. filter beds), the occurrence of Enchytraeidae was studied in many field and laboratory studies. Reynoldson (1939a & 1948) extensively described the life cycles of Lumbricillus lineatus and Enchytraeus albidus . Constant humidity, high temperatures, good food supply and lack of predators supported large yearround populations. The worms prevented the filter beds from clogging with suspended solids, thus maintaining their treatment efficiency. He also mentioned the presenceof Aeolosoma sp.and Pristina sp.inthebeds.Williams et al. (1968)described the ecology and seasonal patterns of two Enchytraeidae species ( Lumbricillus rivalis and Enchytraeus coronatus ) in a biofilter system. According to Hawkes & Shephard (1972), the worm populations in these filters were only influenced by seasonal fluctuations. Learner & Chawner (1998) described a study in which the macro faunaof67biofiltersin48WWTPsinBritainwassampledonceortwice and related to the physicochemical characteristics (such as F/M (food to micro organism)ratio,temperature,sampledlocationandpH) of the biofilter environment. Nais sp.and/or Pristina sp.werefoundinmorethan40%ofthesurveyedbiofiltersand theiroccurrencewaspositivelycorrelatedtocertaingeographicallocationsandlowF/M ratios. Aeolosoma sp., Chaetogaster sp. and sessile Tubificidae were only found occasionally. For activated sludge systems, only a few studies have been done on the occurrence of Annelida. Poole & Fry (1980) found stable populations of Annelida (AeolosomatidaeandsessileTubificidae)inthreeATsduring2months.Theyconcluded that high TSS (total suspended solids) concentrations were beneficial to the Aeolosomatidae.BecausehighTSSconcentrationsusuallycoincidewithhighersludge

╡33 ╞ ╡Chapter 3 ╞

ages(i.e.theaverageresidencetimesofthesludgeintheATs),theirresultssuggesta positiveeffectofhighsludgeagesonwormdensities.Inamori et al. (1983)mentioned thepresenceoflargequantitiesof Aeolosoma sp., Pristina sp., Nais sp., Dero sp.and Chaetogaster sp.intheATsofWWTPs. In the Netherlands, most (366 out of 375) of WWTPs are nowadays activated sludge systems (Statistics Netherlands (CBS), 2007). Up to date, there has been only one longterm (1.5 years) monitoring of an annelid species ( Nais elinguis ) in one of theseWWTPs(Ratsak,2001).Sheconcludedthathighdensitiesofthiswormresulted in decreases of the SVI (sludge volume index), the energy consumption for oxygen supplyand,dependingonthetemperature,thewastesludgeproduction.Shealsofound that the density of worms varied both per season (high densities were both found in warm and cold periods) and per AT for unknown reasons. Population densities displayed peaks (also called ‘worm blooms’), which were invariably followed by a suddendisappearanceofthepopulation,awellknownphenomenoninWWTPs. In 2001, a telephone survey of 23 WWTPs in the Netherlands (Janssen et al. , 2002) showed that several worm species were often found in the consulted WWTPs. SessileTubificidaewerefoundallyearround,but Aeolosoma spp.and Nais spp.were usually found in summer or at high temperatures. Species of the latter genera were sometimes present in such high densities, that the sludge in the ATs had a reddish colour. In half of the plants surveyed, worm presence was assumed to coincide with decreases in waste sludge production and/or better sludge settling characteristics. In recent years, increasingly more researchers focused on applying Annelida (mostly Aeolosoma hemprichi, Nais sp.andsessileTubificidae)forthispurposeinlaboratory setups (e.g. Wei et al. , 2003a; Wei & Liu, 2005; Liang et al. , 2006a). The largest problemsinthisresearchfieldwereandare(nexttohighlyvariableresults)thebefore mentioned uncontrollable population dynamics of especially freeswimming worms (Wei et al. ,2003b;Ratsak&Verkuijlen,2006). Alongtermstudyofwormpopulationdynamicsandpossibleinteractionsinand betweenfullscaleWWTPsbetweenprocesscharacteristicsandwormspeciesthatare usedforsludgereductionresearchcouldprovideusefulinsightformaintainingstable worm populations and sludge reduction rates. Therefore, freeswimming Annelida in theATsoffourDutchWWTPs(oneincludingabiofilter)wereregularlysampledovera 2.5yearperiod.Toexplainthepopulationdynamicsintheseartificialhighlyenriched ecosystems, peak periods, population doubling times and halflives were compared to thosefoundinnaturalwaterbodies.Inaddition,theplantoperatorsprovideddataof theprocesscharacteristicsduringthatperiod.Processcharacteristicsthatwereexpected tohaveaninfluenceon(e.g.sludgeloadingrate,sludgeage)ortobeinfluencedbythe occurrence of worms (e.g. waste sludge production, TSS concentration and nutrient concentrations)wereselected.Forthefirsttime,amultivariateanalysiswasperformed to quantify possible relationships between longterm worm population growth and processcharacteristicsoffullscaleWWTPs.

╡34 ╞ ╡Population dynamics of free-swimming worms ╞

3.2 Materials and methods 3.2.1 WWTPs TheWWTPswerechosenbasedontheirwormdiversityfoundinthetelephonesurvey (Janssen et al. , 2002). WWTPs Drachten (one AT), Nijmegen (three ATs), Renkum (three ATs) and Zwolle (two of four ATs) in the eastern and northern part of the Netherlands were sampled frequently (in total about 75 times per AT, which equals about once every 2 weeks). Plants were sampled from July 2000 through December 2002,butthesamplingofWWTPRenkumwasterminatedinJune2002,duetoplant alterations.TheplantswereallactivatedsludgesystemswithalowF/Mratio(<0.2kg BOD (biological oxygen demand)/ kg TSS/ d), with parallel ATs acting as separate systems with return waste sludge going to the AT, from which it originated. The wastewaterwasroutedthroughaseriesofchannelsconstructedintheAT.Wastewater was first treated in a presettler to remove particles by sedimentation, but in WWTP Drachtenwastewaterwasfirsttreatedinatricklingfilter(biofilter)wheresolubleand particulate BOD was removed and partly converted into bacteria. Furthermore, in WWTP Nijmegen, the presettled influent was heated with cooling water from the nearbywasteincineratorfromNovember2001onandtheaveragetemperatureinthese ATswastherefore22°Cinsteadof16°Cintheotherplants.Table3.1showsdifferences inphosphorus(P)andnitrogen(N)removalstepsbetweentheplants. Table3.1Table3.1PandNremovalinthesampledWWTPs. WWTPWWTPPPP Premoval(chemical)removal(chemical)removal(chemical)NNN Nremovalremovalremoval DrachtenDrachten FromJanuary2002on Onlynitrification Nijmegen Yes Anoxicpredenitrification 1) RenkumRenkum No Anoxicpredenitrification 2) ZwolleZwolle Yes Anoxicpredenitrification 3) 1) All ATs contained anoxic zones, 2) Only AT1 in WWTP Renkum contained an anoxic zone for denitrification (nonaerated; nitrate> 0 mg/ L), 3) Anoxic zones were established in all ATs of WWTP Zwolleinthefollowingperiods:AugustOctober2001andAprilOctober2002 3.2.2 Worm sampling At the sampling dates, a sludge sample from each AT was taken in the mixed liquor phase of the aerated zone with a plastic sample container tied to a long pole. The containersweresentbyregularmail(whichtook2(±2)days)toourlab,exceptforthe samplesfromWWTPRenkum,whichwereanalysedthesameday.Thecontainersfrom WWTPsDrachten,NijmegenandZwollewereabouthalffilledwith100250mLsample ensuringthepresenceofoxygen.Thiswasregularlycheckedafterarrivalofthesamples withaWTWOximeter330andDO(dissolvedoxygen)concentrationswereonaverage

2.3(±1.6)mgO 2/L. Twoorthreesamplesof1mLeachweretakenbyPasteurpipettewithacutofftip fromthewellmixedsludgeinthecontainers,dividedintodropletsanddilutedwithtap

╡35 ╞ ╡Chapter 3 ╞

water on a Petri dish. Live specimens were counted under an Olympus SZ40 stereomicroscope with a Clay Adams laboratory counter and identified to genus level (Nais spp.)orspecieslevel(allotherfrequentspecies)accordingtoBrinkhurst(1971), Brinkhurst&Jamieson(1971)andTimm(1999).Identificationwasregularlyconfirmed afterlivemountinginpolyvinyllactophenolusinganOlympusBHTmicroscope.

3.2.3 Process characteristics TheplantoperatorsprovideddataoftheprocesscharacteristicsoftheWWTPsduring the sampling period. Characteristics from the ATs (Table 3.2a), effluent and other miscellaneouscharacteristics(Table3.2b)thatwereexpectedtohaveaninfluenceonor tobeinfluencedbytheoccurrenceofwormswereselected.Becausecharacteristicswere notalwaysanalysedatthesamedaysasthewormdensities,valueswithin5daysbefore and5daysafter(whenavailable)wereaveraged.

╡36 ╞ ╡Population dynamics of free-swimming worms ╞

Table 3.2a Overview of selected process characteristics from the ATs (averages in bold, standard deviationsinitalic,minimumandmaximumvalues,no.ofsamplesbetweenbrackets).Abbreviations used: θ=sludgeage,Ash=ashcontentofsludge,D=WWTPDrachten,N=WWTPNijmegen,R= WWTPRenkum,Z=WWTPZwolle,numbers14behindD,N,RandZindicateATs,tbehindD,N,Rand ZindicatesthetotalWWTP. AerationtanksAerationtanks ATATAT pHpHpHpH DODODO DO TTTT TSSTSS AshAsh θθθθ SVISVI F/MratioF/Mratio (mg/(mg/L)L)L)L) (°C)(°C) (g/(g/(g/(g/ L)L)L)L) (%)(%) (d)(d)(d)(d) (mL/(mL/g)g)g)g) (gBOD/(gBOD/gTSS/gTSS/gTSS/dddd)))) DtDtDtDt 151515 15 ±3 4444 ±1 33333333 ±2 656565 65 ±8 1020 27 3036 4279 (27) (29) (27) (29) N1N1N1 7777 ±0 212121 21 ±3 4444 ±1 747474 74 ±17 0.070.07±0.02 67 1527 25 46143 0.020.14 (77) (77) (77) (77) (74) N2N2N2 7777 ±0 212121 21 ±3 4444 ±1 696969 69 ±13 0.070.07±0.02 67 1527 26 45102 0.020.12 (73) (72) (73) (73) (70) N3N3N3 7777 ±0 202020 20 ±3 4444 ±1 707070 70 ±14 0.070.07±0.02 67 1527 26 42103 0.030.20 (77) (76) (77) (77) (72) NtNtNtNt R1R1R1 7777 ±0 161616 16 ±4 4444 ±1 23232323 ±3 16161616 ±8 69696969 ±15 0.070.07±0.02 67 823 37 1831 449 44131 0.040.12 (70) (69) (70) (28) (59) (68) (29) R2R2R2 7777 ±0 161616 16 ±4 4444 ±1 23232323 ±3 15151515 ±8 76767676 ±16 0.070.07±0.03 67 824 311 1627 254 33121 0.040.18 (67) (67) (69) (30) (58) (67) (23) R3R3R3 7777 ±0 161616 16 ±4 4444 ±1 22222222 ±2 17171717 121121±29 0.060.06±0.02 67 823 26 1727 ±12 65218 0.040.13 (64) (62) (66) (24) 368 (64) (30) (55) RtRtRtRt Z3Z3Z3Z3 222 2 ±1 4444 ±1 121212 12 ±6 81 ±26 0.070.07±0.04 04 37 147 43217 0.020.22 (81) (80) (81) (80) (74) Z4Z4Z4Z4 333 3 ±1 4444 ±1 141414 14 ±7 74747474 ±22 0.070.07±0.04 08 37 638 43133 0.020.23 (81) (80) (81) (80) (72) ZtZtZtZt

╡37 ╞ ╡Chapter 3 ╞

Table 3.2b Overview of selected process characteristics from the effluent and other miscellaneous characteristics(averagesinbold,standarddeviationsinitalic,minimumandmaximumvalues,no.of samplesbetweenbrackets).Abbreviationsused: SameasTable3.2a,plusIron=ferricirondosageto theinfluentforphosphateremoval,N(mg/L)=sumofNH 4+,NO 3andNO 2concentrationsasindication of denitrification efficiency, NH 4+ = indication of nitrification efficiency, Rain = daily rainfall, Waste sludge=dailywastesludgeproduction. EffluentEffluentMiscellaneousMiscellaneous ATATATAT NHNHNH 444+++ NNNN BODBOD TSSTSS RainRain IronIron Waste WWWasteWaste (mg/L)(mg/L) (mg/L)(mg/L) (mg/L)(mg/L) (mg/L)(mg/L) (mm)(mm) (mL/m 333)))) sludgesludge sludgesludge 101010 333kgkgkgkg 101010 333 mmm333 DtDtDtDt 3333 ±3 17171717 ±6 4444 ±2 7777 ±3 3333 ±2 09 930 29 514 17 (27) (27) (27) (27) (27) N1N1N1N1 222222 22 ±7 737 (73) N2N2N2N2 232323 23 ±7 337 (69) N3N3N3N3 222222 22 ±8 237 (73) NtNtNtNt 1111 ±2 23232323 ±5 2222 ±1 3333 ±2 2222 ±3 06 934 15 111 020 (77) (77) (77) (77) (77) R1R1R1R1 333 ±3 24 ±8 0.70.70.7 0.7 ±0.4 0.10.10.10.1 ±0.1 015 539 02.2 00.5 (53) (53) (61) (76) R2R2R2R2 444 ±6 25 ±9 0.80.80.8 0.8 ±0.7 0.10.10.10.1 ±0.1 036 740 05.1 00.5 (52) (52) (59) (76) R3R3R3R3 555 ±5 16 ±6 0.80.80.8 0.8 ±0.6 000.10.1.1.1±0.1 021 634 02.7 00.4 (50) (50) (58) (75) RtRtRtRt 444 ±2 777 ±2 0.30.30.3 0.3 ±0.2 110 515 01.2 (66) (26) (75) Z3Z3Z3Z3 1.31.31.3 1.3 ±0.8 0.20.20.20.2 ±0.1 0.46.7 00.8 (81) (81) Z4Z4Z4Z4 1.01.01.0 1.0 ±0.5 0.10.10.10.1 ±0.1 04.7 00.6 (81) (81) ZtZtZtZt 222 2 ±3 21212121 ±10 3333 ±2 6666 ±4 2222 ±4 62626262 ±30 4.04.04.04.0 ±1.5 0.60.60.60.6 ±0.2 016 555 115 538 018 12177 1.513.7 0.22.2 (76) (77) (78) (75) (87) (81) (81) (81)

╡38 ╞ ╡Population dynamics of free-swimming worms ╞

3.2.4 Data analysis Population dynamics (peak periods, population doubling times and half-lives) For each species and AT, worm densities that exceeded the average density plus two standard deviations were considered to represent peak periods. The densities outside thepeakperiodswereaveragedandthiswasthebackgrounddensity.Thestartofapeak periodwasdefinedasthedateatwhichthedensitybecamehigherthanthisbackground densityandtheendofapeakperiodasthedateatwhichthedensitybecamelower.For speciesthatneverexceeded15specimenspermL(e.g. C. diastrophus ),nopeakperiods werecalculated.Inaddition,peakperiodsthatlaypartiallyoutsidethesamplingperiod wereexcludedfromcalculationsondurationofthepeakperiods.Apeakperiodcould containseveral(uptothree)peaks,whenthewormdensitiesdidnotbecomelowerthan thebackgrounddensities.

Populationdoublingtimes(t d)andhalflives(t h)indaysinthepopulationpeaks were calculated using exponential functions (Nandini & Sarma, 2004), that included populationgrowthratesanddecayrates.‘Mechanical’lossofwormsbysludgewasting wasalsotakenintoaccountinthecalculations.Thislosswasdependentonthesludge ages (θ) duringthepeakperiods.ForWWTPsRenkumandZwolle,sludgeagevalues (rangingfrom9to48days)wereprovidedbytheplantoperators.ForWWTPNijmegen, theaveragesludgeagewasassumedtheaveragesludge age in the other WWTPs, 18 days. Furthermore, the supply of worms to the ATs with the influent and removal of wormsfromtheplantwiththeeffluentwerebothnegligible,asweobservedinourpilot plantsthatwererepresentativeoffullscaleWWTPs.Thepopulationgrowthratesinthe downwardphasesofthepeakswerezero,becausedividingwormswererarelyobserved inthesephases.Thepopulationdecayrateswerethesameintheupwardanddownward phases of the peaks, because there was no indication for increased mortality in the downwardphases.Theobservedpopulationgrowthanddecayrates( obs andr obs )are thustheresultoftherealpopulationgrowthanddecayrates(andr)andtheinverseof thesludgeageaccordingtothefollowingequations:

rrrobs :::: r+1/r+1/θ=ln(X θ=ln(X 000 /X/X/X ttt)/(t)/(ttttt000)))) (d 1) (1)(1)(1)(1) Parameters: rrrr Realpopulationdecayrate (d 1) 1/θ1/θ Lossrateviawastesludge (d 1) θθθθ Sludgeage (d) XXXttt Totaldensityofwormsattimet (specimenspermL) XXX000 Totaldensityofwormsattimet 0 (specimenspermL) t,t,t,tt, ttt000 Timeatendortopofpeak (d)

╡39 ╞ ╡Chapter 3 ╞

obs :::: rrrr1/θ=ln(X1/θ=ln(X ttt/X/X/X 000)/(t)/(ttttt000)))) (d 1) (2)(2)(2) (2) Parameters: Realpopulationgrowthrate (d 1) t,t,t,tt, ttt000 Timeattoporstartofpeak (d) Populationdoublingtimest dddandhalfandhalflivestlivest hhhininindayswerecalculatedasln(2)/andln(2)/r,respin dayswerecalculatedasln(2)/andln(2)/r,respectectively.ively.ively.

Multivariate analysis Tofindoutifandhowthewormspeciescompositionwasrelated totheabioticvariables(sampledWWTPandAT,samplingyearandmonthandprocess characteristics of the WWTPs) a multivariate analysis was performed. Multivariate analysesaresuitabletorecognizelatentpatternsinlargedatasets(Jongman et al. ,1987). Theycangraphicallysummarizecomplexdatasetsinlowdimensions.Foraproperuse, it is important to choose the appropriate response model (linear or unimodal). A preliminaryDEtrendedCORrespondenceANAlysis(DECORANA)wasperformedwith logtransformedabundancedataofthewormsandinvokingtheoption‘downweighting ofrarespecies’.ThelengthofthegradientsascalculatedbyDECORANAwaslargerthan 3.5 and thus the unimodal response model was assumed to be appropriate for this dataset(terBraak,1986).Toanalysetheimportanceofthedifferentabioticvariableson theworm speciescompositionintheATs,adirectordinationanalysis wasperformed (terBraak,1986).Thecontributionofthedifferentvariableswasquantifiedusingthe variance partitioning method as proposed by Borcard et al. (1992), which was also successfullyappliedtoquantifytheeffectsofcontaminantsinaquaticecosystems(e.g. Peeters et al. ,2001).Themethodwasappliedtothedatasetcontainingtheinformation ofallfourWWTPsaswellasfortheseparateWWTPs,excludingWWTPDrachtendue to the low number of samples. All ordination analyses were performed using the software program CANOCO (CANOnical COrrespondence analysis) developed by ter Braak & Smilauer (1998). CANOCO extracted four axes and calculated scores for samples, species and abiotic variables. The sequence of the extracted axes was determined by the amount of information they contained. Ordination diagrams were createdbyusingthecalculatedscorestovisualizethemainstructureinthemultivariate datasetintwodimensions(thefirstandsecondaxes).Thestatisticalsignificanceofthe effectofeachsetofexplanatoryvariableswastestedbyaMonteCarloPermutationtest (terBraak,1990). 3.3 Results 3.3.1 General AnnelidawerefoundinallATsandalmostallspeciesbelongedtotheAeolosomatidae (Aeolosoma hemprichi , Aeolosoma variegatum and Aeolosoma tenebrarum ) or Naidinae ( Nais spp., Pristina aequiseta and Chaetogaster diastrophus ). All these species reproduce mainly asexually (Loden, 1981; Christensen, 1984; Bell, 1984) and

╡40 ╞ ╡Population dynamics of free-swimming worms ╞

wormswithreproductiveorganswereindeedrarelyfound.Table3.3givesanoverview of average densities, standard deviations, maximum densities and frequencies of occurrence in all the samples of one AT (or the ATs in one WWTP) for the six main species. Unidentified worms or worms belonging to the genus Dero or to the sessile Tubificidaewererarelyfoundandthesecountswerenotfurtheranalysed. Table 3.33.3 Overview of freeswimming Annelida in nine ATs of four Dutch WWTPs (average worm densitiesinspecimenspermLinboldwithstandarddeviationsinitalic,maximumwormdensitiesin specimenspermL,andfrequencies(%)ofoccurrenceinallthesamplesoftheindicatedAT(orATs) between brackets). Minimum worm densities were always zero in all ATs. Abbreviations used: D = WWTPDrachten,N=WWTPNijmegen,N*=no.ofsamples,R=WWTPRenkum,Z=WWTPZwolle, numbers14behindD,N,RandZindicateATs. NaidinaeNaidinaeAeolosomatidaeAeolosomatidae TotalTotal ATATATAT Nais spp. Pristina Chaetogaster Aeolosoma Aeolosoma Aeolosoma aequiseta diastrophus hemprichi variegatum tenebrarum DDDD 0000 ±0 000 0 ±35 1111 ±12 111 1 ±46 N*=84 3(14) 178(15) 79(11) 259(27) N1N1N1N1 5555 ±8 000 0 ±1 8888 ±18 0000 ±0 0000 ±1 14141414 ±21 N*=72 55(72) 3(17) 103(51) 3(3) 5(3) 115(83) N2N2N2N2 6666 ±5 111 1 ±2 11111111 ±23 0000 ±1 0000 ±1 18181818 ±24 N*=67 19(88) 8(30) 132(56) 5(2) 3(11) 141(97) N3N3N3N3 5555 ±6 0000 ±0 0000 ±2 10101010 ±21 0000 ±0 3333 ±13 18181818 ±32 N*=74 29(78) 2(1) 12(23) 110(54) 1(4) 79(27) 194(89) N1+2+3N1+2+3 16161616 ±16 111 1 ±2 19191919 ±34 0000 ±1 3333 ±13 48484848 ±61 N*=65 87(94) 9(48) 146(62) 6(5) 79(22) 250(97) R1R1R1R1 0000 ±1 000 0 ±0 0000 ±0 0000 ±1 N*=45 4(4) 1(4) 2(2) 7(7) R2R2R2R2 13131313 ±19 0000 ±1 11111111 ±21 171717±3617 414141 41 ±46 N*=73 88(84) 6(19) 96(49) 158(56) 168(88) R3R3R3R3 9999 ±10 000 0 ±0 13131313 ±29 55555555 ±8 1 767676 76 ±81 N*=72 40(81) 2(8) 121(37) 297(66) 298(86) R1+2+3R1+2+3 22222222 ±25 111 1 ±1 23232323 ±33 67676767 ±88 113113 N*=69 113(87) 6(23) 122(64) 301(70) ±103 348(88) Z3Z3Z3Z3 2222 ±4 4444 ±5 222 2 ±6 888 8 ±10 N*=80 29(56) 25(75) 34(29) 50(83) Z4Z4Z4Z4 2222 ±6 8888 ±9 0000 ±1 5555 ±14 0000 ±1 161616 16 ±21 N*=81 30(46) 46(79) 5(12) 66(31) 9(9) 115(81) Z3+4Z3+4 4444 ±8 12121212 ±12 0000 ±1 7777 ±18 0000 ±1 242424 24 ±28 N*=79 35(66) 52(80) 5(13) 100(39) 9(8) 133(86)

Nais spp.werethemostcommonspecies(59%ofallsamples)andwerefollowed indecreasingorderby A. hemprichi (37%), P. aequiseta (19%), A. variegatum (17%), C. diastrophus (12%)and A. tenebrarum (5%).Toourknowledge,thislatterspecies wasneverfoundbeforeinWWTPs.WWTPNijmegendisplayedthemostdiverseworm population. A. hemprichi , A. variegatum and Nais spp.werefoundinallWWTPs,but not in all ATs. C. diastrophus was found in all WWTPs except WWTP Drachten, A.

╡41 ╞ ╡Chapter 3 ╞

tenebrarum onlyinWWTPNijmegenand P. aequiseta mostlyinWWTPZwolle(except foronesampleofWWTPNijmegenAT3). 3.3.2 Population dynamics Foreachspecies,peakperiodswerecalculatedandanoverviewofthesepeakperiodsfor eachwormspeciesaccordingtoseason,yearandATisshowninTable3.4. Table3.4Table3.4Overviewofpeakperiodsforeachwormspeciesaccordingtoseason(inwhichthehighest wormdensitywasreached),yearandAT.Abbreviationsused: Ah= A. hemprichi ,At= A. tenebrarum , Aut=autumn,Av= A. variegatum ,D=WWTPDrachten,N=WWTPNijmegen,Na= Nais spp.,Pa= P. aequiseta ,R=WWTPRenkum,Spr=spring,Sum=summer,Win=winter,Z=WWTPZwolle,numbers 14behindD,N,RandZindicateATs. 2000200020012001 20022002 SumSum AutAut WinWin SprSpr SumSum AutAut WinWin SprSpr DDDD Ah,Av N1N1N1N1 Na Ah N2N2N2N2 Na Ah N3N3N3N3 Na,Ah Na Ah,At R1R1R1R1 R2R2R2R2 Av Ah,Na R3R3R3R3 Av Ah,Na Z3Z3Z3Z3 Pa Ah,Na,Pa Ah Z4Z4Z4Z4 Ah Ah,Na,Pa Ah Most importantly, no yearly patterns in the peak periods were observed. The presenceofawormspeciesdidnotalwaysleadtopeakperiods.InWWTPDrachten, peak periods were found in the first month of the sampling period but thereafter no wormdensitieshigherthan1specimenpermLwerefound. The three ATs of WWTP Nijmegenhadsimilarpeakperiodsof A. hemprichi and Nais spp.Inaddition,onlyin AT3 a peak period of A. tenebrarum was found. In AT1 of WWTP Renkum, no peak periods were observed because of very low worm densities (Table 3.4) and the ATs differed in peak periods, although AT2 and AT3 showed similarities in species and densities. AT3 and AT4 of WWTP Zwolle showed similar peak periods. The average durationsofthepeakperiodsfor A. hemprichi , A. tenebrarum ,A. variegatum ,Nais spp. and P. aequiseta were91(±50),84,64,96(±37),and58(±21)daysrespectively. Table 3.5 shows an overview of calculated average (plus standard deviations), minimum and maximum population doubling times and minimum and maximum populationhalflivesindaysforeachspeciesintheexponentialphasesofthepeaks.

╡42 ╞ ╡Population dynamics of free-swimming worms ╞

Table3.5Table3.5Average(plusstandarddeviations),minimumandmaximumpopulationdoublingtimes(t d) and minimum and maximum population halflives (t h) in days for each species in the exponential phasesofthepeaks.

SpeciesSpeciesttt dddttt hhh Nais sppsppspp ...555±3112 5 2∞ P. aequiseta 666±1566 ∞ A. hemprichi 444±1264 1∞ A. variegatum 333±2163 1∞ A. tenebrarum 222±1132 28 The population doubling times for the Naidinae (on average 56 days) were somewhat longer than for the Aeolosomatidae (on average 24 days). Infinitely long populationhalflivesarebiologicallyimpossible,butwerecalculatedwhentheobserved populationdecayrateswereonlyslightlyhigherthantheinverseofthesludgeage.This resulted in very low real population decay rates (equation (1)) and subsequently, in infinitelylongpopulationhalflives.Thesevaluesthussignifyalargeinfluenceofsludge age (and not worm death) on the disappearance of the worm populations and this confirmsthatwormpopulationgrowthsimplystopsafteracertaintime.

3.3.3 Multivariate analysis Figure3.1showsordinationdiagramswiththeresultsofananalysisinwhichtheworm speciescompositionwasdirectlyrelatedtotheabioticvariables(sampledWWTPand AT,samplingyearandmonth,andprocesscharacteristicsoftheWWTPs).

╡43 ╞ ╡Chapter 3 ╞

a) b) 2.5 2.5 At

Cd Ah

Na

Pa

Av -2.0 -2.0 -2.0 2.5 -2.0 2.5 c) 2.5

2002 Nijmegen Feb Dec T_at May Jan N_e Mar Nov Oct 2001 BOD_e Apr Sep Drachten Jun NH4_e TSS_at Aug 2000 Zwolle Renkum Jul TSS_e SVI_at -2.0 -2.0 2.5 Figure3.1Figure3.1OrdinationdiagramsofthedirectordinationofthewormspeciescompositionintheATsof fourDutchWWTPsrelatedtotheabioticvariables(sampledWWTPandAT,samplingyearandmonth, andprocesscharacteristicsoftheWWTPs).Thedistributionforthefirsttwoaxesisgivenfora)a)a)a)samples, b)b)b)b) species, andc)c)c) c) abiotic variables. Ina)a)a), a) the worm samples are positioned as circles, with samples similar in species composition and worm density at the smallest distance and samples different in species composition and worm density at the largest distance. Inb)b)b), b) the species are positioned as triangles,withspeciessimilarinfrequencyandwormdensityinthesamplesatthesmallestdistance, andspeciesdifferentinfrequencyandwormdensityinthesamplesatthelargestdistance.Inc)c)c)c),the abioticvariablesthatarerelatedtothewormspeciescompositionareshown.ThepositionsofWWTPs, years and months (nominal variables) are shown in regular font, while process characteristics (continuousvariables)arerepresentedbyarrowsandtheirabbreviationinitalicfont.Thelengthofeach arrowisameasureoftheimportanceoftheprocesscharacteristic,whilethearrowheadpointsinthe directionofincreasinginfluence.Abbreviationsused:b)b)b)b)Ah = A. hemprichi , Av = A. variegatum , At = A. tenebrarum , Cd = C. diastrophus , Na = Nais spp., Pa = P. aequiseta c)c)c)_atindicatescharacteristicsofthec) ATs;_eindicatescharacteristicsoftheeffluent.

╡44 ╞ ╡Population dynamics of free-swimming worms ╞

Approximately57%ofthevariationinthespeciescompositionwasexplainedby the variables included in the analysis. Sampled WWTP, sampling year and month, as wellasprocesscharacteristicsoftheWWTPsallaffectedthewormspeciescomposition. ThesamplesfromWWTPZwollewerepositionedintherightpartofthediagramand clearlyapartfromthesamplesoftheotherWWTPs(Figure3.1a&3.1c).Thiswasmainly related to the much higher abundances of P. aequiseta (Figure 3.1b). Figure 3.1 also shows that the samples of WWTP Nijmegen were positioned in the upper part of the diagram corresponding with higher abundances of A. tenebrarum. In addition, the samplesofWWTPRenkumweremostlysituatedintheleftlowercornerofthediagram coincidingwithhigherabundancesof A. variegatum .Thepartitioningofthevariance indicated that the sampled WWTP explained most of the variance in worm species composition(Table3.6)followedbysamplingyearandmonth.Thegrosspercentages werecalculatedwithonlythelistedvariablesasexplanatory,whilethepurepercentages werecalculatedwiththelistedvariablesasexplanatoryandallothersascovariables(i.e. theireffectswereremoved). Table3.6Table3.6Overviewofthepercentagesvarianceinwormspeciescompositionthatwereexplainedbythe abioticvariables(sampledWWTP,samplingyearandmonth,andprocesscharacteristics),calculatedby partitioningofthevarianceobtainedfromthepartialcanonicalcorrespondenceanalyses.Allanalyses weresignificant(p<0.010)accordingtotheMonteCarloPermutationTest. VariablesVariables Varianceexplained(%)Varianceexplained(%) Gross 1)1)1) Pure 2)2)2) WWTPWWTP 40.3 24.4 SamplingdateSamplingdate 19.5 11.3 Year 12.7 4.8 Month 9.0 6.1 ProcesscharacteristicsProcesscharacteristics 16.0 4.3 Effluent(NH 4+,N,TSS,BOD) 8.4 1.1 AT(TSS,SVI,T) 12.5 2.1 SharedbyWWTP,samplingdateandprocesscharacteristicsics 16.8 TotalTotal 56.8 56.8 1) calculated through a direct analysis with only the listed variable(s) as explanatory, 2) calculated throughadirectanalysiswiththelistedvariable(s)asexplanatoryandallothersascovariables. Table 3.6 shows that the process characteristics by themselves explained approximately 4 % of the variation in the species data and this contribution is significant.

╡45 ╞ ╡Chapter 3 ╞

Subsequently, an analysis of the worm species composition with the process characteristics as explanatory and sampled WWTP, sampling year and month as covariableswasperformed(Figure3.2). a) Cd

Pa

Av

Na Ah

At -0.3 0.4 -0.4 0.6 b)

N_e TSS_e

T_at SVI_at

NH4_e TSS_at BOD_e -0.15 0.2 -0.2 0.3

FiguFigurere 3.23.2 Ordination diagrams of a partial correspondence analysis in which the worm species compositionwasrelatedtotheprocesscharacteristics(theexplanatoryvariables)afterremovingthe effects of sampled WWTP, sampling year and month (the covariables). WWTP Drachten was not includedinthisanalysis.Thedistributionforthefirsttwoaxesisgivenfora)a)a)speciesand a) b)b)b)process b) characteristics.Ina)a)a)a),thespeciesarepositionedastriangles,withspeciessimilarinfrequencyandworm densityinthesamplesatthesmallestdistance,andspeciesdifferentinfrequencyandwormdensityin the samples at the largest distance. Inb)b)b), b) the process characteristics (continuous variables)that are related to the worm species composition are shown. They are represented by arrows and their abbreviations.Thelengthofeacharrowisameasureoftheimportanceoftheprocesscharacteristic, whilethearrowheadpointsinthedirectionofincreasinginfluence.Abbreviationsused: SameasFigure 3.1.

╡46 ╞ ╡Population dynamics of free-swimming worms ╞

Figure3.2bshowsthattheSVIwasmostimportant,sincethisvariablehasthe longest arrow. Figure 3.2a shows that especially the species A. variegatum was associatedwithhigherSVIvalues. C. diastrophus seemedtobeassociatedwithlower denitrificationefficiencies(highervaluesofNintheeffluent)whereas A. tenebrarum wasassociatedwithhigherBODconcentrationsintheeffluent.Thepartitioningofthe variance indicated that the SVI was associated with worm species composition in all threeWWTPs(Table3.7).

Table 3.73.7 Overview of the percentages of the variance in the worm species composition that were explained by the process characteristics of WWTPs Nijmegen, Renkum and Zwolle, calculated by variancepartitioning.WWTPDrachtenwasnotincludedinthisanalysis. WWTPWWTPATATAT AT EffluentEffluent Varianceexplained(%)Varianceexplained(%)

NijmegenNijmegen SVI,T NH 4+ 5 RenkumRenkum SVI N 7 ZwolleZwolle SVI,TSS 6 3.4 Discussion 3.4.1 General InthesampledWWTPs,almostexclusivelyNaidinaeandAeolosomatidaewerefound, as was also observed by other authors (e.g. Curds & Hawkes, 1975). Relatively few specieswerefound,possiblyduetotheextremeconditionsintheplants:highorganic pollutionlevelsandturbulenceintheATs.InWWTPsDrachtenandZwolleandAT1of WWTP Renkum worms were (temporarily) completely absent during the sampling period.ThewormabsencefromWWTPDrachtenduringmostofthesamplingperiod cannotbeexplained,buttheabsencefromthelattertwoWWTPsmayhavebeendueto the presence of anoxic zones, through which the sludgeandwormsarerouted(Table 3.1).Incontrast,WWTPNijmegenalsocontainedanoxiczonesbutthisdidnotdecrease wormpopulationgrowth.Thereasonsforthisareunknown,butwehypothesizethatthe positiveeffectofthehigherinfluenttemperaturesinthisWWTPonwormpopulation growth enabled them to cope with losses under temporary anoxic conditions. Several authorsfoundthatpopulationgrowthratesonsterilizedactivatedsludgewerepositively correlated with temperature with optima of 2535 ˚C for the species that were encounteredinourresearch(Inamori et al. ,1983;Kuniyasu et al .,1997).Furthermore, A. tenebrarum , C. diastrophus and P. aequiseta were not present in all WWTPs and worm dispersal in the WWTPs may also be related to their natural occurrence in the directsurroundingsoftheWWTP. Themaximumwormdensitiesforthethreemainspecies/generainourresearch (Nais spp., A. hemprichi and P. aequiseta ) were 88, 178 and 46 specimens per mL respectively. Maximum worm densities found by other researchers in different wastewater treatment systems were variable. In fullscale plants, the maximum densitiesvariedfrom0.3Naidinae(Learner&Chawner,1998)and30Aeolosomatidae

╡47 ╞ ╡Chapter 3 ╞

(Poole & Fry, 1980) up to 160 N. elinguis per mL (Ratsak, 1994). In contrast, the maximum densities in pilotscale systems were much higher. Inamori et al. (1983) foundmaximumdensitiesof1,000 Aeolosoma sp.,200 Nais sp.and200 Pristina sp. per mL and Wei et al. (2003a) found maximum densities of around 700 and 125 specimenspermLfortheformertwospecies. 3.4.2 Population dynamics Theoccurrenceofpeakperiodsdidnotfollowayearlypattern,butusuallyshowedhigh similaritieswithineachWWTP.Ratsak(1994)alsofoundthatthedensityof N. elinguis inaWWTPvariedbothperseasonandevenperATforunknownreasons.Wecannot rule out longerterm patterns even though in natural populations of aquatic Annelida annual population growth patterns are common. E.g., during a sevenyear period, Loden (1981) always found peaks in spring in field populations of Naidinae. Only P. aequiseta showedpeaksinautumnbutwedidnotobservethisintheWWTPseither. Schönborn(1985)alsofoundthatthedensitiesofseveralnaidinespeciesinapolluted riverwerehighestinspringandheconcludedthatthiswasafoodissue.Therefore,the stable food supply and temperatures could explain the absence of annual population growthpatternsintheWWTPs.Thiswasalsosupportedbyasexualreproductionofthe species in our research, which usually indicates favourable conditions like food availability, higher temperatures and low NaCl concentrations (Learner et al. , 1978; Loden, 1981). In addition, topdown predation as observed in field situations by for example fishes (Wallace & Webster, 1996) is virtually absent from WWTPs, which is another explanation for the seemingly random population dynamics. The absence of seasonal patterns for no apparent reason was also sometimes observed for other likeNematoda(Michiels&Traunspurger,2004). The average durations of the peak periods were quite similar, all around 23 months,butvariabilitywithinonespecieswashighforunknownreasons.Onceworm populationgrowthwastriggered,thepopulationdoublingtimeswerelow(onaverage2 6 days), which also indicated favourable conditions. They were slightly higher for the NaidinaethanfortheAeolosomatidae.Inexperimentswithsterilizedactivatedsludge (Inamori et al. ,1983;Kuniyasu et al. ,1997)doublingtimesfor A. hemprichi , Pristina sp. and Nais sp.werealso16daysdependingonTSSconcentration.Similartoourresults, the highest population doubling times were found for Nais sp. Under more natural conditions(laboratorysetupswithpollutedriverwateranddetritusasfoodsource),the population doubling times of several Naidinae were higher (316 days) (Lochhead & Learner,1983;Schönborn,1985). Thesuddendisappearanceofthepopulationpeakscouldbeduetotheobserved lack of dividing worms observed in the downward phases of the peaks, which was possibly caused by senescence phenomena (Martinez & Levinton, 1992). This was illustrated by the high values for the population halflives, which indicated a low populationdecayratebutabiginfluenceofremovalwithwastesludge .

╡48 ╞ ╡Population dynamics of free-swimming worms ╞

3.4.3 Multivariate analysis The results from the multivariate analysis suggested that the variability in worm populationswasmostlyduetodifferencesinsampledWWTP,samplingyearandmonth. Thiswaspossiblycausedbythebeforementionedabsenceofcertainwormspeciesfrom some WWTPs (e.g., A. tenebrarum was only present in WWTP Nijmegen). Process characteristicsoftheWWTPscouldberelatedtoonly 4 % of the variability in worm populations.TherewereindicationsthatwormswererelatedtotheSVI,whichwasalso found by other authors (e.g. Ratsak, 1994; Wei et al. , 2003a). The present study indicatedthat A. variegatum wasassociatedwithhigherSVIvalues,whereastheother species were associated with lower SVI values. The latter can be explained by compacting of the sludge flocs by the worms, which increased the settleability. The association of C. diastrophus with higher denitrification efficiencies could be due to removalofdenitrifyingbacteriapopulations,butthisisnotlikely,since C. diastrophus mainly feeds on Protozoa. The association of A. tenebrarum with higher BOD concentrations in the effluent could be due to the release of suspended solids in the waterphasebecauseofsludgeconsumption.Itisunknownwhyotherspeciesdidnot showthesecorrelations. In contrast, other authors suggested many more though variable correlations between the presence of worms and several process characteristics. Ratsak (1994) concludedthathighwormdensitiesnotonlyresultedinalowSVIbutalsolowerenergy consumption for oxygen supply and, depending on the temperature, less sludge production.ThewormshadnoinfluenceontheeffluentqualityintermsofBODand nutrients.Wei et al. (2003a)concludedthesameforespecially Nais sp.andtoalesser extentfor A. hemprichi ,buthereportedadecreaseineffluentqualityintermsofTSS and BOD. In addition, population growth of A. hemprichi was slightly positively correlatedtoTandnegativelytopH,whilepopulationgrowthof N. elinguis wasslightly positivelycorrelatedtoTSS,TandDOandnegativelytoF/Mratio.Inamori et al. (1987) andZhang(1997)reportedsimilarphenomena. However,theseresearchesdidnotconsiderinteractionsbetweenvariableprocess characteristics,likethesludgeage,whichisinverselycorrelatedtosludgeproduction (vanLoosdrecht&Henze,1999).Wei&Liu(2006)forexampleconcludedfromtheir research that not all results from their study could be attributed to the presence of wormsduetothelackofacontrolsystem.Theavailableprocesscharacteristicsofthe studiedDutchWWTPscouldhardlyberelatedtothewormcompositionanddensitiesin thesamplesfromthoseWWTPs.Thesedatasuggestthatthepopulationpeaksoffree swimmingAnnelidaarephenomenathatarehardtoexplainandcontrol,andconfirms thattheirsupposedeffectsonWWTPprocessperformance,likewastesludgeproduction, shouldbeinterpretedwithmuchcare.

╡49 ╞ ╡Chapter 3 ╞

3.5 Conclusions Inthischapter,alongtermsurveyoffreeswimmingAnnelidaintheaerationtanksof fourDutchwastewatertreatmentplantswasdescribed.Thesurveyshowedthat: ╡ Wormabsencesometimesseemedtoberelatedtothepresenceofanoxiczones. ╡ No yearly recurrences of population peaks were seen in the WWTPs, probably becauseofstablefoodsupplyandtemperature,andthelackofpredation. ╡ PeakperiodsweresimilarbetweentheATsofeachWWTP.Thedurationofthepeak periodswasonaverage23monthsforallspeciesandthedoublingtimeswerelow (on average 26 days). The disappearance of worm populations from the WWTPs waspresumablycausedbydecliningasexualreproductionandsubsequentremoval withthewastesludge. Multivariate analysis of the worm species composition and the abiotic variables indicatedthat: ╡ The variability in worm populations was largely due to differences in sampled WWTP,samplingyearandmonth. ╡ ProcesscharacteristicsoftheWWTPshadasmallbutsignificantcontributionwith SVIasthemostimportantone.MostwormswereassociatedwithlowerSVIvalues, exceptfor A. variegatum thatwasassociatedwithhighSVIvalues. ThissurveysuggestedthatpopulationgrowthoffreeswimmingAnnelidacouldnotbe explainedbytheinvestigatedprocesscharacteristics.Inaddition,theyseemedtohave little influence on process performance. This would seriously hamper the stable applicationofthesespeciesinwastewatertreatmentforsludgereduction.

Acknowledgments

WethankDennisPiron(WWTPNijmegen),AnneliesvanderHam,JannyvanVlieten Hans Huijsman (WWTP Zwolle), Jan Talsma (WWTP Drachten) and the other employeesoftheplantsforsendingthesamplesandprovidingadditionalinformation. Inaddition,wethankChristaRatsakforherhelpwithsampleanddataprocessingand finally,wethanktwoanonymousreviewersassignedbyHydrobiologiafortheirvaluable comments.

╡50 ╞

╡╡╡Chapter 4 ╞╞╞ Developmentofatesttoassessthesludgereductionpotentialof Lumbriculus variegatus inwastesludge

Based on submitted paper for Bioresource Technology (Buys, Elissen, Klapwijk & Rulkens)

╡Chapter 4╞

Abstract Aquantitativesludgereductiontestwasdevelopedusingthesludgeconsumingaquaticworm Lumbriculus variegatus (Oligochaeta, Lumbriculidae). Essential in the test were sufficient oxygensupplyandthepresenceofanonstirredlayerofsludgeforburrowingoftheorganisms. Thetesteliminatedtheunwantedeffectsofthemacroscopicmovementsoftheorganisms,so calledbioturbation,onoxygentransportand(therefore)onsludgereduction.Nontreatedwaste sludgegrownonmunicipalwastewaterwasused,inordertostayasclosetothedailypracticeof sludgetreatmentaspossible.Byseparatingsludge andwormsafterthetest,sludgereduction and worm growth were quantified independently and accurately. Sludge digestion by L. variegatus was approximatelytwice asfastas the endogenous digestionrateofwastesludge, butdidnotaffecttheendpointofsludgereduction.Inadditiontoendogenousdigestionaround 19%sludgeVSS(~16%sludgeTSS)wasdigestedby L. variegatus .AminimuminitialW/S ratio(ratioofwormtosludgedrymatter)ofabout0.4wasrequired.Underthetestconditions, 20to40%ofthedigestedsludgewasconvertedintowormbiomass(organicmatterbased). L. variegatus seemedtoreleasemoreammoniumduringsludgeconsumptionthanwasexpected basedontheTSSdigestionpercentage. The sludge reduction test is simple, reproducible and accurate and can be done with equipmentgenerallyavailableinanylaboratory,yieldingresultswithinafewdays.Thetestcan alsobeusedtoevaluatetheapplicationofmixturesofdifferentaquaticorganismsorcascaded sludgeconsumptiononsludgereduction. 4.1 Introduction ThedisposalofwastesludgeofWWTPs(wastewatertreatmentplants)isstilloneofthe major challenges of sustainable wastewater engineering. In activated sludge WWTPs, eachingoingkilogramoforganicpollutionresultsintheproductionof250400grams of waste sludge as dry solids. This sludge contains microorganisms, slowly biodegradable and nonbiodegradable organic and inorganic materials. The costs for waste sludge treatment in activated sludge WWTPs may amount to 5060 % of the operational costs and this has stimulated research into alternative sludge treatment technologiesandscenariosaimedatminimizingsludgeproduction. Abiologicaloptionforwastesludgereductionistheconsumptionanddigestion ofthissludgebyhigherorganisms.Theoretically,energyislostateverytransitionina naturalfoodchainwherebypartoftheorganicmaterialisconvertedintoCO 2andwater (Dajoz, 1977). The food chain in biological wastewater treatment starts with the conversion of pollutants into bacterial biomass and may be extended by introducing higher organisms that feed on the bacterial biomass. This will result in less sludge productionandthusinfewercostsforsludgetreatment.Moreover,afterseparationof worms and the remaining sludge (including worm faeces) after treatment, the worm biomassbecomesavailableforreuse. DifferentaquaticwormsthatarefrequentlyfoundinWWTPs(Oligochaetaand Aphanoneura)weresuggestedorinvestigatedforsludgereduction:sessileTubificidae

╡52 ╞ ╡Principles of sludge reduction by L. variegatus ╞

(Densem,1982;Rensink&Rulkens,1997)andfreeswimmingNaidinae(asubfamilyof the Tubificidae) (Ratsak, 1994; Wei et al. , 2003a) and Aeolosomatidae (Zhang, 1997; Wei et al. , 2003a). However, in spite of a substantial research effort, up to date no systemsforsludgereductionwithanyoftheseorganismshavebeenputintopractice(or the results have not been published). This may be caused by the lack of an adequate testingmethodthatcloselyapproximatesthepracticeofwastewatertreatment. Aquatic worms are usually assumed to use live bacteria as a food source (Brinkhurst & Chua, 1969; Wavre & Brinkhurst, 1971; Densem, 1982; Ratsak et al. , 1993).Usingsterilizedsludgeforasludgereductiontest,assuggestedbyLiang et al. (2006b),maythereforechangethetestresult,sincesterilizationresultsinthelysisof livebacteria.Wedevelopedatestmethodthatuses nontreatedwastesludge,sothat testresultsmaybetranslatedtoreallifeWWTPswithoutanyassumptions.Thesessile aquatic oligochaete Lumbriculus variegatus was selected as model consumer. L. variegatus isseveralcmlongwhengrownonwastesludge,sothatmanualseparationof wormsandsludgeisfeasible.Atestingmethodshouldallowforseparatequantification ofsludgereductionandwormgrowth,inordertoprovethatthetwoareclearlylinked. Themainproblemofatestusingcrawlingorotherwisemovingorganismsina nonstirred(stagnant)layerofsludgeistheeffectofthemovementsoftheseorganisms ontheoxygenbalanceofthesludgelayerandthesupernatantwaterlayer.Thisprocess isinfactatypeof‘biostirring’andisreferredtoinliteratureas‘bioturbation’(Wang& Matisoff,1997;MermillodBlondin et al. ,2003).Bioturbationistheprocessofmixing and transfer of solutes and particulate material through the mechanical working of sedimentsby(inthiscase)Oligochaeta.Forexample,increasedsedimentoxygenuptake rate,denitrificationandammoniamobilizationwerereportedinthepresenceofsessile Tubificidae (Pelegrí & Blackburn, 1995). More specifically the reduction of activated sludgeissloweddownbyalackofoxygen(Kim&Hao,1990),sothatmovementsofthe wormsmayincreasesludgereduction.Thisisanunwanted effect in the study of the effectofconsumptionbyhigherorganismsonsludgereduction.Wastesludgereduction in the presence of crawling sludgeconsuming organisms is thus caused by a combination of three simultaneous processes: 1) digestion of sludge solids in the digestive track of worms, which converts sludge into CO 2, worm biomass and worm faeces, 2) endogenous sludge digestion by oxygen input through diffusion, and 3) endogenous sludge digestion by additional oxygen input through bioturbation. The batchexperimentsdescribedinthischapterwereaimedatdistinguishingbetweenthese processesandtheseparatequantificationoftheeffectofsludgeconsumptionbyworms onsludgereduction.

╡53 ╞ ╡Chapter 4╞

4.2 Materials and methods 4.2.1 Sludge cultivation Activatedsludgeforthebatchexperimentswasgrowninapilotscalesystemtreating presettled wastewater of mainly municipal origin from a reallife WWTP in the Netherlands.Thesystemconsistedofaselectorof50L,anAT(aerationtank)of530L and a secondary clarifier of 190 L (Figure 4.1). It was operated for COD (chemical oxygen demand) removal and nitrification. Excess activated sludge was daily wasted directlyfromtheATandthesludgeageinthesystemvariedbetween8to19daysata SLR(sludgeloadingrate)of0.20.6gCOD/gTSS(totalsuspendedsolids)/d.

Influent

selector

effluent

waste sludge

compressed air settler equalisation tank aeration tank

worm breeding reactor effluent

Figure4.1Figure4.1Layoutofthepilotscalesystemusedforgrowingactivatedsludgeandbreedingwormson thesludgeflocswashedoutwiththeeffluent. 4.2.2 Cultivation of L. variegatus L. variegatus wasgrowninaPlexiglasditch(400x28cm 2),whichwasfedcontinuously with550L/dofeffluentcontainingflushedoutsludgeflocsoftheAT(Figure4.1).On thebottomofthisditchOligochaetaweregrowinginandontopofa2cmsettledsludge layer. The Oligochaeta were originally bought in a pet shop as a mixture of sessile Tubificidae (mainly Limnodrilus hoffmeisteri , Limnodrilus udekemianus and Tubifex tubifex ) and L. variegatus , originating from polluted rivers in Eastern Europe. After severalmonths,thepopulationintheditchhadevolvedintoanearmonocultureof L. variegatus ,whichinhabitedthesludgelayerforaperiodofseveralyears. L. variegatus

╡54 ╞ ╡Principles of sludge reduction by L. variegatus ╞

was identified after mounting in polyvinyl lactophenol, using an Olympus BHT microscope(Brinkhurst,1971;Timm,1999). 4.2.3 Batch experiments on sludge reduction with L. variegatus Wecomparedwastesludgereductionwithandwithout(controls) L. variegatus intwo typesofbatchexperiments.Inthefirsttype,wemonitoredprogressivesludgereduction in time. In the second type, sludge reduction was measured only at the end, when in somebatchesofaserieswithwormsthefaecespercentagewas100%.Thesefaeceshave apelletlikeshapethatcaneasilybediscernedfrom waste sludge flocs that have not been consumed by worms (own observations). Therefore, the degree of consumption canbeestimatedfromthestructurechangeofsludgeflocsintowormfaeces. Batch experiments were chosen as most appropriate, because the amount of sludgecanbequantifiedaccurately.Batchexperimentswerecarriedoutinnonaerated Petridishes(Ø18.5cm,glass)orErlenmeyerflasks(250300mL,Duranborosilicate glass) with forced aeration through electrical air pumps and plastic tubes (PVC, Ø 4 mm).As L. variegatus isasedimentdwellingworm,theexperimentalsetupneededto simulatesedimentconditions,i.e.amoreorlessstagnantlayerofsludgeatthebottom and a layer of supernatant liquid. This implies that sludge with worms could not be completely mixed or stirred. Therefore, in the Erlenmeyer flasks with worms, the aeration was adjusted so that the sludge was not completely mixed, but just slightly mixed with most of the sludge and the worms on the bottom. Control flasks were aeratedmoreintenselytopreventoxygenlimitationandtoensurecompletemixing. L. variegatus specimenswerecountedandkeptintapwater1624hourstoallow forgutpurging(Densem,1982;Mount et al. ,1999).Beforethestartoftheexperiment, thewormswerewashedseveraltimeswithtapwaterandthenweighedinlotsofabout 100specimensaftergutpurging.Atthestartoftheexperiment,sludgewastakenfrom the AT of the pilotscale system and diluted with effluent of this system to a concentrationof23gTSS/kgsludgeina10Lbucket.Sludgewastakenfromthiswell stirredbucketandtransferredinportionsof200300gtothePetridishorErlenmeyer flask. Next, L. variegatus was added to some of the batches. At the end of each experiment, the worms were separated from the sludge manually and washed several timeswithtapwater.Thiswashwater,containingsomesludgeflocs,wasaddedtothe restofthesludgeofthebatch.Greatcarewastakentoincludeallofthesludgeinthe solidsdeterminations.Thewormswerekept1624hintapwaterforgutpurgingand thenwashedrepeatedly.Theamountoffaecesinthiswashwaterwasdeterminedina separatesuspendedsolidsmeasurementandthiswasatmost1.2%ofthetotalsolidsat theendofthebatchexperiment. 4.2.5 Analytical methods SubstantialattentionwaspaidtothedeterminationofTSSandVSS(volatilesuspended solids)becausetheydeterminethevalidityofoursludgereductionresearch.Theywere

╡55 ╞ ╡Chapter 4╞

determinedaccordingtoStandardMethods(APHA,1998),withthefollowingadditions ormodifications: 1. At the start of an experiment, sludge samples for determination of solids concentrationweretakenfromawellstirredbeakerof23L,directlypouredinto65mL centrifugetubesandweighed.TherelativeerrorsintheTSSandVSSdeterminations, whichreflectweighingandsamplingerrors,were1.5%and3%respectively. 2.Attheendofabatchexperiment,thesludgefromeachbatchwasconcentratedby centrifuging for 10 min. at 2000 g, pouring the supernatant through the filter and addingthepelletstothesamecentrifugetube,untilallthesolidswereconcentratedin onetube.TherelativeerrorsintheTSSandVSSdeterminations,whichreflectweighing andtransfererrors,were1%and2%respectively. 3.BothWhatmanGF/Cglassfibrefilters(retention1.2m,Ø55mm)andSchleicher & Schuell589 1blackribbonashfreefilters(retention>1225m,Ø55mm)wereusedfor solidsdeterminations.Nodifferencewasfoundbetweenthesetwotypes. 4.StandardMethods(APHA,1998)recommendslimitingthesolidssampletonomore than200mgdriedresidue,inordertoavoidtheformationofawatertrappingcruston the residue. We used substantially more dried residue (up to 800 mg) and found a maximumdecreaseof1%inmassafterredryingthecrushed residue overnight. This wasequaltoanoncrushedsample,soweconcludedthatnowatertrappingcrustwas formed. 5.Solidsweredriedovernight,i.e.thedryingtimewas1224h.Dryingtimebetween12 24hdidnotsignificantlyaffecttheTSSvalue. Thewetweightof L. variegatus wasdeterminedbysqueezingthemgentlyona perforatedpieceofaluminiumfoilplacedondrypapertissuetoremoveadheringwater. Dry weight was determined by drying overnight at 105 °C (Densem, 1982) and ash contentbyovernightignitionat600 °C.Therelativeerrorsinthewetweightandthedry towetweightratiowere5%. DO (dissolved oxygen) concentrations were measured with a WTW Oxi330 meter in the mixed suspension (in a system with a stagnant layer this gives a rough indicationoftheoxygenationconditions).pHwasmeasuredwithaWTW323or325pH meterequippedwithaSentixelectrode.Dissolvedammonium,nitrateandnitritewere determined in paperfiltered samples (Schleicher & Schuell, 595 1/2 folded filters, retention47m),usingaSkalarautoanalyser(segmentedflowanalysis).Analysisis basedonISOstandards:forammonium(050mgN/L)ISO11732,fornitrate(020mg N/L)andnitrite(02.5mgN/L)ISO13395. 4.2.6 Calculations TSSandVSSatthestartoftheexperimentwerecalculatedfromsludgeconcentration multipliedbythevolumeofsludgeadded.Attheendoftheexperimentallthesludgein thePetridisheswasusedfortheTSSandVSSdeterminations.Aweighedsampleofthe

╡56 ╞ ╡Principles of sludge reduction by L. variegatus ╞

sludgeinthebatcheswasusedfortheTSSandVSSdeterminations.Thereductionof

TSS(orVSS)wascalculatedrelativetot 0:

TSSreduction:TSSreduction:(1(1(1(1(TSS(TSS ttt/TSS 000))*100))*100 (%) (1)(1)(1) (1) Parameters: TSS ttt TSSattend (g) TSS 000 TSSatt 0 (g) Inabatchwithworms,thefaecesresultingfromgutpurgingwereaddedtothe solidsinequation (1) .Growthof L. variegatus wasexpressedasincreaseindryweight (andnotinnumber):

Wormgrowth:Wormgrowth:dwdwdw ttt(ww(ww(ww(ww 000*f*f*f dw/ww )))) (g) (2) (2)(2)(2) Parameters: dwdwdw ttt Dryweightofwormsattend (g) wwwwww 000 Wetweightofwormsatt 0 (g) fffdw/ww Drytowetweightratioofworms () Thedrytowetweightratioofthewormswasusuallydeterminedatthestartof eachexperimentforanextralotof100specimens. The specific growth rate of L. variegatus (basedondryweight)wascalculated fromequation (2) asfollows:

LvLvLv :::: Wormgrowth/(ww 000*f*f*f dw/ww )/t)/t (d 1) (3)(3)(3)(3) Parameters: tttt Experimentduration (d) The growth yield of worms on waste sludge Y w/s was based on the VSS of the worms(theirdryweightminustheirashcontent)andthesludge:

YYYLvLvLv :::: VSS VSS worwormsmsmsms ////VSS sludge () (4)(4)(4)(4) Parameters: VSSVSS VSS tVSS 0 (g) Errorpropagationfrommeasurementstocalculatedresultswasdoneaccording tostandarderroranalysis(Rao,2002). 4.3 Results and discussion 4.3.1 General observations Consumption by L. variegatus changed the structure of the waste sludge profoundly (Figure4.2):sludgeflocswerecompressedintocylindershapedwormfaeces.

╡57 ╞ ╡Chapter 4╞

Figure 4.24.2 Change of waste sludge structure after consumption by L. variegatus . Left: before consumption.Right:afterconsumption.Scalebar=0.5mm. Thewormswereeithercrawlingaroundinthesludgelayer,orwiththeirheadsin thesludgeandtheirtailsprotrudingintothesupernatantwaterfortakingupoxygen.In almostalloftheexperiments,wemeasuredmoresludgereductioninthewormbatches comparedtothecontrols,dependingontheoxygenationconditionsandthedurationof theexperiment.Ashcontentofthesludgeusuallyincreasedduringabatchexperiment (typically from 18 to 25 %), which resulted from a larger VSS than TSS reduction percentage,becausealmosttheentiresludgereductionconcernedtheorganicfraction. In many cases, dissolved nitrate and nitrite completely disappeared from the water phaseandpHincreased,whichindicatesdenitrification,causedbyoxygendepletionin thesludgelayer.Thiswasaconsequenceoftheexperimentalsetup,whichneededto simulate sediment conditions: complete mixing and active aeration were therefore impossible. We present three experiments, which were performed under different conditionswithsludgegrownonpresettledwastewater(Table4.1). Table 4.14.1 Conditions in the batch experiments with Lumbriculus variegatus . Abbreviations used: θ = sludgeage,E=Erlenmeyerflask,P=Petridish,SLR=sludgeloadingrate,W/S=wormtosludgeratio (drymatterbased),T=temperaturerange,pH end =pHrangeatendofexperiment.

ExpExpExpExp Par./Fig.Par./Fig. TypeType #worms#worms W/Satt 000 θθθθ SLRSLR TTTT pHpHpH end DurationDuration 1)1)1) =t 000 (d)(d)(d)(d) (gCOD/(gCOD/ (((°°°C)C)C)C) (d)(d)(d)(d) 2)2)2) =t end gTSS/d)gTSS/d) 1111 4.3.2 / E 100200 1) 0.16 8 0.6 18.0 6.27.8 29.8,52 4.3 P 98220 2) 0.36 20.9 2222 4.3.3 / E 80310 1) 0.21 8 0.6 22.2 6.87.9 1.9 4.4 87306 2) 0.61 26.7 3333 4.3.4 / E 200 1) 0.42 15 0.3 18.0 4.87.6 4.8 4.5&4.6 P 201247 2) 0.54 22.0

4.3.2 Sludge reduction and worm growth yield Atypicalexampleoftheprogressofsludgereduction in time in Petridishes and the correspondinggrowthyieldYLv of L. variegatus isshowninFigure4.3(Experiment1).

╡58 ╞ ╡Principles of sludge reduction by L. variegatus ╞

100 0.5

90 0.4 80

70 0.3

60 0.2 50 (wormVSS/sludgeVSS)(wormVSS/sludgeVSS) 0.1 (wormVSS/sludgeVSS)(wormVSS/sludgeVSS) LL v v LL v v SludgeVSS(%rel.tot=0)SludgeVSS(%rel.tot=0) Y Y SludgeVSS(%rel.tot=0)SludgeVSS(%rel.tot=0) 40 Y Y

30 0 0 2 4 6 8 10 Time(d) Figure4.3Figure4.3VSSreductionofwastesludge(Experiment1)inPetridishesduring10dinthepresenceof L. variegatus (●)comparedtocontrolswithoutworms(○)andwormgrowthyieldY Lv (×).Horizontaldotted line: sludge VSS reduction in controls after 52 days. The other lines connect the average of two duplicates.Errorbarsforwormgrowthyieldwereomittedforclarityreasons. Sludgereductionproceededatahigherrateinthepresenceofwormsandwas accompaniedbygrowthinnumbersandbiomassof L. variegatus upto6days,followed by declining growth in biomass between 610 days. The specific growth rate Lv of L. variegatus (onthetimeintervalt=06days)was0.050.11d 1.Weobservedthatafter approximately 6 days, almost all of the sludge had been converted into faeces. This coincideswiththemaximumingrowthyieldY Lv .Thetimetocompleteconsumptionis likely to depend on the W/S ratio: a higher ratio will result in faster consumption. Sludgecanbeconsumedmorethanonce,butfaecesare hardly digested (Chapter 6). Thismayexplainthedecreaseingrowthyieldafter6days:wormsstartedloosingweight becausefooduptakebecamelimiting.Theyieldswefoundfor L. variegatus areinthe sameorderofmagnitudeaswasreportedforthegrowthofdifferentProtozoaonwaste sludge(Ratsak et al. ,1996),0.160.54mgProtozoa/mgsludge. Figure4.3alsoshowsthatthefinalsludgeVSSreductionpercentagereachedin thecontrolbatchesafter52dayswas62%(whichequalsaTSSreductionof54%).Ina similar experiment to Experiment 1, but with a duration of 63 days, we found no difference in the final sludge reduction percentage between Petri dishes with and without L. variegatus :58.3( ±1.8)%and57.1( ±1.8)%oftheVSSrespectively.Therefore, consumptionby L. variegatus enhancesthesludgereductionratewithoutaffectingthe finalendpointofsludgereduction.Thismeansthatthesludgecomponentsrefractiveto microbialbiodegradationarealsorefractivetobiodegradationby L. variegatus .

╡59 ╞ ╡Chapter 4╞

4.3.3 Effect of worm to sludge ratio on sludge reduction A minimum amount of worms is needed to consume a given amount of sludge to observeameasurableeffectonsludgereduction.Figure4.4showstheeffectoftheW/S ratioinExperiment2 .

30

20 TSS VSS

10 %TSS/VSSreduction%TSS/VSSreduction %TSS/VSSreduction%TSS/VSSreduction

0 0 0.21 0.41 0.61

W/Sratio Figure4.4Figure4.4TSSandVSSreductionofwastesludge(Experiment2)inPetridishesafter1.9daysinthe presenceof0,80,155or310specimensof L. variegatus ,correspondingtoW/Sratiosatthestartof0, 0.21,0.41and0.61. ThelowestnumberofwormswithW/S= 0.21showedno difference with the control(W/S=0),whileW/S=0.41and0.61resultedinmoresludgereduction.The difference in sludge reduction between the batches with W/S = 0.41 and 0.61 is not significant.WedidnottesthigherW/Sratios,butexpectthatinhibitionmayoccurat highwormdensitieswhenwormsarecompetingforspace,i.e.foodandoxygen.Based on this experiment the minimum initial W/S ratio to observe a significant effect on sludge reduction is about 0.4. The reason why this minimum exists is endogenous sludge digestion, i.e. bacteria are feeding on (the remains of) other bacteria (van Loosdrecht&Henze,1999).Thewormsthereforehavetodigestthesludgefasterthan thesludge‘digestsitself’inordertomakeadifferenceinsludgereduction.Thisrequires aminimumamountofwormbiomass,whichdependsontheendogenousactivityofthe sludge:thehighertheendogenousactivityofthesludge,themorewormsarerequired. Worms are thus competing with bacteria that are digesting (the remains of) other bacteria.Thesludgeconsumertosludgeratioisaneglectedparameterintheliterature onconsumptionofwastesludge.FromthedataonpopulationpeaksofNaidinaeinthe WWTP Deventer (Ratsak, 1994), reaching up to 160 specimens per mL sludge, we calculatedamaximumW/Sratioof0.10(basedonourownmeasurementsonNaidinae, i.e.28gdryweightperspecimen).Possibly,differenttypesofwormsshowaneffecton

╡60 ╞ ╡Principles of sludge reduction by L. variegatus ╞

sludgereductionatdifferent(minimum)W/Sratios.TheW/Sratioisoneofthemain designparametersfortheapplicationoftheconsumptionconcepttosludgetreatment, becauseitdeterminestheamountofwormsrequiredtotreatagivenamountofwaste sludge.

4.3.4 Effect of aeration conditions on sludge reduction Aeration has a pronounced effect on the outcome of the experiments (Figure 4.5; Experiment3).

50

40

30 TSS VSS 20

10 %TSS/VSSreduction%TSS/VSSreduction %TSS/VSSreduction%TSS/VSSreduction

0 CE LvE CP LvP CE30

Batch Figure 4.54.5 Average (N = 2, except for C E, where N = 1) TSS and VSS reduction of waste sludge (Experiment3)underdifferentaerationconditionsafter4.8(CE,LvE,CPandLvP)and30days(CE 30).Abbreviationsused: C=controlwithoutworms,Lv=batchwith L. variegatus ,P=nonaeratedPetri dish,E=aeratedErlenmeyerflask. The sludge reduction in the control Petri dishes (C P) was lower than in the control Erlenmeyer flasks (C E), which means that this experiment was done under oxygenlimitedconditions.Wormgrowthwasnegligibleinthedishes,probablybecause the dissolved oxygen concentration was low and not all of the sludge had been consumed. The highest sludge reduction was found in the flasks with worms (Lv E), where worm growth was significant. Both in the dishes and in the flasks, the sludge reductionwashigherinthepresenceofwormsthaninthecorrespondingcontrols.This result is however not easy to interpret because oxygen transfer limited the sludge reduction.Thewormsinfluencetheoxygentransferprocessbecauseoftheirrespiration and their movements, but to an unknown extent. Therefore, part of the difference between control and worm reduction can be attributed to bioturbation facilitated oxygentransfer,bothinthedishesandtheflasks.Themaximumeffectofbioturbation canbeestimatedbycomparingthecontrolflasks:forcedaerationmayaboutdoublethe

╡61 ╞ ╡Chapter 4╞

VSS reduction (9 versus 20 %). A lower VSS reduction rate under anoxic conditions comparedtoaerobicconditionsisacommonphenomenon(Kim&Hao,1990).Inother similar experiments (results not shown), we also found approximately a factor 2 differenceinsludgereductionbetweensludgeinclosedbottleswithoutheadspaceand continuouslyaeratedsludge.Consideringwormmovementsasatypeofforcedaeration, wormmovementwithoutconsumptioninastagnantlayerofwastesludge,mayatmost doublethesludgereduction.However,becausethecontributionofbioturbationcannot be quantified exactly (only the upper limit is known), the effect of consumption by wormsonsludgereductioncannotbequantifiedexactlywhentheexperimentsaredone underconditionsofoxygenlimitation.Anexperimentalmethodtocomparetheeffectof consumptionbydifferentorganismsneedstoeliminateeffectsofbioturbationbecause different organisms will differ in their movements. Given this experiment, the best comparison is between the intensely aerated control and a lesseraerated flask with worms. The resulting difference may be ascribed fully to the consumption effect. In Figure4.5CEistobecomparedwithLvE,whichyields:20.1( ±3.6)%VSSreduction comparedto39.1(±2.0)%.Thisequals18.2(±2.1)%TSSreductioninCEcomparedto 33.9(±1.2)%inLvE.Predationthusaddsabout19%ofadditionalVSSreduction(or about 16 % of additional TSS reduction), which is almost a factor 2 compared to the endogenousdigestionunderconditionsofexcessoxygensupply.Figure4.6showsthe changesindissolvednutrientsduringExperiment3aspercentageofTSSdigestionin controlsandwormbatches,tocompensatefortheeffectofincreasedsludgedigestionin thewormbatches.

8 +N +N +N +N 2 2 2 2 6 4 orNNO orNNO orNNO orNNO + + + + 4 4 4 4 2

0 NNH4 2 NNO3+NNO2 4 6 aspercentageofTSSreductionaspercentageofTSSreduction aspercentageofTSSreductionaspercentageofTSSreduction 3 3 3 3 8 NO NO NO NO 10 ChangeinamountofNNHChangeinamountofNNH ChangeinamountofNNHChangeinamountofNNH CE LvE CP LvP

Batch Figure4.6Figure4.6Average(N=2,exceptforCE,whereN=1)changesintotalamountofdissolvedammonium andnitrate+nitriteafter4.8daysinExperiment3(Figure4.5)aspercentageofthesludgereduction. Abbreviationsused: C=controlwithoutworms,Lv=batchwith L. variegatus ,P=nonaeratedPetridish, E=aeratedErlenmeyerflask.

╡62 ╞ ╡Principles of sludge reduction by L. variegatus ╞

The dissolved nutrients shown in Figure 4.6 mainly reflect the oxygenation conditions:inthenonaerateddishes(P),denitrificationwas(almost)complete,alsoin the presence of worms. In the aerated flasks (E), nitrate usually increased during the experimentandnitritewasfoundinverylowconcentrations,butinoneoftheaerated flasks with worms nitrate decreased for unknown reasons. Figure 4.6 shows that ammoniumaccumulationoccurredinallbatches,butmostbatcheswithwormsinboth systemsshowedasomewhathigherrelativeincrease.Thisamountstoanaverageextra releaseof0.0020.07gN/mgdryweight/h.Accumulationingeneralmayhavebeen caused by nitrification inhibition at low DO concentrations and low pH, but extra accumulation in the worm batches possibly from killing the nitrifying bacteria. The latter is an extrapolation from results on differences in survival of different types of bacteria upon passage through the gut of the aquatic Oligochaeta T. tubifex , L. hoffmeisteri and Peloscolex multisetosus (Wavre & Brinkhurst, 1971). In addition, sessileTubificidaearealsoknowntoexcreteammoniumatratesof0.030.27gN/mg dryweight/hwithfulloremptyguts(Postolache et al. ,2006).Fornitrateandnitrite, theresultswerecontradictoryforbothsystems.IntheErlenmeyerswithworms,there wasasmallerincrease,whichisinlinewithahigherincreaseinammonium.InthePetri disheswithworms,therewasasmallerdecrease,whichpossiblyindicatesthatworms notonlykillthenitrifying,butalsothedenitrifyingbacteria. 4.3.5 Elimination of the effects of bioturbation Bioturbation will only affect sludge reduction when oxygen transport is rate limiting. Thisisthecasewhentherespirationrateofsludgeandwormsexceedsthe(enhanced) diffusionaloxygeninflux.Theoxygeninfluxisproportionaltothesurfaceareaandthe partialoxygenpressureinthegasphase.Therefore,athighersludgerespirationrates, theeffectofbioturbationcanbeeliminatedbyspreadingthesludgeoveralargersurface area or by increasing the oxygen partial pressure. In that case, experiments are best doneinlargetrays(withasurfaceareaofforexample 1500 cm 2) with no more than about 150200 mg sludge TSS at the start. The minimum amount of L. variegatus neededisthenabout75100mgdryweight.Thisdescribed methodology will always eliminate the unwanted effect of bioturbation on sludge reduction and separately quantifiessludgereductionandgrowthofthesludgeconsumingorganism.

╡63 ╞ ╡Chapter 4╞

4.5 Conclusions Inthischapter,asimplebatchtestusingonlythemassofsludgeandthemassofsludge consumingaquaticworms( Lumbriculus variegatus )wasdesignedtotestthesuitability ofbiologicalsludgereduction.Sincenontreatedwasteactivatedsludgewasused,the test was as close as possible to the practice of wastewater treatment. Under the conditionsappliedinthetestitwasshownthat: ╡ L. variegatus enhancedthebatchwisereductionofwastesludgeiftheinitialworm tosludgeratiowasatleast0.4(drymatterbased). ╡ Sludgedigestionby L. variegatus wasapproximatelytwiceasfastastheendogenous digestion rate of sludge. This digestion added around 19 % VSS reduction and around16%TSSreductionrespectively. ╡ Almosttheentirereductionconcernedtheorganicfractionofthesludge. ╡ Sludgeconsumptionby L. variegatus didnotaffecttheendpointofsludgereduction. ╡ Underconditionsbeneficialforwormgrowth,2040%ofthesludgebiomassthat disappearedwasconvertedintowormbiomass(organicmatterbased). Inaddition,thetestsuggestedthat: ╡ Theunwantedeffectofthemovementsofthewormsontheoxygentransportinto the sludge (bioturbation) in the case of high sludge respiration rates can be eliminated by either increasing the oxygen partial pressure or by spreading the sludgeoveralargersurfacearea.Inthatcase,thetrueeffectofsludgeconsumption onsludgereductioncanalwaysmeasured. ╡ L. variegatus seemedtoreleasemoreammoniumduringsludgeconsumptionthan was expected based on the TSS digestion percentage. L. variegatus possibly influenced (de)nitrification by killing (de)nitrifying bacteria during sludge consumption. ╡ Thetestmethodologycanbeusedtoassessthesuitabilityofothersludgeconsuming organisms for sludge reduction or to optimize the composition of mixtures of differentsludgeconsumingorganisms.

╡64 ╞

╡╡╡Chapter 5╞╞╞ Factorsinfluencingsludgereductionby Lumbriculus variegatus

╡Chapter 5╞

Abstract Fortheeffectiveapplicationof Lumbriculus variegatus inwastewatertreatment,itisessential toknowifandhowseveralsludgeproperties,wormpropertiesandprocessconditionsinfluence sludge digestionby L. variegatus andresultingwormgrowth.Thiswasinvestigatedinshort term batch experiments. Various municipal waste sludges from WWTPs and pilotscale conventionalandmembranebioreactorsystemsweredigestedataverageratesof0.09(±0.04) d1.Wormbiomassgrowthratesandwormnumbergrowthrateswereonaverage0.04(±0.03) and0.01(±0.02)d 1respectively.Ofthesludgedigestedbyworms,onaverage38(±22)%was converted into worm biomass (dry matter based). Nonmunicipal (Beer) sludge was also consumed, but the before mentioned rates were substantially lower. For both municipal and nonmunicipal sludges, the overall rates showed a high variability. However, a statistical analysis of the results of batch experiments with two of the most frequently used municipal sludgesshowedthatthiswasonlycausedtoasmallextentbyvariationsinduration(28days), temperature(1620°C),populationdensity(2,00011,000specimensperm 2),drymatterbased wormtosludge(W/S)ratios(0.10.6),pH(4.87.6)andashpercentageofthesludge(1320%). Thevariabilitymaythusbetheresultofunknowndifferencesinsludgecomposition. L. variegatus wasabletoconsumeallsludgeflocsizes,eventhosesmallerthan4.5m andlargerthan300m.Digestionandgrowthrateswerenotaffectedbythedifferentsludge flocsizes,unlessthesludgeconcentrationsofthefractionsweretoolow.Sterilizedsludgewas consumed at normal digestion and biomass growth rates as long as no unknown toxic compoundswerepresent,butreproduction(i.e.numbergrowthrates)wasnegativelyaffected. Thisindicatedthatthewormsneedlivebacteriaintheirsubstrate.Furtherbatchexperiments indicatedthat L. variegatus wasabletoincreasethefinalreductionpercentageofsludgethat waspredigestedunderoxicconditions.However,thiseffectwasnotclearforsludgesthatwere predigestedunderanoxicconditions,becausethisoftennegativelyaffectedwormgrowth,most likelybecauseofthepresenceoftoxicunionizedammonia. Largerindividualwormsizeseemedtoenhancereproduction,aswasexpected,butthe effectonsludgedigestionandbiomassgrowthwasnotclear.Highpopulationdensities (>39,000 specimensper m 2)and W/Sratios (>1.4)negativelyaffected sludgedigestionand worm growth in the batch experiments. Finally, the addition of ferric iron did not influence sludgedigestionandwormgrowthandincubationundercompletedarkconditionsonlyseemed toenhancewormnumbergrowth. The results from these shortterm batch experiments thus indicate that Lumbriculus variegatus can be applied in wastewater treatment for the reduction of different municipal wastesludges.Inthesepracticalapplications,themajorpointofattentionwillbetheavoidance ofhighammoniaconcentrations,especiallyathighpHvalues.Aninterestingpointforfurther researchisthepossibleincreaseofthefinalreductionpercentageofpredigestedsludges. 5.1 Introduction Inbatchexperiments,theaquaticoligochaete Lumbriculus variegatus consumedwaste activated sludge, digested part of its organic fraction and excreted the remaining fraction as compact worm faeces (Chapter 4). Sludge digestion by worms is

╡66 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

approximately twice as fast as the endogenous digestion rate of waste sludge. In a typical batch experiment, the combination of endogenous digestion and digestion by worms during 10 days led to a final sludge TSS (total suspended solids) reduction percentageofmorethan50%,ofwhicharound16%wasattributabletothewormsonly. L. variegatus converted around 2040 % of the sludge that was digested by this combineddigestionintowormbiomass. For an effective and controlled application of L. variegatus in fullscale wastewatertreatmentplants(WWTPs),itisessentialtoknowhowsludgedigestionand worm growth are influenced by sludge properties, worm properties and process conditions. In natural sediments, feeding rates of Oligochaeta are influenced by reproduction, body size, population density, ambient temperature, water quality parameters (e.g. dissolved oxygen, pH, ammonia) and sediment composition (particle size and organic matter content) (Williams, 2005). Similar factors will be important whenapplying L. variegatus infullscalesludgetreatment.Table5.1summarizessludge properties, worm properties and process conditions that were expected to influence sludge digestion by L. variegatus and resulting worm growth and were investigated and/ordiscussedinthischapter. Table5.1Table5.1Variationsinsludgeproperties,wormpropertiesandprocessconditionsthatcanaffectsludge digestionandwormgrowth. SludgepropertiesSludgeproperties Typeofwastewater(municipal,nonmunicipal) (In)organicfraction Flocsize Ammoniaconcentration (An)oxicpredigestion pH WormpropertiesWormproperties Individualweight Populationdensity Wormtosludge(W/S)ratio ProcessconditionsProcessconditions Oxygenconcentration Temperature Additionofiron(Fe 3+ ) Light/darkrhythm 5.1.1 Sludge properties Forfullscaleapplicationsof L. variegatus, itisessentialtoknowhowthesludgetype influences digestion and growth and how tolerant they are for these types of sludges. Sludgeisacomplexmixtureofbacteria,deadorganicmaterialandinorganicmaterial (Gujer et al. , 1999). It is not known which components of sludge are ingested by L. variegatus and are subsequently digested or excreted after gut passage, which takes around 3 for sediment particles and around 6 hours for sand particles mixed with spinach(Gnaiger&Staudigl,1987a;Gaskell et al. ,2007).Informationaboutthefood metabolism of L. variegatus is scarce. In terrestrial Oligochaeta like earthworms,

╡67 ╞ ╡Chapter 5╞

enzymesandintestinalbacteriaareinvolvedinthedigestionofbiosolids(Kizilkaya& Hepsen, 2004; Frederickson & Howell, 2003). However, in aquatic Oligochaeta like Tubificidae (including Naidinae) evidence was found that the gut contained digestive enzymes,butnospecificintestinalmicroflora(Harper et al. ,1981a).Itmaywellbethat the latter also applies to L. variegatus . Williams (2005) states that the exact composition of L. variegatus ’ diet is unknown but probably consists, like in most Oligochaeta, of a diverse mixture of small food particles that accumulate in benthic environments(e.g.algae,decayingplantmaterial,bacteriaandfungi).Notallingested componentscanbedigested,likecertainalgaespecieswithcelluloseintheircellwalls (Moore, 1978). Some Oligochaeta like Tubifex tubifex can actively take up dissolved organic material like fatty acids through their skin, but L. variegatus is incapable of doingthis(Sedlmeier&Hoffmann,1989). Nexttothecompositionofthefoodsource,sludgedigestionandwormgrowth maybeinfluencedbythepHinthemedium.Innature,L. variegatus isknowntolivein apHrangeof4to9,anditcanevensurvivefortwodaysatapHaslowas23(Berezina, 2001).Thiswasconfirmedbyourownobservations(datanotshown). To investigate the influence of sludge composition on digestion and growth, experiments were done with different types of sludges. They were produced from the treatmentofdifferentwastewatertypes(municipal,nonmunicipal)andalsodifferedin sludge age. Furthermore, the effect of different pretreatment options for sludge was investigated. The size of sludge flocs may have an effect, takinginto account pharynx (mouthopening)sizeofthewormsandenergyspentongatheringfoodparticles.The influence of floc size was investigated with sieved sludge fractions. It is generally accepted that aquatic Oligochaeta mainly feed on bacteria (e.g. Wavre & Brinkhurst, 1971).Thepercentageoflivebacteriainsludgemaythereforeaffectdigestionaswell, since it is unknown whether live bacteria are an essential part of the worm diet or influencethedigestionefficiency.Thiswasinvestigatedbyfeeding L. variegatus with sterilizedsludge.Predigestionofsludgebeforefeedingittowormsmayalsoincrease digestionratesandpossiblythefinaldigestionpercentage,sincecomplexcomponents of the sludge have already been converted into smaller components. This may be importantforthelocationofawormreactorinaWWTPsinceconsumptionbyworms mayforexamplehavemoreeffectonsludgefromadigesterthanonsludgefromthe aeration tanks. This was investigated by feeding worms with sludges that were pre digestedunderoxicandanoxicconditionsforvaryingperiods. 5.1.2 Worm properties For a fullscale application, it is essential to maintain a stable population of worms withoutunpredictablefluctuationsinsludgedigestionandgrowth.Itislikelythatthere will be an equilibrium between worm population size and food (i.e. sludge) supply. A basic understanding of L. variegatus population dynamics in sludge is therefore essential. Three possibly important determinants of digestion and growth rates (in

╡68 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

number and/or biomass) of L. variegatus are individual worm weight, population densityandW/Sratio(drymatterbased). Itisknownthatlargerwormsreproduce(divide)moreoftenthansmallerworms (Leppänen & Kukkonen, 1998a). They found that the worms usually reproduce when theirindividualwetweightismorethan9mg,whichwasconfirmedbyWilliams(2005). In contrast, it is known that in the absence of food L. variegatus keeps reproducing whiledecreasinginbiomass(Buys,2005),butthismaybeasurvivalmechanism.After reproduction,foodingestionceasesforupto7days(Leppänen&Kukkonen,1998b)and this will decrease sludge digestion rates. At the same time, small worms may have a fastermetabolism,sincetheyincreasemostlyinbiomassinsteadofnumbers,buttheir smallerpharynxsizemaylimittheuptakeoflargersludgeflocs.Totesttheinfluenceof individualwormweight,experimentsweredonewithlargeandsmallspecimensof L. variegatus . Nexttoindividualwormweight,theW/Sratiomightinfluencedigestion.Inthe previous chapter, it was found that additional digestion by L. variegatus usually becomessignificantwhentheW/Sratiois0.4orhigher.Thisishoweverdependenton the endogenous activity (natural digestion rate) of the sludge used. Additional batch experiments on the influence of high W/S ratio were carried out. Next to a ‘worm property’,theW/Sratiocanalsobeconsideredaprocesscondition,becauseitcanbe regulatedbyharvestingofworms. Thethirdparameterpopulationdensityisknowntoinfluencetheexcretionrate of L. variegatus .AccordingtoLeppänen&Kukkonen(1998a)individualexcretionrates insedimentdidnotchangeuptopopulationdensitiesof12,500specimensperm 2.At higherdensities,individualexcretionratesdecreasedmostlikelybecauseofcompetition for food. Whether population density has a similar effect on sludge digestion and possibly on worm growth was investigated in experiments with high population densities. 5.1.3 Process conditions Nexttosludgeandwormproperties,processconditionsarelikelytoinfluencedigestion andgrowthduringsludgeconsumption.Applyingoptimalconditionscanbeaneffective way of controlling digestion and growth. Important process conditions are oxygen concentrationandtemperature. Oxygenconcentrationinexperimentswith L. variegatus insludgehaseffectson bothwormsandsludge.Thesewormsneedoxygenfortheirmetabolism.Inaddition, endogenousdigestionisenhancedatincreasingoxygenconcentrationsandasaresult, theadditionaleffectof L. variegatus ondigestiondecreases.Whenoxygenavailabilityis notlimiting L. variegatus ingeneraldoublesdigestionratescomparedtoendogenous digestion(Chapter4). Temperature also influences sludge digestion and worm growth (Buys, 2005). Between5and30°C,bothdigestionbyendogenousprocessesandwormsincreasedbut digestionbywormswasalwayshigher.At15and20°C,thedigestionandgrowthrates

╡69 ╞ ╡Chapter 5╞

werestableandinthesamerange,butat30°Ctheratesweresometimeshigherand sometimeslowerthanatmoderatetemperatures.At5°Ctherateswereverylow(Buys, 2005).Leppänen(1999)foundthat L. variegatus reproducesandfeedsequallywellon sedimentsat15and20°Candthatexcretionrateswereafactor347higherat20°C thanat6°C.Williams(2005)foundthat L. variegatus stoppedfeedinginsedimentsat 5°C.IncontrastwithourresultsandthoseofLeppänen(1999),hefoundasignificant increaseinexcretionratefor L. variegatus whentemperaturewasraisedfrom15°Cto 20°C.Chapman et al. (1999)statethattheoptimaltemperaturefor L. variegatus is20 25°C,whichexplainstheunstablesludgedigestionandwormgrowthat30°C.Phipps et al. (1993)statethat L. variegatus shouldnotbeculturedabove25°C. Severalotherprocessconditionsmayalsoinfluencethefeedingbehaviourof L. variegatus . Ferric iron (Fe 3+ ) addition to the sludge, a flocculant commonly used in wastewatertreatmentforphosphorusremoval,andlight/darkrhythmwereinvestigated. Someplantoperatorshavementionedthatironadditionseemedtoenhancethegrowth of related aquatic worms in WWTPs (Janssen et al. , 2002). Iron is an important component of erythrocruorin, the haemoglobinlike oxygenbinding blood protein found in L. variegatus and many other Annelida (Frossard, 1982; Drewes, 2005). Addition of iron may therefore enhance growth. Besides, iron causes sludge flocs to compactandsettle,whichmayfacilitatefoodintakebytheworms.Theinfluenceofiron wasinvestigatedbyaddingFeCl 3tobatcheswithsludgeand L. variegatus . L. variegatus displaysnegativephototaxis,i.e.avoidslightandburiesheaddown in sediments in its natural habitat (Drewes, 2005). Complete darkness therefore may enhancesludgedigestionandwormgrowthratesandthiswasfurtherinvestigatedina batchexperiment.

5.2 Materials and methods 5.2.1 General set-up AdetaileddescriptionofthebasicsetupoftheexperimentswasgiveninChapter4.It consistedofaseriesofglassPetridishes(Ø18.5cm)or250mLErlenmeyerflasksin whichsludgewasincubatedwithworms.Ascontrols(withoutworms),Petridishesor aerated 250 mL Erlenmeyer flasks with sludge were incubated under the same conditions.Thebatchesinanexperimentwereanalysedatacommonendpointandnot atdifferentintervalsintimetolimitthenumberofanalysesandbatches.Thisendpoint wasreachedeitherbeforethefaecespercentageinthewormbatcheswas100%(i.e.all thesludgewasconsumed)orsoonafterthefaecespercentageinthefirstofaseriesof wormbatcheswas100%.Sludgequantities,wormbiomassandwormnumberswere separatelydeterminedatthestartandendofeachexperiment.Inaddition,temperature, pH and oxygen concentration were usually determined. Shortterm experiments comprised of one run, longterm experiments of successive runs in which the same wormpopulationwasfedwithfreshsludgesamples.

╡70 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

L. variegatus specimensoriginatedfromaculturegrownoneffluentcontaining flushed out sludge flocs from a pilotscale wastewater treatment system treating municipalwastewaterfromthevillageofBennekom,theNetherlands.Thewormswere randomly selected for the batch experiments to represent all weight classes and the averageindividualwormwetweightwas14(±6)mg.Populationdensitieswerebetween 1,100and11,000specimensperm 2andtheW/Sratiowasonaverage0.4(±0.2). 5.2.2 Sludge properties To evaluate the effect of different sludge properties on digestion and growth, worms werefedinbatchexperimentswithsludgesfromdifferentWWTPsandwithdifferent pretreatments. Wastewater treatment plants The sludges originated from municipal and non municipalWWTPsandwerecharacterizedinTable5.2 according to wastewater type, planttypeandcharacteristics,ashpercentage,pHandsludgeage. Table5.2Table5.2Characterizationofthedifferentsludgesbywastewatertype,planttypeandcharacteristics, ashpercentage(ofTSS),pHandsludgeage.Valuesarepresentedasaverageswithstandarddeviations. AshpercentagesandpHvaluesweredeterminedatthestartofeachbatchexperiment.Thesludgeage waseithercalculatedasanaverageduringthetotalsamplingperiodofthesludgeinvolvedorprovided bytheplantoperators.Abbreviationsused: Beer=BavariabeerbreweryinLieshout,Bk=Bennekom, CAS=conventionalactivatedsludgesystem,F=fullscale,P=pilotscale,MBR=membranebioreactor, N = nitrogen removal, Ni = nitrification, Nij = Nijmegen, Pb = biological phosphorus removal, Pc = chemical phosphorus removal, Pre = presettled wastewater, R = raw wastewater, Si = side stream membranes,Su=submergedmembranes,Zoo=NoorderDierenparkzooinEmmen. SludgeSludgeWastewaterWastewater PlantPlant Ash%Ash% pHpHpH pH Sludgeage(days)Sludgeage(days) MunicipalMunicipal R1R1R1R1 Bk,Pre P,CAS,Ni 16(±2) 6.7(±0.4) 20(±11) R2R2R2R2 Bk,Pre P,CAS,Ni 16(±1) 6.7(±0.6) 38(±8) M1M1M1M1 Bk,Pre P,MBR,Su,Ni 20(±2) 7.1(±0.5) 18(±3) M2M2M2M2 Bk,Pre P,MBR,Si,Ni 20 7.5 18(±2) BkBkBkBk Bk,R F,CAS,N,Pb 25(±4) 7.2(±0.2) 40(±6) NijNijNijNij Nij,Pre F,CAS,N,Pc 32 7.2 ~16 NonNon municipalmunicipalmunicipal ZooZoo Zoo F,CAS 44 7.5 ~400 BeerBeer Beer F,CAS,Pc 43 8.4 ~50 TheWWTPattheBavariabeerbreweryincludedananaerobicpretreatmentstep inaUASBsystem.Thesludgewastakenfromtheaerobicpartofthetreatmentplant. The WWTP at the Noorder Dierenpark zoo included a ‘Living Machine’, a water treatment system that employs constructed wetlands with plants. After this step, the water was led through a membrane filtration unit. It treated wastewater from zoo animalsaswellasfromthevisitors.Thesludgewastakenfromthecompartmentwith plants.Itcontainedhighaluminiumconcentrations(around20%oftheTSS),dosedto improvethemembranefiltrationprocess.

╡71 ╞ ╡Chapter 5╞

Pre-treatment SludgesfromreactorsR1andR2andfromWWTPBennekomwerepre treatedbymeansofthefollowingmethods: Sludges were sieved using 75, 200 and 300 m Retsch sieves, and 4.5 m (Schleicher&Schuell)filters.Thisresultedindifferentsludgeflocsizesof04.5m,0 75m,0200m,0300m,>300m,75200mand200300m.Thesludgewas sievedinportionstoavoidtheformationofacakelayertrappingsmallerflocs.Sludge fractionswereflushedwithtapwatertoretainonlyflocslargerthanthemeshsizeofthe sieve. If necessary, fractions were diluted afterwards with tap water or effluent. Unfortunately,somereaggregationofsludgeflocsafterthispretreatmentcouldnotbe avoided.Inaddition,wecannotruleoutthatthedifferentsizefractionsweredifferentin composition,e.g.theorganicfraction. Sludgesweresterilizedinanautoclaveat120˚Cfor20minutes.Insomeofthe experiments the sludges were subsequently washed once (supernatant was replaced aftercentrifugation)withdemineralisedwaterand/oraeratedforatleast1hour.This was necessary to prevent accumulation of ammonia, which is highly toxic to aquatic organisms.ThepHofthesterilizedsludgeswasalwaysbetween6and8andsterilizing didnotchangethepHtoagreatextent.

Sludgeswereincubatedinaerated(oxicconditions: O 2=89mg/L)orclosed bottles (anoxic conditions) for varying periods up to 217 days. Again, some of these sludges were washed and/or aerated to remove ammonia. Final pH values for the sludgesthatwerepredigestedunderanoxicconditionswerebetween6and8,andfor thoseunderoxicconditionsbetween4and7. 5.2.3 Worm properties Theinfluenceofindividualwormweightwastestedinbatchexperimentswithsmall(on average 5 and 8 mg wet weight) or large (on average 19 and 21 mg wet weight) specimensof L. variegatus .TheinfluenceofW/Sratioshigherthan1.4andpopulation densitieshigherthan39,000specimensperm 2wastestedinseparateexperiments. 5.2.4 Process conditions Theinfluenceofiron(Fe 3+ )additionorlight/darkrhythmondigestionandgrowthwas evaluatedinbatchexperiments.Totesttheinfluenceofiron,theconsumptionofsludge fromWWTPNijmegen,inwhichironwasdosedforphosphorusremoval,wasevaluated.

Inafurtherexperiment,1923mgFeCl 3.6H 2Owasaddedperlitresludgeandfedtothe worms.ThisconcentrationwasbasedoninfluentquantitiesdosedinfullscaleWWTPs. Totesttheinfluenceoflight/dark(LD)rhythm,batcheswereincubatedundercomplete darkconditions,artificialcompletelightconditionsornormalnaturallight/dark(16:8) rhythm.

╡72 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

5.2.5 Overview batch experiments Table5.3givesanoverviewofsludgetype,W/Sratio,sludgequantity,numberofworms, experimentduration,numberofbatchesandcontrolsandtemperaturesforeachbatch experiment.

Table5.3Table5.3Setupoftheindividualbatchexperimentswith L. variegatus .Abbreviationsused: An=pre digested under anoxic conditions, Beer = WWTP Bavaria beer brewery, Bk = WWTP Bennekom, Fr = fragmented,M1=submergedmembranebioreactor,M2=sidestreammembranebioreactor,na=not analysed,Nij=WWTPNijmegen,Ox=predigestedunderoxicconditions,R1=pilotscaleconventional activated sludge system 1 (sludge age ~ 20 days), R2 = pilotscale conventional activated sludge system2(sludgeage~38days),Sie=sieved,Sludgequantityatt 0=sludgeinwormbatchesatt 0(TSS based),St=sterilized,Zoo=WWTPNoorderDierenparkzoo,t=experimentduration, ___=nonaerated control,++++=aeratedcontrol. Exp SludgeSludgeW/SW/S Sludge Number of tttt Number Number of TTTT ratioat quantity wormsatt 000 (d)(d)(d)(d) ofofof controlscontrols (°C)(°C) ttt000 att 000 (g)(g)(g)(g) batchesbatches 1111 R1/R2 0.10.3 0.41.4 75 4 8 4 18.7(±0.5) 2222 R1/R2 0.10.2 0.71.6 100120 4 8 4 20.0(±0.5) 3333 R1 0.6 0.70.9 200 5 9 4,1+ 16.7(±0.6) 4444 R1 0.5 0.80.9 200219 3 9 4,1+ 16.2(±0.8) 5555 R1 0.50.6 0.80.9 150 6 10 2,2+ 19.0(±0.8) 6666 R1 0.20.3 0.4 100 7 7 2 1822 7777 R2 0.4 0.70.8 200247 5 9 4,1+ 16.6(±0.8) 8888 R2 0.30.5 0.40.5 166167 5 5 2 1618 9999 R2 0.2 0.9 100 6 6 2 1822 10101010 R1/R2/M1 0.20.4 0.30.4 100 3/6 12 6 1822 11111111 R2/M1 0.3 1.21.6 190 7 8 4 1618 12121212 Bk 0.40.5 0.60.7 200206 5 9 4,1+ 15.1(±0.7) 13131313 Nij 0.30.4 0.40.6 75203 4 4 1,1+ 16.9(±0.4) 14141414 Beer/R1 0.81.0 0.50.7 200 3 12 4,4+ 18.5(±0.6) 15151515 Zoo/R2 0.2 0.80.9 100 6 8 4 1822 16161616 Sie/Bk 0.37.2 0.021.7 7598 5 9 4,1+ 16.3(±1.0) 17171717 Sie/R1 0.40.9 0.020.7 10132 38 10 0 1618 18181818 Sie/Bk na na variable 140 5 0 19.1(±2.0) 19191919 R2/Fr/St 0.40.8 0.20.3 100200 4 12 6 1618 20202020 Bk/R1/St 0.41.2 0.10.4 100119 2 14 4,4+ 18.8(±1.2) 21212121 St 0.20.5 0.10.2 30 9 2 0 1822 22222222 R1 0 0.60.7 0 9 12 12 15 120 23232323 An/Ox 0.51.5 0.10.3 45111 34 24 12 1822 24242424 R2/An 0.10.7 0.11.0 7383 4 21 7,7+ 17.6(±0.5) 25252525 An 0.20.5 0.41.1 3159 9 4 2 1822 26262626 An 0.80.9 0.10.2 100108 4 4 1,1+ 1822 27272727 R1 0.10.2 1.0 54105 5 5 2,1+ 19.4(±0.3) 28282828 M2 0.30.4 0.72.4 200700 7 4 2+ 1822 29 R2 0.3 0.70.8 200 6 8 4 1822 30 R1 1.01.7 0.40.6 150152 4 15 6,3+ 20

╡73 ╞ ╡Chapter 5╞

5.2.6 Calculations Because we only determined sludge quantities, worm biomass and worm numbers at the start and end of the experiments, it is essentially unknown if they changelinearlyornonlinearlyintime.However,wehaveindicationsfromsomeearlier batch experiments (Experiment 1 in Table 4.1 of Chapter 4 plus two additional experiments) that sludge digestion by worms (after subtracting the endogenous digestioninthecontrols,whichwasonaverage2(±1)%oftheTSSperday)andworm biomass increase approximately linear until the faeces percentage is 100 % and the maximumreductionpercentagebywormsonlyisreached(AppendixI,FiguresA1&A2). Theincreaseinwormnumbers(AppendixI,FigureA3)wasvariableintime(sometimes approximatelylinearandsometimesapproximatelyexponential). Giventhefactthatthebatchexperimentsweremostlyterminatedbeforeallthe sludge was consumed ( Paragraph 5.2.1 ),sludgedigestionratesD(drymatterbased) andbiomassgrowthratesG(drymatterbased)of L. variegatus couldthuscalculated withlinearequations (1) and (2) . FornumbergrowthratesGn, thelinearapproachwas also chosen (equation (3) ).The(worm)yield(drymatterbased)wascalculated from thebiomassgrowthrateandthedigestionratewithequation (4) .

Digestionrate:Digestionrate: DDD D=SW=SW 0001111ttt 1111 (d 1) (1)(1)(1) (1) Biomassgrowthrate:Biomassgrowthrate: GGG G=WW=WW 0001111ttt 1111 (d 1) (2)(2)(2) (2) Numbergrowthrate:Numbergrowthrate: GnGnGn Gn =nn=nn 0001111ttt 1111 (d 1) (3)(3)(3) (3) Yield:Yield: YYY Y=GD=GD 1111 () (4)(4)(4) (4) Parameters: SSSS Sludgedigestionbyworms (gTSS=gdrymatter) WWW0000 Wormweightatt 0 (gdrymatter) tttt Experimentduration (d) WWWW Wormweightchangeduringexperiment (gdrymatter) nnnn Wormnumberchangeduringexperiment (number) nnn0000 Wormnumberatt 0 (number)

╡74 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

5.3 Results and discussion 5.3.1 Effect of sludges from different wastewater treatment plants In shortterm batch experiments randomly selected L. variegatus were fed with non treatedsludgesfromsevenoftheeightdifferentWWTPs.Individualbatches(somein duplicate) incubated under regular conditions and a normal 16/8 light/dark rhythm, wereselectedfromTable5.3.‘Regularconditions’refertoadurationbetween2and8 days, a temperature between 15 and 20 °C, a population density between 2,000 and 11,000 specimens per m 2andaW/Sratiobetween0.1and1.0. Furthermore, sludges variedinpHandashpercentage.InTable5.4,thesevariationsaresummarizedforeach sludgetype. Table5.4Table5.4Variationsinexperimentcharacteristicswithineachofsevensludgetypesusedinselected batchexperimentswith L. variegatus .Foreachcharacteristictheaveragevalueinboldwithstandard deviationinitalic,minimumandmaximumvaluesareshown.Abbreviationsused: N=no.ofsamples,P =populationdensityof L. variegatus . SludgeSludgeDurationDuration TTTT PPPP W/SratioW/Sratio pHpHpHpH AshAsh (d)(d)(d)(d) (°C)(°C) (10(10(10 333perm 222)))) (%ofTSS)(%ofTSS) R1R1R1R1 5555 ±2 19191919 ±1 5555 ±2 0.40.40.40.4 ±0.2 6.76.76.76.7 ±0.4 16161616 ±2 (N=17) 28 1620 38 0.21.0 6.47.5 1320 R2R2R2R2 5555 ±1 19191919 ±1 5555 ±2 0.30.30.30.3 ±0.1 6.76.76.76.7 ±0.6 16161616 ±1 (N=24) 37 1720 211 0.10.6 4.87.6 1518 M1M1M1M1 6666 ±2 19191919 ±2 5555 ±2 0.30.30.30.3 7.17.17.17.1 ±0.3 20202020 ±3 (N=4) 37 1720 47 0.3 6.87.4 1722 BkBkBkBk 4444 ±2 17171717 ±2 5555 ±2 0.40.40.40.4 ±0.2 7.27.27.27.2 ±0.2 25252525 ±4 (N=3) 25 1519 48 0.30.6 7.07.5 2229 NijNijNijNij 4444 17171717 5555 ±3 0.30.30.30.3 7.27.27.27.2 32323232 (N=2) 4 17 38 0.30.4 7.2 32 ZooZoo 6666 20202020 4444 0.20.20.20.2 7.57.57.57.5 44444444 (N=2) 6 20 4 0.2 7.5 44 BeerBeer 3333 19191919 7777 1.01.01.01.0 8.48.48.48.4 43434343 (N=2) 3 19 7 1.0 8.4 43 Digestionrates(D),growthratesinbiomass(G)ornumber(Gn)andyields(Y) for L. variegatus were calculated for the selected experiments. Figure 5.1 shows the minimum,average(withstandarddeviations)andmaximumvaluesforeachsludge.

╡75 ╞ ╡Chapter 5╞

1 2 1 ij er 1 R R M Bk N Zoo Be R1 R2 M Bk Nij Zoo Beer 0.25 0.15 0.20 0.10 DDD 0.15 GGG 111 111 (d(d(d ))) 0.10 (d(d(d ))) 0.05 0.05 0.00 0.00

Max Min Average Max Min Average er 1 2 k eer R R M1 B Nij Zoo B R1 R2 M1 Bk Nij Zoo Be 0.10 1.0 0.8 Gn 0.6 1 0.05 Y (d(d(d 11 ))) 0.4 0.2 0.00 0.0 Max Min Average Max Min Average Figure 5.15.1 Average digestion rates (D in d 1), growth rates (G and Gn in d 1) and yields (Y) for L. variegatus feedingonsludgesfromreactorsR1(N=17),R2(N=24)andM1(N=4),sludgesfrom WWTPsBennekom(N=3)andNijmegen(N=2),Zoosludge(N=2)andBeersludge(N=2)inshort term batch experiments with standard deviations, minimum values and maximum values. Negative values,indicatingwormdeathareincludedinthecalculationsbutnotshowninthegraphs. ForeachofthesludgesinFigure5.1thevariabilityinD,G,GnandYvalueswas high, part of which may be explained by variations in experimental characteristics summarized in Table 5.4. Next to variations in experimental conditions, unknown dischargesinthewastewatersthatthesludgeswere fedwithcouldhavecausedsome variability. In addition, the average differences between duplicate batches within experimentswere0.02(±0.02)d 1forthedigestionrates,0.01(±0.01)d 1forthegrowth ratesand0.11(±0.07)fortheyields.Forthesereasons,apparentdifferencesinratesand yieldsbetweenandwithinbatchexperimentsshouldbeinterpretedwithcaution. TotesttheinfluenceofthevariousexperimentcharacteristicsinTable5.4onD, G and Gn, their Spearman’s rho correlation coefficients (since the data were not distributednormally)werecalculated(SPSS12.0.1)forR1(N=17)andR2(N=24) sludges, because these sludges were used in most batch experiments. The significant correlationsaredisplayedinTable5.5.

╡76 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

Table5.5Table5.5SignificantSpearman’srhocorrelationcoefficientsbetweenpairsofvariablesinshortterm batchexperimentswithR1andR2sludge.*=correlationissignificantatthe0.05level(2tailed),**= correlationissignificantatthe0.01level(2tailed). Sludge Variable1Variable1Variable2Variable2 Spearman’srhoSpearman’srho Varianceexplained(%)Varianceexplained(%) correcorrelationcoefficientlationcoefficientlationcoefficient R1R1R1R1 pH G 0.60* 36 R2R2R2R2 Duration D 0.62** 38 pH G 0.57** 32 Ash% G 0.44* 19 P Gn 0.43* 18 W/Sratio Gn 0.56** 31 Thecorrelationcoefficientsindicateddifferentandrelativelysmallinfluencesof variationsinexperimentcharacteristicsontheaveragedigestionandgrowthratesfor bothsludges.Whenalinearregressionanalysis(stepwisemethod)wascarriedoutfor the process characteristics and rates mentioned in Table 5.5, we found that for R2 sludgethedigestionratewasinfluencedbyduration,thebiomassgrowthratebypHand the average number growth rate by W/S ratio. However, none of the process characteristicsexplainedmorethan25%ofthevariabilityintheserates. In summary, experiment characteristics (individual or combined) could not sufficientlyexplainthevariabilityinthedigestionandgrowthrateswithinonesludge type.Thereforeonlyveryroughindicationsofdifferencesindegradabilitybetweenthe differentsludgetypescanbegiven. Digestion rates Averagedigestionratesformostsludges,includingZoosludge(thatis partlyofhumanorigin),wereinthesamerange(0.050.12d 1),withatotalaverageof 0.09 (±0.04) d 1,exceptforBeersludge,whichwaslower(0.01d 1). Despite this low digestionrate90%oftheBeersludgehadbeenconvertedintowormfaecesattheend ofthebatchexperiment.BeersludgehadasimilarlyhighashpercentageasZoosludge (44 %) but their inorganic fractions contained different metals, iron and aluminium respectively. The high aluminium concentrations in Zoo sludge had no detrimental effectsonthedigestionrateand,asisproveninafurtherbatchexperiment( Paragraph 5.3.5 ),ironhadnoinfluenceeither.ThecauseforthelowdigestionrateofBeersludgeis unknownbutcouldbeduetotoxicorrefractorycompounds. Biomass growth rates Theaveragebiomassgrowthrateswereusuallypositiveandin thesamerange(0.020.05d 1),withatotalaverageof0.04(±0.03)d 1,exceptforthe batcheswithBeersludge.Inthesebatcheswormbiomassdecreased(datanotshown), which was accompanied by low digestion rates and is a further indication that this sludge contains toxic or refractory compounds. In addition, in one batch with Bennekomsludgethewormbiomassdecreasedforunknownreasons.Ingeneral,worm biomassalwaysincreasedwhenfeedingonthissludge,asshowninalongterm(140 days) sequencing batch growth experiment ( Paragraph 5.3.2 ). In this experiment, normalaveragegrowthratesof0.04(±0.02)d 1onBennekomsludgewerefoundin20 sequencingperiodsof7days.

╡77 ╞ ╡Chapter 5╞

Number growth rates Theaveragenumbergrowthratesweremostlypositiveandin thesamerange(0.000.02d 1),withatotalaverageof0.01(±0.02)d 1.Thistime,the rate for Beer sludge was not substantially lower. In three batches with Beer sludge, BennekomsludgeandR2sludgeevenaslightdecreaseinwormnumberwasobserved during the experiments. As mentioned before decreases in worm biomass do not necessarily coincide with decreases in numbers, i.e. worms usually keep reproducing eventhoughtheyarestarving(Buys,2005),aswasobservedinoneofthebatcheswith Beersludge. Yields Theaverageyieldsfor L. variegatus foreachsludgewerebetween0.27and0.43, withatotalaverageof0.38(±0.22),exceptforBeersludge,wheretheyieldcouldnotbe calculated as worm biomass decreased. Zhang (1997) mentions a yield of 0.3 for the aquatic worms Aeolosoma hemprichi , Nais sp. and Pristina sp., which also feed on sludge. In summary, average digestion and growth rates were highly variable between and withindifferentsludges.Thisvariabilitycouldnotbeexplainedbyknownvariationsin experiment characteristics. L. variegatus showed digestion and growth rates in the same variable range on sludges fed with municipal wastewater, regardless of the treatment system, from which they originated. The municipal sludges were better degradablethansludgefedwithbeerwastewater,onwhichwormbiomassdecreased. 5.3.2 Effect of pre-treated sludges Sieving Theinfluenceofsludgeflocsizeonsludgeconsumptionwasinvestigatedintwo shortterm batch experiments (Experiments 16 & 17) with different size fractions (rangingfrom<75mto>300m).Thedigestionandgrowthratesinbothexperiments weresimilarforallfractions.Tofindoutwhetherlongtermgrowthonflocsizefractions was different from that on nonsieved sludge, growth of L. variegatus on nonsieved Bennekom sludge and its fractions was also evaluated during a 140days sequencing batch experiment (Experiment 18). The sludge was refreshed every 7 days and the populationnumberwaskeptsmallbyregularremovalofworms.Thesizefractionswere 04.5m, 075m, 75200mand200300m.Thegrowth rates over each 7day periodwerecalculatedandtheaveragesareshowninFigure5.2.

╡78 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

0.15

0.10

G 0.05 Gn Rate(d1)Rate(d1) Rate(d1)Rate(d1) 0.00

0.05 Nonsieved 04.5m 075m 75200m 200300m Figure5.2Figure5.2Averagegrowthratesforbiomass(G)andnumber(Gn)of L. variegatus feedingondifferent sludgefractionsinExperiment18(N=19foreachfraction).Thewaterphaseofthefractionsconsisted oftapwater. Nosignificantdifferencesinaveragegrowthratesforthefractions075m,75 200mand200300mwereobservedcomparedtothenonsievedsludge.Growthon the04.5mfractionwasverylowinnumberandnegativeinbiomassandsignificantly different from growth on floc sizes >75 m. Even though the worms were able to compacteventhesmallflocsfromthe04.5mfractionintofaeces,thefractiondidnot contain enough TSS to maintain a stable body weight or support biomass growth, in contrast to the larger fractions. L. variegatus can survive for months without food (Williams,2005),whileslowlydecreasinginbiomass.Buys(2005)foundforexamplea biomassgrowthrateof0.017d 1ontapwater,butstillapositivenumbergrowthrateof 0.006 d 1. Interestingly, the numbers increased more slowly in the 04.5 m fraction thaninthetapwater.Thisindicatesagainthatdivisionmaybeasurvivalmechanism undercircumstancesoffoodshortage,aswasdescribedinthe Introduction . Information on food particle size of L. variegatus is scarce, but there is some informationontheingestionofalgae(Moore,1978).Hedescribedthatthemaximum diameterofingestedalgaeis150mforwormsbetween15and25mm,and200mfor thosebetween35and50mm.Thesmallestalgaeingestedforbothsizeclasseswere56 m.Thereisnoevidencefromourexperimentsthatthesizeofsludgeflocsislimiting foruptakeby L. variegatus ,butthismayberelatedtotheirsoftstructure,incontrastto therigidcellwallsofalgae.Ratsak(2001)statedthattheingestionofsludgeflocsby N. elinguis was limited by their mouth size and that very smallorlargeflocscannotbe ingestedbuttheabovedescribedexperimentsprovedthistobewrong.Sperber(1948) forexampledescribedthatNaidinae,asubfamilyofaquaticOligochaeta,bitepiecesof theirfood,whenparticlesizesaretoolarge.Asforthegrowthrates,Williams(2005) foundnumbergrowthratesof0.020.05d 1onTetraMinfishfoodinaeratedaquaria and the highest number growth rate was found for flowthrough systems. In our

╡79 ╞ ╡Chapter 5╞

stagnantsystemswithsludge,higheraveragenumbergrowthratesof0.050.07d 1were found(Figure5.2)andsludgeapparentlyisahighlynutritiousfoodsource. Sterilization Consumption of sterilized R2 sludge was compared to that of non sterilized R2 sludge in Experiment 19. There was no digestion in the controls with sterilizedsludge,whichdemonstratedtheabsenceofbacterialactivity.Sterilizationof thissludgedidnotcauseslowerdigestionandgrowthwhencomparedtononsterilized sludge(resultsnotshown)andapparently, L. variegatus doesnotneedlivingsubstrate. Duringsimilarbatchexperiments(e.g.Experiment20)wormsoftenlostweight or died in fresh or stored sterilized R1, R2 or Bk sludges, even after washing and aerating the sludges prior to the experiments. Causes may have been the low oxygen concentrations often measured in these batches during the experiment (most likely because of increased bacterial activity) and/or the formation of unknown toxic compounds due to sterilization or loss of sterility during storage. The influence of autoclavingonsludgewasillustratedbychangesinpH,increasedashpercentagesand decreasesinTSSandVSSconcentrationsinourexperiments.Inanalogy,thermalpre treatment of sludges is known to change the floc structure and enhance biological degradationbybacteriallysiswithsubsequentreleaseofbiopolymersandsolubilization ofCOD(Neyens&Baeyens,2003;Eskicioglu et al. ,2006). Topreventdetrimentalsideeffectsofsterilizationontheworms,Experiment21 was done (Figure 5.3), in which recently sterilized sludge in the batches was daily refreshedfromseparateclosedbottlesandwashedpriortoeachaddition.

100

80

NumberI 60 NumberII DryweightI 40 (inmgTSS)(inmgTSS) (inmgTSS)(inmgTSS) DryweightII 20 WormnumberordryweightWormnumberordryweight WormnumberordryweightWormnumberordryweight 0 0 1 2 3 4 5 6 7 8 9

Duration(d) Figure5.3Figure5.3Numberandtotaldryweightof L. variegatus feedingondailyrefreshedsterilizedR1sludge inExperiment21induplicatebatchesIandII.W/Sratioswerebetween0.2and0.5. Duringthefirstdayoftheexperiment,wormswereimmotileandirresponsiveto tactile stimulations and the faeces percentage of the sludge was only 5 %, indicating

╡80 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

adverseconditions.Thereaftertheyadaptedwithcorrespondingmotility,touchevoked reflexes and increased faeces percentages of 3050 %. Feeding inhibition in L. variegatus couldhavebeentheresultofexposuretotoxiccompounds,butalsoofan acclimatizationperiodwhentransferredtoadifferentsubstrate(Williams,2005). Wormnumbersdidhardlychangebutbiomass(andasaresultindividualworm weight) increased gradually during the experiment with an occasional small decrease (Figure 5.3). The average biomass growth rate after the acclimatization period on sterilized R1 sludge was 0.08 (±0.07) d 1. In contrast, the number growth rates were zero,sincevirtuallynoreproductiontookplace.Onlyduringthelasttwodays,digestion ratesweredetermined,assumingendogenousdigestiontobezeroinsterilesludge.The rateswereonaverage0.13(±0.04)d 1.Theyieldswereonaverage0.4(±0.2).Therates with sterilized sludges were similar to those with nonsterilized sludges (Figure 5.1). Thisisdescribedbyseveralauthorsforotheraquaticworms(e.g.,Liang et al. ,2006b). Digestion rates for A. hemprichi and T. tubifex were 0.80 and 0.54 d 1 respectively, whichisextremelyhighcomparedtoourresultsfor L. variegatus ,whichwereatmost 0.17d 1. It is generally accepted that the food of freshwater Oligochaeta consists almost exclusivelyofbacteria,whichtheyextractfromthesedimenttheyingest(Moore,1978). The above experiments prove that L. variegatus could digest a sterile substrate and showed biomass growth. The rates on sterilized sludge were similar to those on non sterilizedsludges.However,theabsenceoflivebacteriafromthesubstrateseemedto suppressreproductionin L. variegatus anditalsoknowntopreventbiomassgrowthin sessile Tubificidae (Reynoldson, 1987). In addition, L. variegatus showed negative biomassandnumbergrowthratesordiedonsolutionsofdifferentsinglecarbonsources (acetate, starch, tryptose, gelatine, tryptone, saccharose, glucose, yeast extract and casein)withaddednutrientsandtraceelements(resultsnotshown).Thiscouldalsobe due to their inability to take up dissolved organic material (Sedlmeier & Hoffmann, 1989). Pre-digestion Activatedsludge,whenincubatedforalongperiodwithoutwormsunder oxic or anoxic conditions (Experiment 22) decreased gradually in dry weight due to endogenousdigestion.Arefractoryportionhowever,ofabout4050%oftheTSS,was leftinbothcases(Table5.6).Maximumendogenousdigestionwasreachedconsiderably fasterunderoxicconditionsthanunderanoxicconditionswithin34daysand114days respectively. Forfreshsludge,thefinalmaximumdigestionpercentageafterconsumptionby L. variegatus isthesameaswithoutconsumption(Chapter4).Tofindoutwhetherworms doincreasethemaximumdigestionpercentageofpredigestedsludges,Experiment23 wascarriedout.PredigestedsludgesfromExperiment22(Figure5.4)werefedforan additionalperiodof3to4daysto L. variegatus inPetridishes.Additionalendogenous digestioninparallelcontrolbatchexperimentswassubtractedtocalculatethedigestion causedbytheworms.

╡81 ╞ ╡Chapter 5╞

70 60 50 Anoxic 40 Anoxic+Lv 30 Oxic 20 Oxic+Lv %TSSdigestion%TSSdigestion %TSSdigestion%TSSdigestion 10 0 0 20 40 60 80 100 120 Digestiontimeofsludge(d) FigFigFigureFig ure 5.45.4 Digestion of sludge (R1) incubated underanoxic(inclosedbottles)oroxic(aerated)conditions without worms during varying periods (digestion times) up to 114 days inExperiment 22 (solid lines) and additionaladditionaldigestionby L. variegatus afterconsumptionofthesepredigestedsludgesduring3to4daysin Experiment23(dashedlines).W/Sratioswereonaverage0.8(±0.3).pHunderanoxicconditionswas6.3± 0.2andunderoxicconditions4.6±0.3(withoneexceptionof6.6). Figure5.4clearlydemonstratesthatthewormscausedanadditionaldigestionof 329 % with final percentages of more than 60 % of sludges that were predigested underoxicconditionsforupto48daysandofsludges that were predigested under anoxicconditionsforupto19days.However,inthepredigestedsludgesunder(an)oxic conditionsolderthan20dayswormbiomassdecreasedorwormsevendied.Thiscanbe duetolownutritionalvalueoftheoxicsludgesortheaccumulationoftoxiccompounds (suchasammonia)intheanoxicsludges. To prevent the accumulation of toxic compounds other anoxic predigested R1 andR2sludges(7,121and217days)werewashedandaeratedbeforefeedingthemto L. variegatus inExperiment24.Asmalldecreaseinwormbiomasswasobservedintwoof thebatcheswith121and217daysoldsludge.Table5.6showsanoverviewofdigestion and biomass growth rates on predigested sludges in Experiments 23, 24 and in two additionalExperiments25and26.Batchesinwhichwormbiomassdecreasedorworms diedwereleftout. Table5.6Table5.6AveragedigestionratesD,growthratesGandyieldsYfor L. variegatus feedingon(an)oxic predigestedsludgesofdifferentagesinExperiments23,24,25and26(N=no.ofsamples). PrePrePrePre digestiondigestiondigestionDigestiontDigestiontime(days) ime(days)ime(days)NNN ND(d 1111))))G(d 1111))))YYY Y AnoxicAnoxic 620 5 0.06(±0.03) 0.05(±0.03) 0.78(±0.52) 120121 3 0.06(±0.02) 0.04 0.73(±0.31) 217 10.08 0.05 0.65 OxicOxic 920 2 0.06(±0.03) 0.02(±0.01) 0.29(±0.02)

╡82 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

Theaveragedigestionratesonoxicandanoxicsludgesweresimilartothosewith nontreatedreactorsludges(Figure5.1).Allnumbergrowthrateswereclosetozero,as was found previously for sterilized sludges and indicates suppressed reproduction for unknown reasons. Biomass growth rates were in the same range as for fresh sludges (Figure5.1)butsomewhathigheronanoxicsludgesthanonoxicsludges.Remarkably, therewasstilladditionaldigestionandgrowthinsludgesthatwerepredigestedunder anoxic conditions for 120 days and longer. These washed and aerated predigested sludges obviously had some nutritional value left and were not toxic to the worms in contrastwithoxicsludgesolderthan48daysandnonwashedanoxicsludgesolderthan 20 days respectively (Figure 5.4). The higher nutritional value of older sludges pre digestedunderanoxicconditionscanbeexplainedbythefactthatendogenousdigestion under anoxic conditions is slower than that under oxic conditions (Figure 5.4). The averageyieldsonanoxicsludgeswerehigherthanformostfreshsludgesbutwithlarge standarddeviations.Thoseforoxicsludgeswerethesameasforfreshsludges.Theexact reasonsforthesedifferencesareunknown,butcomponentsformedbyanoxicdigestion arepossiblymoreefficientlyconvertedintowormbiomass. To find out which component was responsible for biomass decrease and worm + deathinseveraloftheanoxicpredigestedsludges,nutrientconcentrations(NNH 4 ,N 2 NO 3 , NNO 2 and PPO 4 ) were measured in the supernatants of the sludges of Experiment24,beforeandafteraeratingandwashing(Table5.7).Thepresenceoftoxic compoundscouldbedeterminedbystressresponseslikeautotomyandotherlesionsto thebodyof L. variegatus andfinally,death.Stressresponsesaremarkedbytheshaded areasinTable5.7. Table5.7Table5.7Nutrientconcentrations(inmg/L)beforeandafterwashingandaeratinginsupernatantsof R1orR2sludgesthatwereanoxicpredigestedduring7,121and217days.Sludgesthatwerelethalto thewormsareshaded. BeforewashingandaeratingBeforewashingandaerating Afterwashingandaerating SludgeSludgeNNN NNHNHNHNH 444+++ NNNNNONONONO 333 NNNNNONONONO 222 PPPPPOPOPOPO 4442222 NNNNNHNHNHNH 444+++ NNNNNONONONO 333 NNNNNONONONO 222 PPPPPOPOPOPO 4442222 R17daysR17days 48.7 0.6 0.1 14.2 8.1 10.2 2.2 3.3 R27daysR27days 37.0 0.6 0.1 15.3 8.5 5.3 0.2 3.5 R1121days 175.6 0.9 0.2 32.3 29.0 3.2 0.1 5.1 R2121days 173.9 0.9 0.2 29.9 71.1 2.4 0.1 10.8 R1217days 167.2 0.8 7.3 32.5 49.5 3.2 2.1 10.2 R2217days 12.5 11.4 0.7 30.3 4.5 6.4 0.1 11.6 From Table 5.7 it is obvious that nitrate, nitrite and phosphate in these concentrationswerenotresponsibleforwormdeath,becausehigherconcentrationsof these compounds were also found in sludges that did not cause stress responses. Ammonia on the other hand had high values in all the sludges that were lethal. L. variegatus seemedtobeabletosurviveconcentrationsofammonia,nitrate,nitriteand phosphate (under these experimental conditions) of at least 49, 11, 2 and 30 mg/ L respectively.SchubauerBerigan et al. (1995)haveinvestigatedthetoxicityofammonia

╡83 ╞ ╡Chapter 5╞

to L. variegatus atdifferentpHvalues.ThetoxicityofammoniaisdependentonpH, sinceathigherpHvaluesitstoxicitystronglyincreasesbytheformationofunionized + ammonia (NH 3) from the relatively nontoxic ammonium ion (NH 4 ). The ratio of ammoniatoammoniumwillchangebyafactorof10witheveryunitchangeinthepH (Stephan et al. ,1999).Thefactthatconcentrationsof49mg/Lwerenontoxicbefore washingandaerating,buttoxicthereafter(Table5.7)wasmostlikelycausedbythepH valuesof5.9and8.1thatweremeasuredintheserespectivesludges.AtpH5.90.03% of this concentration was present as unionized ammonia but at pH 8.1 this concentrationhadincreasedto5%(2.5mg/L).The minimum concentration of un ionizedammonia,whichwaslethaltotheworms,was0.2mg/Linthisexperiment. Insummary,wormscouldpartlybreakdownsludgesthatwerepredigestedunderoxic conditions for up to 50 days. The same was true for sludges that were predigested underanoxicconditionsforupto220daysifammonia accumulation was prevented. Theanoxicsludgesseemedtohaveahighernutritional value possibly resulting from slowerdigestion.Wormbiomassgrowthwasalwaysobservedinpredigestedsludges when younger than 20 days, but also in older anoxic sludges when ammonium accumulation was prevented. The worms were thus able to accelerate (an)oxic sludge digestionsignificantly.Thefinaldigestionpercentageofoxicpredigestedsludgeseven seemedtoincreasesomewhatbywormconsumption(upto68%insteadof60%)and thedigestionratesonanoxicsludgesof120daysandolderalsosuggestedadditional digestion. Park et al. (2006)andJung et al. (2006)describedthatalternatingcombinations of oxic and anoxic conditions could enhance the final endogenous sludge digestion percentage(upto70%)throughbacterialselection.Theystatedthatunderintermittent aeration conditions sludge components were solubilized that were refractory under either oxic or anoxic conditions. In addition, Jung et al. (2006) suggested that a combinationwithconsumptionbyhigherorganismsmaybeevenmorebeneficial.Our experimentsshowthereispotentialforsuchacombination. 5.3.3 Effect of worm properties Individual worm weight Theinfluenceofindividualwormweightonsludgedigestion and worm growth was tested in Experiments 13 and 27, in which small and large specimens were selected. In Experiment 13 with Nijmegen sludge, the digestion and biomassgrowthratesofsmallandlargewormswerethesame(Figure5.5),aswellas theyields,whichbothwere0.4.

╡84 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

0.2 ) ) ) ) 1 1 1 1 D 0.1 G Gn Rate(d Rate(d Rate(d Rate(d

0.0 Small Large Small Large

NijNijNijR1R1R1 Figure 5.55.5 Digestion rates D, growth rates G and growth rates Gn for small and large L. variegatus specimensfeedingonNijmegen(Nij)orR1sludgeinExperiments13and27.W/SratiosforNijsludge 0.3and0.4,forR1sludge0.1and0.2.Duration=4and5daysrespectively. Incontrast,abigdifferencewasfoundbetweenthedigestionandbiomassgrowth ratesofsmallandlargewormswithR1sludge(Figure5.5).OnR1sludge,smallworms had a much higher digestion and biomass growth rate, but a somewhat smaller yield thanthelargeworms;0.6and0.8respectively. Itseemsplausiblethatsmallwormseatandgrowfaster, since reproduction followed by a nonfeeding period is observed in large worms only. Leppänen & Kukkonen(1998b)evenfoundanegativerelationshipbetweenindividualwormweight of L. variegatus andweightcorrectedexcretionrate.TheresultswithR1sludgesupport a similar conclusion. In contrast, Williams (2005) found a rather stable weight correctedexcretionrateasissupportedbytheresultswithNijmegensludge.Theonly similarity between both experiments were the higher number growth rates for large worms, especially in R1 sludge, indicating a positive correlation between individual wormweightandincreaseinnumbers. Theinfluenceofindividualwormweightondigestionandbiomassgrowthrates in sludge remains obscure. Number growth rates however seemed to be positively relatedtoindividualwormsize. Worm to sludge ratios and population densities Whencomparingdatafromdifferent experiments for L. variegatus feeding on R1 or R2 sludge under regular conditions, slightly negative correlations were found between W/S ratios or population densities andnumbergrowthratesinR2sludge(Table5.5).Nocorrelationswithdigestionrates orbiomassgrowthrateswerefound. TheeffectofveryhighW/Sratios(1.41.6)atnormalwormpopulationdensities (5,600specimensperm 2)wasvisibleinExperiment30,inwhichtheinfluenceoflight and dark conditions was tested (Figure 5.8 ‘normal conditions’). Digestion rates were

╡85 ╞ ╡Chapter 5╞

low and biomass growth rates were negative or close to zero. At the same time, the wormnumbersincreasedduringtheexperiment,i.e.there was still reproduction but average individual worm weight decreased, as was also found under starvation conditions( Paragraph 5.3.2 ).Thisindicatedfoodlimitation. Theeffectofveryhighpopulationdensities(>39,000specimensperm 2)atnormalW/S ratios(0.3and0.5)wastestedinExperiment28(Figure5.6).

0.10 ) ) ) ) 0.05 1 1 1 1 D G Rate(d Rate(d Rate(d Rate(d 0.00

0.05 P=40 P=99 P=139 W/S=0.4 W/S=0.3 W/S=0.5 Figure 5.65.6 Digestion rates D and growth rates G for L. variegatus feeding on M2 sludge at high population densities (P in 10 3 specimens per m 2) and approximately equal W/S ratios (W/S) in Experiment28.Duration=7days. At high densities, the biomass growth rates were low or negative and the digestion rates were low, as was also found at high W/S ratios. Again there was reproduction(numbergrowthrateswere0.01d 1inallthebatches)whileaverageworm weightdecreasedatthetwohighestdensities.Sincefoodwaspresentinexcessinthis experiment, as was oxygen, other density effects like accumulation of excreted un ionizedammoniamayhavebeenthecause.RelatedspecieslikesessileTubificidaeare + forexampleknowntoexcreteammoniaatratesof0.030.34gNH 4 /mgdryweight/h (Postolache et al. ,2006). Thus, extremely high values for population density and W/S ratio both lead to biomassdecreasesandlowerdigestionrates,mostlikelybecauseofdensityeffects.

5.3.4 Effect of process conditions Addition Fe 3+ Nijmegen sludge contained iron, which was dosed for phosphorus removal.Thedigestionratesofthissludgewerequitehigh(Figure5.1)butfallwithin theoverallvariability.GrowthratesonNijmegensludgewerenotdifferentfromthose onothermunicipalsludges.

TheinfluenceofFeCl 3additiononsludgedigestionandwormgrowthwastested inExperiment29(Figure5.7).Theadditionofironincreasedtheashpercentageofthe sludgewith1.2%anddecreasedthepHfrom7.3to6.5,buttherewerenoindications

╡86 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

that these factors could influence digestion or growth as was already shown in Paragraph 5.3.1 . Endogenous digestion in the controls did not change after iron addition (results not shown). Digestion rates, growth rates and yields (0.6) for L. variegatus feedingonsludgedidnotchangeeitherafterironaddition(Figure5.7).The numbergrowthrateswereallclosetozero.

0.10 ) ) ) ) 1 1 1 1 D 0.05 G Rate(d Rate(d Rate(d Rate(d

0.00 FeFeFe+Fe Figure5.7Figure5.7AveragedigestionratesDandgrowthratesGfor L. variegatus feedingonR2sludgewith (+Fe)andwithout(Fe)ironadditioninExperiment29(N=2forallrates).W/Sratiowasalways0.3. Duration=6days. It is clear from both experiments that iron does not influence sludge digestion andwormgrowth. Light/dark rhythm Figure 5.8 shows the digestion and growth rates under different light/dark(LD)rhythmsinExperiment30.

0.10 ) ) ) ) 0.05 1 1 1 1 D G Gn Rate(d Rate(d Rate(d Rate(d 0.00

0.05 Light Dark Normal Figure5.8Figure5.8AveragedigestionratesDandgrowthratesGandGnfor L. variegatus feedingonR1sludge underdifferentlight/dark(LD)rhythms:LD=24:0(light),LD=0:24(dark)andLD=16:8(normal)in Experiment 30 (N = 2 for all rates). Duration = 4 days. W/S ratios under dark, light and normal conditionswhere1.01.7,1.21.5and1.41.6respectively.

╡87 ╞ ╡Chapter 5╞

Averagedigestionratesunderthedifferentconditionsweresimilar.Theaverage biomassgrowthrates(Figure5.8)wereusuallynegative.Thedecreaseinwormbiomass was probably related to the high W/S ratios of 1.01.7 that were applied in these experiments. More attention to this point was already given in Paragraph 5.3.3 . The average yield could not be calculated since biomass growth rates were negative. The averagenumbergrowthratewassomewhathigherundercompletedarkconditionsthan undernormalconditions(Figure5.8). Stephenson (1930) mentioned that many Oligochaeta, avoid light (negative phototaxis)andareinjuredbydirectsunlight.Therefore,darkconditionsmaybemore favourable, because this mimics their natural habitat. In addition, Hendrickx et al. (2006) found slightly higher digestion rates of L. variegatus under dark conditions. Theyconcludedthatthismayhavebeenduetothephototoxicityofchemicalspresentin sewagesludge.Itisthereforelikelythat L. variegatus canbeinfluencedtosomeextent by light/dark rhythms, but the shortterm influence on sludge digestion and biomass growthinthisexperimentwasnotevident. 5.4 Conclusions In this chapter, shortterm batch experiments were described that investigated the influenceofdifferentfactorsonwastesludgedigestionby Lumbriculus variegatus and wormgrowth.Experimentsontheinfluenceofsludgepropertiesshowedthat: ╡ Thevariabilityinsludgedigestionrates,wormbiomassgrowthrates,wormnumber growthratesandyieldsforeachofseventestedmunicipalandnonmunicipalwaste sludges was relatively high. This was caused to some extent by small variations in experimentalconditions,pHandashpercentageofthesludge.Mostofthevariation could not be explained and was probably due to unknown differences in sludge composition. ╡ Theaveragedigestionrate(drymatterbased)of L. variegatus onmunicipalsludges was0.09(±0.04)d 1,whilethatonBeersludgewaslower. ╡ Theaveragebiomassgrowthrate(drymatterbased)andnumbergrowthrateof L. variegatus on municipal sludges were 0.04 (±0.03) d 1 and 0.01 (±0.02) d 1 respectively,whiletheserateswereagainlower(ornegative)forBeersludge. ╡ Theaverageyield(drymatterbased)of L. variegatus onmunicipalsludges,except Beersludge,wasonaverage0.38(±0.22),whichmeansthatonaverage38(±22)% ofthesludgedigestedby L. variegatus wasconvertedintonewwormbiomass. ╡ Sludge floc size did not influence digestion and growth rates, unless the sludge concentrationsoftheusedsludgefractionsweretoolow.L. variegatus wasableto ingestsludgeflocssmallerthan4.5andlargerthan300m. ╡ Thelackoflivebacteriainsterilesludgedidnotaffectdigestionandbiomassgrowth ratesof L. variegatus (aslongasnounknowntoxiccompoundswerepresent).The

╡88 ╞ ╡Factors influencing sludge reduction by L. variegatus ╞

rates for sterilized sludges were similar to those for nonsterilized sludges. Reproductioninsterilesludgeswashoweversuppressed. ╡ Thewormsacceleratedthedigestionofsludgespreviouslyincubatedunderoxicand anoxicconditionsaslongasthepresenceofunionizedammoniawaspreventedin anoxic sludges and the nutritional value of the oxic sludges was still enough. In addition, the worms could enhance the final digestion percentage of some pre digestedsludgesupto68%. Experimentsontheinfluenceofwormpropertiesshowedthat: ╡ There was no clear effect of individual worm weight of L. variegatus on digestion and biomass growth rates. Only the number growth rate slightly increased with individualwormweight. ╡ Highpopulationdensities(>39,000specimensperm 2)andW/Sratios(>1.4)caused lowerdigestionandbiomassgrowthrates. Experimentsontheinfluenceofprocessconditionsshowedthat: ╡ The presence of ferric iron (Fe 3+ ) in sludge had no effect on digestion or worm growth.Thesamewastruewhenironwasaddedtothesludgeintheappliedrange, whichisrepresentativeformunicipalsludgewithchemicalphosphorusremoval. ╡ Sludgedigestionandbiomasswormgrowthwerenotaffectedbylight/darkrhythms. Onlynumbergrowthratesweresomewhathigherundercompletedarkconditions Acknowledgments We thank Bas Buys (Wageningen University) for codesigning and coperforming the batchexperimentsdescribedinthischapterandEdwinPeeters(WageningenUniversity) for his help with the statistical analyses. In addition, we thank Dennis Piron (WWTP Nijmegen),RobvanDoorn(WWTPBennekom),HildePrummel(WaterLaboratorium Noord),andManfredvandenHeuvel(Bavariabeerbrewery)forprovidingdata,sludge andadditionalinformation.

╡89 ╞

╡╡╡Chapter 6 ╞╞╞ Theeffectsofsludgeconsumptionby Lumbriculus variegatus on sludgecharacteristics

╡Chapter 6╞

Abstract Waste sludge consumption by L. variegatus reduces the amount of waste sludge, but also changes the structure of the waste sludge, because the worm faeces are more compact. In addition, the composition of the worm faeces is likely to be different from that of the waste sludge.Therefore,theinfluenceofsludgeconsumptionondifferentsludgecharacteristicswas investigatedinshorttermbatchexperiments.Intheseexperiments,sludgeconsumptionby L. variegatus alwaysenhancedtheinitialsettlingrateofseveralmunicipalwastesludgesandled to SVI 30 values of around 60 mL/ g. Even though the dewaterability of worm faeces was expected to be higher than that of the waste sludge, this could not be demonstrated with the appliedCST(capillarysuctiontime)method.Theturbidityofthewaterphaseincreased,dueto theformationofmoredissolvedand/orcolloidalmaterials.Thesematerialspossiblyconsisted ofcarbohydrates,butnotofproteins,becauseaspecificreleaseofcarbohydratestothewater phasewassometimesobservedaftersludgeconsumption. L. variegatus canspecificallyfeedon theproteinfractionoftheorganicmatterinsludge,becausenexttoadecreaseinashpercentage, thetotalproteinfractionaspercentageofsludgeTSS(totalsuspendedsolids)usuallydecreased. This effect was not observed for the total carbohydrate fraction. Sludge consumption by L. variegatus didnotleadtobioaccumulationofheavymetals(cadmium,chromium,copper,lead, nickel and zinc) from sludge in worm biomass above concentrations already present in the worms and these concentrations were always substantially lower than in waste sludge. As a result,theheavymetalconcentrationsinwormfaeceswerehigherthaninthewastesludge.The distributionoftheabsoluteheavymetalamountsoverthesludgeflocs,thewaterphaseandthe worms did not change after sludge consumption. Finally, worm faeces of L. variegatus were ingestedbytheirownkind(conspecifics),butthedigestionratesforthisprocesswereverylow andwormbiomassdecreased. Themostimportanteffectsofsludgeconsumptionby L. variegatus onsludgecharacteristics are thus the improved settleability, the decrease in protein content and the increase in heavy metals content. In addition, sludge digestion by L. v ariegatus takes place for the most part duringthefirstgutpassage. 6.1 Introduction In municipal and nonmunicipal (industrial) wastewater treatment, large amounts of biological waste sludge are produced. Reducing this amount and improving sludge dewaterabilityareimportantissuesforenvironmentalandeconomicalreasons(Neyens & Baeyens, 2003). Consumption of waste sludge by the aquatic worm Lumbriculus variegatus offersapossiblesolution. L. variegatus actively gathers and ingests sludge flocs of variable sizes and converts them into uniform faecal pellets (Chapter 4).Thewormfaecesarearound1 mmlongand0.25mmwideandcanbeeasilydiscernedfromwastesludge,evenwith the naked eye. They have a cylindrical compact shape and high density (Figure 6.1). Several other aquatic worms, like Aeolosoma sp. and Nais sp. (Figure 6.1), produce faeceswithasimilaryetsmallercylindricalshape,whereasfaecesfromdifferentsessile

╡92 ╞ ╡Influence of L. variegatus on sludge composition ╞

Tubificidae species have more variable shapes (Brinkhurst & Austin, 1979; own observations).

Figure6.1Figure6.1Left:Faecesof L. variegatus fedwithactivatedsludge.Scalebar=200m.Right:Faecesof Nais sp.fedwithactivatedsludge.Scalebar=1mm. Digestionofmunicipalwastesludgeby L. variegatus isapproximatelytwiceas fast as the endogenous digestion rate of sludge and this digestion takes place at an averagerateof0.09(±0.04)d 1(drymatterbased)(Chapters4&5).Almosttheentire reduction concerned the organic fraction of the sludge. It is likely that sludge consumptionby L. variegatus notonlychangesthestructureofthesludgeflocsbutalso other characteristics like sludge settleability, sludge dewaterability, turbidity of the water phase, sludge composition in terms of proteins, carbohydrates, ash and heavy metals.Inaddition,thefurtherdegradabilityofsludgeafterconsumptionmaychange. Settleability will be affected since this is largely dependent on floc size and density. Dewaterability of the sludge may also improve due to the compacting of the sludge flocs. Enhancement of both properties was observed after fungal treatment of sludge,whichresultedincompactpelletsof25mm(Alam&Fakhru'lRazi,2003),and consumption of sludge by L. variegatus may have the same effect. However, even though it is generally assumed that settleability and dewaterability are positively correlated, experimental results do not always confirm this and both characteristics should therefore be investigated (e.g. Hung et al. , 1996). The turbidity of the water phase may change after consumption because of the extra release of dissolved and colloidal COD (chemical oxygen demand) (Buys, 2005). This could have a negative effect on the quality of the effluent if this is directly discharged from WWTPs (wastewatertreatmentplants).Afterconsumption, L. variegatus mayspecificallydigest proteinand/orcarbohydratefractionsofthesludgeandasaresult,theashcontentmay increase.Relatedoligochaetespecieslikeearthwormsareforexampleknowntoeasily digesttheproteinsandcarbohydratesintheirsubstratecontrarytothemorerefractory compoundslikecellulose(Curry&Schmidt,2007).Ifconsumptionby L. variegatus has asimilareffect,thiscouldalterreuseoptionsoftheconsumedsludge.

╡93 ╞

╡Chapter 6╞

Waste sludge may also contain significant amounts of heavy metals. Heavy metalsthatendupinWWTPsmainlyoriginatefromthreesources:municipalandnon municipal (industrial) effluents and runoff (Lester, 1987). Important sources of for examplelead,zincandcopperintheNetherlandsareroofmaterials,conduitpipesand fireworks(Loeffen&Geraats,2005).Table6.1showstotalamountsandconcentrations of heavy metals in waste sludge from Dutch WWTPs in 2005 (Statistics Netherlands (CBS), 2007) as well as maximum tolerated values for heavy metals in waste sludge according to Dutch BOOM regulations as from 1995. These regulations prevent the applicationofwastesludgewithhighheavymetalconcentrationsinagriculture.In2005, copper,zinc,lead,cadmiumandmercurydidnotmeetthesestandards. Table6.1Table6.1HeavymetalsinwastesludgeproducedintheNetherlandsin2005andBOOMregulations. MetalMetalTotal(kg)Total(kg) ConcentrationConcentration BOOMregulations 1)1)1) (mg/(mg/kgsludgedrymatter)kgsludgedrymatter)kgsludgedrymatter) (mg/(mg/kgsludgedrymatter)kgsludgedrymatter)kgsludgedrymatter) MercuryMercury 329 0.95 0.75 CadmiumCadmium453 1.30 1.25 ArsenicArsenic2,952 8 15 NickelNickel 8,967 26 30 Chromium 13,937 40 75 LeadLead 39,312 113 100 CopperCopper 132,360 381 75 ZincZinc 372,960 1073 300 Totalamountofsludgedrymatterproduced=347,557tonnesonnes 1) Source: http://www.eumilieubeleid.nl/ch05s10.html Inasystemwith L. variegatus feedingonthiswastesludgethedistributionofthe heavy metals between sludge flocs, sludge water phase, worms and worm faeces is dependentonseveralprocesses(Figure6.2).

╡94 ╞ ╡Influence of L. variegatus on sludge composition ╞

Sludgewaterphase Sludgeflocs Wormfaeces Excretion Dermaluptake Ingestion Defecation Bioaccumulation Bioaccumulation Bindingtometallothioneins Lumbriculus variegatus Figure6.2Figure6.2Processesinfluencingtheheavymetalconcentrationsinwormsandsludge(flocsandwater phase)duringsludgeconsumptionby L. variegatus . Severalfactorsdefinethecomplexequilibriumbetweenfreeandbound/absorbed metal forms in general: substrate type, organic matter content, pH values and AVS (acidvolatile sulphide) concentrations. In addition, free metals are easier bioaccumulatedthanboundformsand L. variegatus canbioaccumulateheavymetalsto agreatextentfromsedimentsandwater(Lester,1987;Ankley et al. ,1994;Ankley,1996; Liber et al. ,1996;Peterson et al. ,1996).Toxicityandbioaccumulationdataforheavy metals in L. variegatus arethusdependentonthe substrateusedandcanbe highly variable (Williams, 2005). Several Oligochaeta species actively excrete accumulated metals.Wellknownmechanismsforregulatingheavymetaluptakeincludeautotomyof tailregions,wheremetalsareaccumulated(LucanBouché et al. ,1999;Bouché et al. , 2000;Vidal&Horne,2003),andbindingofmetalstometallothioneinlikeproteins(e.g. Mosleh et al. ,2004),whicharealsopossiblyinvolvedinmetalexcretion(Stürzenbaum et al. ,2001).Elevatedtolerancesinoligochaetewormsagainstheavymetalsmightbe accountedforbycomplexationbytheseproteinsand,asaresult,detoxification.After exposing L. variegatus inthelabtoelevatedcadmiumconcentrations,BauerHilty et al. (1989) isolated a cadmiumbinding metallothioneinlike protein from the worms, but theexactmechanismremainsobscure.Concentrationoftheheavymetalsintheworm faeces would be more beneficial for further processing of the worm tissue, while bioaccumulation of metals in the worms would be a mechanism for removing heavy metals from waste sludge. We focused on the concentrations of Cd (cadmium), Cr (chromium),Cu(copper),Ni(nickel),Pb(lead)andZn(zinc)inwastesludgebeforeand afterconsumptionby L. variegatus . Not only the composition, but also the further degradability of sludge could change due to consumption. Earthworms for example ingest their faeces and this is supposed to stimulate organic matter assimilation (Curry & Schmidt, 2007). It is

╡95 ╞

╡Chapter 6╞

unknownwhether L. variegatus ingestsitsownfaeceswithadditionalsludgedigestion as a possible effect. It is also unknown if the faeces are further degradable by endogenousdigestion. In this chapter, experiments were done to test the influence of sludge consumptionby L. variegatus onsludgecharacteristics.Sludgesettleability,turbidityof the water phase, sludge dewaterability and sludge composition (in terms of proteins, carbohydrates,ashesandheavymetals)weredeterminedbeforeandafterconsumption of different municipal waste sludges. Subsequently we evaluated whether faeces of L. variegatus were further degradable by digestion by their own kind or by endogenous digestion.Ascontrols,allanalyseswerealsoperformedonthesamesludges,incubated withaswellaswithoutaeration. 6.2 Materials and methods 6.2.1 General set-up TheexperimentalsetupwasdescribedinChapter4.Drymatterbasedsludgedigestion rates D (d 1), worm biomass growth rates G (d 1) and yields Y () were calculated according to Chapter 5, as well as number growth rates Gn (d 1). Lumbriculus variegatus specimens that were used in the experiments originated from a culture grown on effluent containing flushed out sludge flocs of a pilotscale wastewater treatment system treating municipal wastewater from the village of Bennekom, the Netherlands.InTable6.2thesetupoftheindividualbatchexperimentsisdescribed.

╡96 ╞ ╡Influence of L. variegatus on sludge composition ╞

Table 6.26.2 Setup of the individual batch experiments with L. variegatus . Abbreviations used: Aer = aeratedsludge,Bk=WWTPBennekom,Fae=wormfaeces,M1=submergedmembranebioreactor, R1 = pilotscale conventional activated sludge system 1 (sludge age ~ 20 days), R2 = pilotscale conventionalactivatedsludgesystem2(sludgeage~38days),Sludgequantityatt 0=sludgeinworm batches at t 0 (TSS (total suspended solids) based), W/S ratio at t 0 = worm to sludge ratio at t 0 (dry matter based), t = experiment duration, ___ = nonaerated control,+++ + = aerated control, * = sludge percentage<100%. ExpExpSludgeSludge W/SW/S Sludge Number tttt Number of Number of TTTT ratio at quantityatt 000 of worms (d)(d)(d)(d) batchesbatches controlscontrols (°C)(°C) ttt000 (g)(g)(g)(g) att 000 Settleability,Settleability,dewaterabilityandcompositionofcondewaterabilityandcompositionofconsumedsludgedewaterabilityandcompositionofconsumedsludgesumedsludge 1111 R2/M1* 0.3 1.21.6 190 7 8 4 1618 2222 Bk 0.5 0.40.7 200240 4 17 8,1+ 16.2(±0.7) 3333 R1 0.6 0.70.9 200 5 9 4,1+ 16.7(±0.6) 4444 R1* 0.5 0.80.9 200219 3 9 4,1+ 16.2(±0.8) 5555 R2* 0.4 0.70.8 200247 5 9 4,1+ 16.6(±0.8) 6666 Bk* 0.40.5 0.60.7 200206 5 9 4,1+ 15.1(±0.7) 7777 R2 0.40.7 0.50.6 203210 7 4 1 1618 Degradabilityof L. variegatus faecesfaeces 8888 Fae 0.30.7 0.20.4 96105 4 10 3,2+ 1618 9999 Bk 0.7 0.10.2 167171 5 7 1+ 21.1(±1.2) Fae/Aer 0.4 0.30.4 150169 5 6 2+ 20.6(±1.6) Theexperimentswereusuallyterminatedassoonasthefaecespercentageinthe wormbatcheswas100%,butinExperiments1,4,5and6(markedwith*intablesand figuresofthischapter)faecespercentages(asvisually observed)wereonly70,85,85 and35%,respectively. In addition, most analyses were performed for the total sludge mixture (‘total sludge’),whilesomewereperformedseparatelyforthesludgephaseaftercentrifugation (‘sludgepellet’)andthewaterphase(‘waterphase’).Thisisindicatedforeachanalysis. 6.2.2 Settleability and dewaterability of consumed sludge Thesettleabilityanddewaterabilityoftotalsludgesandtheturbidityofthewaterphase before and after consumption by L. variegatus were tested. The sludges were taken fromfourbatchexperimentswiththreedifferentsludges(Table6.2,Experiments1&2 forsettleability,Experiments2,5&6fordewaterability,Experiment5forwaterphase turbidity).SludgesoriginatedfromapilotscaleaerobicactivatedsludgesystemR2,a pilotscaleaerobicsubmergedmembranebioreactorM1andtheWWTPofBennekom. Allsystemswerefedwiththesamemunicipalwastewater.

The settleability of consumed sludge was determined as SVI 30 (sludge volume index after 30 minutes) (APHA, 1998). In addition, the sludge settling rate was evaluatedbyplottingtheSVIinsettlingcurvesduringthese30minutes.TheSVI 30 and settling curves of the consumed sludges were compared to that of the nontreated sludgesandofthecontrols.

╡97 ╞

╡Chapter 6╞

Turbidityofthewaterphasei.e.aftercentrifugationfor10min.at3000rpmwas measuredwithaWTWTurb550turbiditymeterbeforeandafterconsumption. The dewaterability of nontreated and consumed sludges was determined with the CST (capillary suction time) method (Vesilind, 1988; APHA, 1998). The CST in secondswasconvertedtotheSludgeFilterabilityConstant χ(Cetin&Erdincler,2004). Accordingtothisformula,lowerCSTvaluesindicatehigherfilterability( χ)valuesand increasingsludgedewaterability. SludgeFilterabilityConstant:SludgeFilterabilityConstant: χχχ==== ΦΦΦ(*C)/CST(*C)/CST (kg 2/m 4.s 2) Parameters: ΦΦΦ 0.794(dimensionlessconstantcharacteristicoftheCSTapparatusandpaperused) 1.002*10 3kg/s.m(viscosityofwateratthetemperatureofthesludgesampleusedin theCSTtesti.e.20°C) CCCC SludgeTSSconcentrationinkg/m 3

6.2.3 Composition of consumed sludge The composition of sludge before and after consumption by L. variegatus was determined in terms of TSS, VSS (volatile suspended solids), proteins and carbohydrates. The sludges were obtained from four batch experiments with three differentsludges(Table6.2,Experiments36).InadditiontosludgesfromreactorR2 andWWTPBennekom( Paragraph 6.2.2 ),sludgewastakenfromreactorR1.Thiswasa similarsystemasreactorR2,butreactorR2hadanaveragesludgeageof38days,while reactorR1hadanaveragesludgeageof20days. TSS and VSS were determined for total sludge according to Standard Methods (APHA,1998)asdescribedinChapter4. Proteincontents for total sludge and water phase(after10min.centrifugationat3,500rpm)weremeasuredbytheBiuretmethod (Boyer,1993)andcarbohydratecontentsfortotalsludgeandwaterphase(after10min. centrifugation at 3,500 rpm) by the phenol sulphuric acid method with glucose as a standard(Dubois et al. ,1956). In order to study the effect of consumption on heavy metal concentrations in sludge a batch experiment was carried out with L. variegatus and R2 sludge (Experiment7).Atthestartandendoftheexperiment,portionsofwormsandsludge (fractionated into sludge pellet and water phase by centrifuging for 20 min. at 3,500 rpm) were frozen in polypropylene bottles until analysed. The bottles and centrifuge tubes were rinsed with diluted HNO 3beforeuse.Metals(Cd,Cr,Cu,Ni,PbandZn) were extracted from the sludge pellets, water phases and worms with a microwave assistedaquaregiadestructionstep.Destruateswerefilledupto100mlwithmilliQand filtered.1mLfromeachsolutionwasdissolvedin9mLmilliQandthenanalysedonan ICPMS.

╡98 ╞ ╡Influence of L. variegatus on sludge composition ╞

6.2.4 Degradability of consumed sludge Initialvisualinspectionwasperformedwith L. variegatus toproveingestionoffaeces bytheirownkind.ThewormswerefedwithsludgefromaWWTPtreatingwastewater fromapaperfactory.Thissludgehasadistinctgreencolour.Theproducedgreenfaeces were then fed to a culture of L. variegatus that had been feeding on sludge from a municipalWWTP,whichischaracterizedbyalightbrowncolour.Whentheseworms weretakenoutofthepapersludge,theyproducedgreenfaeces,whichprovedthatthe faeceswereingested. Sludge from reactor R1 was incubated with L. variegatus for 10 days in Petri dishes (Table 6.2, Experiment 8). After this period all the sludge was converted into faeces. The faeces were then fed to L. variegatus or incubated in nonaerated and aeratedcontrolsduring4days.Partofthefaeceswasblenderedandfedto L. variegatus orincubatedinanonaeratedcontrol,tocheckwhetheringestionanddegradabilityof thesefaeceswerepreventedbytheirstructure. In a second experiment (Table 6.2, Experiment 9), Bennekom sludge was incubatedfor5dayswith L. variegatus orinanaeratedcontrol.Afterthisperiod,the faeces and the aerated sludge were incubated for 5 days with L. variegatus or in an aeratedcontrol. 6.3 Results and discussion 6.3.1 Settleability and dewaterability of consumed sludge

Table6.3showstheSVI 30 valuesofdifferentsludgesbeforeandafterconsumptionby L. variegatus . Table 6.36.3 SVI 30 values of R1, R2 and Bennekom sludge before (Nontreated) and after two batch experiments with L. variegatus (Consumed). Averages and standard deviations represent duplicate measurements. SludgeSludgeNonNon treatedtreatedtreatedConsumedConsumed R2*R2* 61(±4) 55(±3) M1*M1* 79(±2) 55(±2) BkBkBkBk 113 63 Inaddition,Figure6.3showsthesettlingcurvesoftheBennekomsludgebefore andaftercompleteconsumption.

╡99 ╞

╡Chapter 6╞

600

400 Nontreated Consumed 200 mL/gTSSsludgemL/gTSSsludge mL/gTSSsludgemL/gTSSsludge 0 0 10 20 30 Time(minutes) Figure6.3Figure6.3Settlingcurves(andSVI 30 values)ofBennekomsludgebefore(Nontreated)andaftera4day batchexperimentwith L. variegatus (Consumed). The settleability of all three sludges clearly improved after consumption. The averageSVI 30 valuesforthedifferentconsumedsludgeswerebetween55and63mL/g TSSandtheinitialsludgesettlingratealsoincreased.Thefaecesof L. variegatus havea uniform structure regardless of the nontreated sludge type, which explains these similarvalues.Thesludgesfromthecontrolbatches(notshown)alwaysdisplayedless steepsettlingcurvesandhigherSVI 30 valuescomparedtotheconsumedsludges. Afterthesettleabilitytestsamoreturbidwaterphasewasvisuallyobservedfor theconsumedsludgesincomparisontothenontreatedsludges.Toquantifythiseffect, theturbidityofthewaterphase(aftercentrifugation)wasdeterminedbeforeandaftera batch experiment with R2 sludge. The turbidity in NTUwas6beforetheexperiment and 9 after consumption. This is in accordance with the release of dissolved and colloidalCODduringconsumptionmentionedbyBuys(2005).Turbidityofthewater phasedidnotincreaseinthenonaeratedcontrol,butincreasedintheaeratedcontrol, possiblybecauseoftheshearforcesonthesludgeflocs. Nexttosettleability,dewaterabilityofsludgesbeforeandafterconsumptionwas evaluated.SludgeFilterabilityConstants χweredeterminedforBennekomsludgesand R2sludgebeforeandafterconsumption(Figure6.4).

╡100 ╞ ╡Influence of L. variegatus on sludge composition ╞

4 Bka Bkb* R2* 4

X 2 0 ) ) ) ) 5 5 5 5 3 2 4 6 8 10 TSSconcentration )(x10 )(x10 )(x10 )(x10 Bka 2 2 2 2 2 .s .s .s .s 4 4 4 4 Bkb* /m /m /m /m R2* 2 2 2 2 1 (kg (kg (kg (kg FilterabilityConstantXFilterabilityConstantX FilterabilityConstantXFilterabilityConstantX 0 Nontreated Consumed Figure6.4Figure6.4SludgeFilterabilityConstants χ(in10 5kg 2/m 4.s 2)before(Nontreated)andafter(Consumed) 3batchexperimentswithBennekom(Bk,aandbaredifferentbatchexperiments)andR2sludgewith L. variegatus . χisdisplayedinthefigureandtheinsetasX.CSTmeasurementswererepeated46times. TheCSTvalueofnontreatedBennekomsludgeinthefirstbatchexperimentwasnotdetermined.InsetInsetInset: χvaluesasfunctionofTSSconcentrationsinthesludges. The results were not consistent. The χvalues of Bk b and R2 sludge after consumptionwereequalorlowerthanatthestartoftheexperiment,whichindicates dewaterabilitydidnotimprove.Thesamewastrueforthecontrols(notshown).Atthe sametime,eventhoughtheTSSconcentrationsofthesludgeswerecorrectedforinthe calculationof χvalues,smalldifferencesbetweentheTSSconcentrationsofthesludges didunexpectedlyleadtoproportionalchangesinthe χvalues(insetFigure6.4).This made the results unreliable even though other authors based conclusions regarding differencesindewaterabilityonsimilarexperimentaldata(Cetin&Erdincler,2004). ConsumptionofsludgethusclearlyimprovedinitialsettlingratesandfinalSVI values, which is beneficial to further sludge processing. In addition, turbidity of the waterphaseincreased,whichmeansthatdirectrelease of this effluent from WWTPs shouldbeprevented.Acleareffectofconsumptiononsludgedewaterabilitycouldnot bedemonstrated. 6.3.2 Composition of consumed sludge Proteins, carbohydrates and ash The composition of four sludges was determined before and after consumption. Table 6.4 shows an overview of digestion rates D, biomassgrowthratesG,yieldsY(alldrymatterbased) and number growth rates Gn eachexperiment.Furthermore,thetotaldigestionpercentagesplusfaecespercentages forthewormbatchesareshown.

╡101 ╞

╡Chapter 6╞

Table6.4Table6.4DigestionratesD(d 1),biomassgrowthratesG(d 1),numbergrowthratesGn(d 1)andyieldsY ()infourbatchexperimentswithR1,R2andBennekomsludge.Totaldigestionpercentagesandfaeces percentagesoftheconsumedsludgesarealsoshown. SludgeSludgeDDD DGGG GGnGnGn Gn YYY YDigestion%Digestion% Faeces%Faeces% R1aR1a 0.07 0.03 0.00 0.5 25 100 R1b*R1b* 0.09 0.03 0.00 0.3 24 85 R2*R2* 0.04 0.01 0.00 0.2 15 85 Bk*Bk* 0.04 0.01 0.00 0.3 17 35 The results for R1 sludge were similar—considering the relatively high overall variabilityfoundinChapter5—althoughthedurationoftheexperimentswasdifferent; 5and3daysrespectively.Thedigestionrates,biomassgrowthratesandyieldsonR2 andBennekomsludgeweresomewhatlowerthanonR1sludge,whiletheconditionsin the4batchexperimentswerealmostthesame(Table6.2).Inaddition,thedigestionof R2 and Bennekom sludge was similar, while 65 % of the Bennekom sludge was not convertedintofaeces,comparedtoonly15%oftheR2sludge. Protein, carbohydrate and ash content of the total sludges were determined beforeandaftereachofthefourbatchexperiments(Figure6.5).

100

80 29 23 29 26 28 25 60 23 22 Carbohydrate Protein 40 34 38 33 43 34 39 38 25 Ash 20 25 14 19 15 18 15 16 22 0 PercentageofsludgeTSSPercentageofsludgeTSS PercentageofsludgeTSSPercentageofsludgeTSS NontreatedC No C N C No Cons o o o o n n n n n n sume su su tre tre tre u m m med a e a e a d te d te d te d d d

R1a R1b* R2* Bk* Figure6.5Figure6.5Totalprotein,carbohydrateandashcontentofR1(aandbaredifferentbatchexperiments), R2andBennekomsludge(aspercentageofTSS)before(Nontreated)andafterfourbatchexperiments with L. variegatus (Consumed).Numbersinthebarsaretheexactpercentagesofeachcomponent. Proteinsconstitutedthelargestfractionofeachsludge.Themissingfractionof thesludgesconsistedoflipids,humicacidsandothercomponents.Figure6.5showed thatconsumptionmainlyaffectedtheproteinfractionsofthesludges(aspercentageof TSS).Consumptioncauseda19%decreaseintheproteinfractionsofthesludges.This

╡102 ╞ ╡Influence of L. variegatus on sludge composition ╞

strongly suggests that L. variegatus specifically digested proteins from the organic fractionofsludge.However,Table6.4andFigure6.5did not show clear connections betweensludgeproteindecreaseandwormbiomassincreaseorsludgeproteincontent anddigestionrate. Nexttothedecreasingproteinfractions,theashfractionsincreasedwith15%. For R1 and Bk sludges, this was roughly proportional to the TSS digestion shown in Table6.4,whichistheresultofspecificdigestionintheorganicfractionofthesludge. Changes in carbohydrate fractions were not consistent. In R1 and R2 sludges, the fractionincreasedwith26%butforBksludgedecreased with 3 %. The changes in protein, ash and carbohydrate fractions were always smallest for R2 sludge. This is consistentwiththeoveralllowTSSdigestion(Table6.4)andconfirmsthatthissludge wasclearlylessdegradablebecause85%ofthesludgehadbeenalreadyconvertedinto faeces. Typicalvaluesforprotein,ashandcarbohydratecontentofactivatedsludgeare respectively3241%,1241%(Tchobanoglous et al. ,2003)and1045%(Forster,1971) oftheTSS. Park et al. (2006)describedthatduringaerobicdigestionofsludgeonlyproteins arecompletelydegraded,whilecarbohydratedegradation is variable. Consumption of sludgeby L. variegatus apparentlydisplayedthesamepatternasthewormsfedmore specificallyontheproteinfractionofsludgethanonthecarbohydratefraction.During endogenous digestion in the control batches (results not shown) there were also decreasesintheproteinfractions(15%)andincreasesintheashfractions(upto1%), but to a lesser extent than in the consumed sludges. Again, in analogy with the consumedsludges,thecarbohydratefractionsofthecontrolsludgesdidnotshowany consistenttrends.Theydecreasedorincreasedasintheconsumedsludges,butusually toalesserextent. The percentages shown in Figure 6.5 were determined in total sludge samples andassuchdidnotgiveanyinformationonchangesofthedistributionbetweensludge andwaterphaseduringconsumption.Therefore,concentrationsofcarbohydratesand proteinswerealsodeterminedinthewaterphasebeforeandafterconsumption.Figure 6.6showsthewaterphasecontentsaspercentageofthetotalsludgecontents.

╡103 ╞

╡Chapter 6╞

30

1 20 5 1 Carbohydrate 3 1 24 Protein 10 1 16 0 13 12 1 13 PercentageoftotalPercentageoftotal PercentageoftotalPercentageoftotal 6 8 6 proteinorcarbohydrateproteinorcarbohydrate proteinorcarbohydrateproteinorcarbohydrate 0 No C Non C N Consumed No C ons o o o n n n n n t s t t s re u treatedum re re u re me reated re re me a e a a te d d te ted d d d

R1a R1b* R2* Bk* Figure6.6Figure6.6ProteinandcarbohydrateamountsinthewaterphaseaspercentageoftotalamountsinR1 (a and b are different batch experiments), R2 and Bennekom sludges before (Nontreated) and after four batch experiments with L. variegatus (Consumed). Numbers in the bars represent the exact percentageforeachcomponent. Figure6.6indicatesthatsludgeconsumptionwasaccompaniedbyproteinrelease to the water phase, with increases of 48 %. This was also observed in most of the control batches with increases of 19 % (results not shown). Protein fractions in the waterphaseofBksludgewerealwayshigherthanintheothersludges.InR1sludges, the carbohydrate concentrations in the water phase concentrations increased after consumption with 25 %, but this was not the case for the other two sludges. The carbohydratefractionsinthewaterphasesofthecontrolbatchesdidnotchange(results notshown). L. variegatus specificallydecreasesthetotalproteinfractionofwastesludgeby consumption,butnotthetotalcarbohydratefraction.Basedonlowerproteinandhigher ash contents of worm faeces, the energy content of waste sludge is thus lowered by sludgeconsumption.Atthesametimehowever,theproteincontentofwormbiomass grownonwastesludgeisaroundtwiceashighasthatofthewastesludge(drymatter based).Areleaseofproteinstothewaterphasewasequallyobservedduringdigestion bywormsandduringendogenousdigestion.However,areleaseofcarbohydratestothe water phase was sometimes observed during digestion by worms only. This release could for example explain the increased turbidity of the water phase after sludge consumption. Heavy metals HeavymetalconcentrationsweredeterminedinR2sludge before and afterincubationwithorwithoutworms.TheaveragetotalTSSdigestionin7dayswas 35(±1)%inthewormbatchesandinthecontrolbatches12(±0)%ofthesludgewas

╡104 ╞ ╡Influence of L. variegatus on sludge composition ╞

digested. The average total worm biomass increase was 13 (±10) %. The average digestionrateDwas0.06(±0.02)d 1,theaveragebiomassgrowthrateG0.02(±0.02) d1, the average yield Y 0.32 (±0.20) (all dry matter based) and the average number growthrateGn0.00(±0.00)d 1.Theserateswerecomparabletothosefoundinother batchexperiments(Table6.4). Table 6.5 shows the heavy metal concentrations (mg/ kg dry matter) in sludge (total of sludge pellet and water phase) and worms at the start and the end of the experiment.Theaveragerecoveryofeachheavymetalwas75(±7)%attheendofthe batchexperiment(likelyasaresultofmetaladsorptiontotheglassPetridishesduring thebatchexperiment),whichmeansthatconcentrationsshouldbeinterpretedwithcare. Table6.5Table6.5Averageheavymetalconcentrationswithstandarddeviationsbetweenbracketsinwormsand totalsludge(sludgepelletandwaterphase)atthestart(N=1)andend(N=3)ofExperiment7.BOOM regulationsarealsoshownfortheanalysedmetals.Allconcentrationsareinmg/kgdrymatter. SludgestartSludgestart SludgeendSludgeend WormsstartWormsstart WormsendWormsend BOOMBOOM CadmiumCadmium 1.1 1.2(±0.2) 0.5 0.3(±0.1) 1.25 NickelNickel 15 17(±1) 0.8 0.4(±0.0) 30 LeadLead 37 43(±1) 1.1 0.8(±0.4) 100 ChChChromiumCh romium 87 111(±2) 4.7 3.7(±1.1) 75 CopperCopper 276 294(±57) 35 30(±3) 75 ZincZinc 758 774(±57) 302 254(±4) 300 Table6.5suggeststhatheavymetalconcentrationsin L. variegatus werealways substantiallylowerthaninsludgeandmeetthestandardsoftheBOOMregulationsin contrasttothewastesludge.Inaddition,thewormsalreadycontainedheavymetalsat the start of the batch experiment, because they originated from a ditch with effluent containingsludgeflocs.Duringthebatchexperiment,theconcentrationsintheworms decreased slightly with on average 27 (±15) %, while those in the sludge increased somewhat with on average 13 (±9) %, but this was not proportional to respectively average percentage worm growth or sludge digestion. L. variegatus did not seem to accumulatemetalsfromsludge. Table 6.5 does not provide any information on the distribution of heavy metal amountsbetweensludgepellet,waterphaseandworms.Sincemetalrecoverywasnot 100%,thesumsoftheheavymetalsamounts(ing)inthethreephases(worms,sludge pelletandwaterphase)atthestartorendofthebatchexperimentswereassumed100% inthecalculations.Figure6.7showstheresultingdistributionofCd,Cr,Cu,Ni,Pband Znamongthesethreephases.

╡105 ╞

╡Chapter 6╞

100 75 Waterphase Sludgepellet 50 Worms 25 0 %oftotalmetalamount%oftotalmetalamount %oftotalmetalamount%oftotalmetalamount End End End End End End End End End End End End End End End End End End End End End End End End Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start

CdCdCdNiNiNi PbPbPb CrCrCr CuCuCu ZnZnZn FigureFigure 6.76.7 Relative heavy metal amounts in R2 sludge (sludge pellet and water phase) and worms before(start)andafter(end)a7daybatchexperimentwith L. variegatus .Standarddeviations(N=2) aregivenforeachphase. Figure 6.7 suggests that there was no redistribution of metals in sludge after consumptionby L. variegatus .Thelargestfractionsofallmetals(exceptCr,ofwhich thelargestfractionwasfoundinthewaterphase)seeminglyremainedboundtosludge flocs. This can be explained by the high organic matter content of sludge because Chapman et al. (1999) mentioned that the bioaccumulation of heavy metals by L. variegatus fromcontaminatedsedimentsisnegativelycorrelatedtotheorganicmatter contentofthesubstrate.Selck et al. (1999)alsofoundthatuptakeofCdfromsediments by a decreased with increasing organic matter content (humic acids and exopolymers). Binding to organic matter prevents metals from entering the dissolved phase (Mahony et al., 1996) and this probably decreases bioavailability. Usually less than10%ofthemetalsinsludgearepresentassolubleandexchangeablespecies(Lake et al. , 1984). However, as Merrington et al. (2003) pointed out, fractionation and bioavailabilityofmetalsinsludgearecomplexissuesandresultsvarywidely,muchin accordancewithconflictingresultsfortheinfluenceofearthwormsonthefractionation ofheavymetalsinsoils(Liu et al. ,2005).Insupportofthis,ourresultsforCr(Figure 6.7) show that metals mostly present in the water phase do not necessarily bioaccumulate to a high extent (Table 6.5). The bioavailability of Zn and Cd in our experimentwashoweverclearlyhigherthanthatoftheothermetals,becauseforthese twometalsaround25%ofthetotalamountinthethreephaseswasfoundintheworms. Alvarenga et al. (2007)foundsimilarresultswithanaerobicallydigestedsludge. Anotherexplanationfortheoveralllackofmetalbioaccumulationfromsludgein L. variegatus above initial concentrations in the worms is regulation of uptake by excretion.ExcretionofmetalsfrombodytissuesofL. variegatus ishoweveraveryslow processcomparedtoexperimentduration(Dawson et al. ,2003).Also,mechanismsfor excretion are fairly unknown and there are only suggestions that metallothioneinlike proteinsmaybeinvolved(Protz et al. ,1993;Stürzenbaum et al. ,2001).

╡106 ╞ ╡Influence of L. variegatus on sludge composition ╞

L. variegatus does not accumulate heavy metals during sludge consumption additionaltoinitialwormconcentrations.Metalconcentrationinthewormsareusually very low and well below those in the waste sludge. Increases in worm biomass and decreases in sludge TSS during sludge consumption by worms will therefore lead to lower and higher metal concentrations in respectively worms and worm faeces. In addition, the average concentrations in the worms are below the maximum tolerated values according to BOOM regulations, in contrast to those in waste sludge. This broadensthereuseoptionsinagricultureforwormbiomassgrownonwastesludge. 6.3.3 Degradability of faeces InExperiment8,sludgehadbeenincubatedfor10dayswith L. variegatus untilitwas fully converted into faeces. These faeces (intact or blendered) were ingested by their ownkind,whichwasconfirmedbyfaecesproductionbywormsthathadbeenfeeding onfaeces.Incontrast,Gnaiger&Staudigl(1987a)observednoreingestionoffaeces.The largeparticlesizeofthefaeceswasnotlimitingforuptakebytheworms.InChapter5,it was already shown that large sludge flocs are consumed to the same extent as small sludgeflocsandthesameseemstobetrueforthefaeces.Thewormswereclearlyableto bitepiecesofthefaeces,whentheyweretoolargetobeingestedasawhole. Furthermore, the faeces were hardly degradable under all applied conditions (aeratedornonaeratedincubation,consumptionbytheirownkind)sincethedigestion ratesfor L. variegatus feedingontheirownfaeceswerezeroandthecontroldigestion wasneverhigherthan2%in4days.Thewormbiomassgrowthrateswereallnegative andnumbergrowthrateslessthan0.01d 1.Eventhoughweshowedin Paragraph 6.3.2 that worm faeces still contained a large amount of organic material, this organic materialwasnotdegradablebywormsorendogenous digestion anymore, even when thefaeceswereblendered. Inasecondexperiment(Experiment9),theageofthefaecesthatwerefedto L. variegatus was5daysinsteadof10days.Figure6.8showsthedigestionandgrowth(in biomassandnumbers)ratesof L. variegatusfeedingonthesefaecesnexttothoseon thenontreatedBennekomsludge.

╡107 ╞

╡Chapter 6╞

0.05 ) ) ) ) 1 1 1 1 D 0.00 G Gn Rate(d Rate(d Rate(d Rate(d

0.05 Nontreated Faeces Figure6.8Figure6.8AveragedigestionratesDandgrowthratesGandGnfor L. variegatus feedingonnontreated Bennekomsludge(N=1)andfaecesfromthissludgeinExperiment9(5days,N=2). In contrast with Experiment 8 there was still some additional digestion of the wormfaeces,butthedigestionrateofthefaeceswaslow(0.02d 1)andwormbiomass decreased.ThelowfaecesdigestionratesinExperiments8&9seemedtobeinversely correlated to the age of the faeces and thus the extent to which endogenous sludge digestionhadtakenplace. Thisprovedagainthatmostsludgedigestiontookplaceduringthefirstpassage throughthewormgutandthatthefaeceshadlittleornonutritionalvalueanymoreto theworms.Additionaldigestionofwormfaecesseemedtobeaveryslowprocess. .

╡108 ╞ ╡Influence of L. variegatus on sludge composition ╞

6.4 Conclusions

In this chapter, batch experiments were described that investigated the influence of sludge consumption by Lumbriculus variegatus on sludge characteristics. These experimentsshowedthatsludgeconsumptionby L. variegatus : ╡ Enhancedtheinitialsettlingrateandthesettleabilityofseveralsludgesleadingto

SVI 30 valuesof55to63mL/g. ╡ Leadtoanincreaseinwaterphaseturbidity,duetotheformationofmoredissolved and/orcolloidalmaterials.Thismaterialprobablyconsistedofcarbohydrates,which were sometimes released to the water phase. This release was not observed for proteins. ╡ DidnotimprovethedewaterabilityofsludgesaccordingtotheCSTmethod,butthe resultsindicatedthatthismethodwasunreliable. ╡ Decreased the protein fraction (and increased the ash fraction) as percentage of sludgeTSS,butnotthecarbohydratefraction. ╡ Did not cause bioaccumulation of the heavy metals cadmium, chromium, copper, lead, nickel and zinc from sludge in the worms above the concentrations already presentintheworms.Theconcentrationsin L. variegatus werealwayslowerthanin sludge and in addition, met the standards for BOOM regulations. The bioaccumulationofcadmiumandzincwasrelativelyhigh. ╡ Didnotseemtochangethedistributionoftheabsoluteheavymetalamountsover thesludgeflocs,thewaterphaseandtheworms. Batchexperimentsthatinvestigatedthedegradabilityoffaecesof L. variegatus showed that: ╡ Wormsingestedfaecesoftheirownkind(conspecifics)whenfedwithwastesludge. ╡ Faeces of L. variegatus were hardly degradable by conspecifics or endogenous digestionandleadtodecreasesinwormbiomass. Acknowledgments We thank Bas Buys (Wageningen University) and Tim Hendrickx (Wageningen University,Wetsus)forcodesigningandcoperformingmanyofthebatchexperiments describedinthischapter.

╡109 ╞

╡╡╡Chapter 7 ╞╞╞ Comparisonofsludgereductionbetween Lumbriculus variegatus , sessileTubificidaeandmixedculturesofboth

╡Chapter 7╞

Abstract SessileTubificidaehavebeenoftenusedinsludgereductionresearch,withpromising,butalso variableresults.Toinvestigateif L. variegatus ismoresuitableforapplicationinthisresearch fieldseveralaspectsofsludgereductionwerecomparedinbatchexperimentswith L. variegatus andsessile Tubificidae.In addition,itwasinvestigatediftheapplicationofmixedculturesof bothwormtypesismoreadvantageousthantheapplicationofmonoculturesof L. variegatus or ‘monocultures’ofTubificidae. Sludge digestion and worm biomass growth were usually higher and more stable in monoculturesof L. variegatus thaninmonoculturesofsessileTubificidae.Thenumbergrowth rateswerecomparable,whichmayhaveresultedfromthehatchingofsessileTubificidaeeggs already present. The results with concentrated sludges were similar, except for decreasing sessile Tubificidae numbers. The advantage from using mixed cultures of both worm types resultedmainlyfromincreasedbiomassgrowthratesof L. variegatus .The(combined)sludge digestionrateofmixedcultureswashoweverequaltothatofthemonoculturesanditwasnot clearifmixedculturesenhancedtheindividualdigestionrates.Bothwormtypeswereableto ingestwormfaecesofconspecificsandintraspecifics,butdigestionrateswerelowandbiomass decreased. Digestion rates on intraspecific faeces were slightly higher, which suggested differencesindigestionmechanismbetweenbothwormtypes. Whenmonoculturesof L. variegatus andsessileTubificidaeweregrownformorethanhalf a year on sludge or the control substrate Tetra Min® fish food, concentrations of cadmium, chromium, copper, lead, nickel and zinc in both worm types were similar, regardless of the concentrations in these substrates. The bioaccumulation of cadmium and zinc was relatively high and concentrations in sludge and both worm types were similar. In addition, biomass concentrationsofzincinsessileTubificidaeandcadmiumandzincin L. variegatus grownon sludgewereabovethelimitsoftheBOOMregulationsforheavymetalconcentrationsinsludge. Inconclusion,fromourbatchexperimentsitseemsthat L. variegatus ismoresuitablefor application in sludge reduction processes. The application of mixed cultures of L. variegatus andsessileTubificidaemayhavebeneficialeffects,butnotonoverallsludgedigestionrates. 7.1 Introduction Aswasearlierdiscussedintheintroductionofthisthesis(Chapter1),singlespeciesor mixtures of the sessile Tubificidae (mainly Limnodrilus spp. and Tubifex tubifex ) are often used for sludge reduction research. These sessile Tubificidae resemble Lumbriculus variegatus (familyLumbriculidae)inappearanceandbasicfeedinghabits (Chapter 2), because they all are several cm long reddish aquatic worms that forage headdowninsedimentswiththeirtailprotrudedforoxygenuptake. L. variegatus can sometimesbefoundwithincommerciallysoldmixturesofsessileTubificidae(Chapter 2). SessileTubificidaearehoweveressentiallydifferentfrom L. variegatus intheir reproductive mode and (as most authors assume) in pollution tolerance (Chapter 2). While L. variegatus reproduces asexually by division and is often associated with an unpolluted habitat (Marshall & Winterbourn, 1979), sessile Tubificidae reproduce

╡112 ╞ ╡Comparison between L. variegatus and Tubificidae ╞

sexually through eggs and cocoons and are indicators of highly polluted areas (Finogenova & Lobasheva, 1987). Sessile Tubificidae need to reach a certain age, dependentontemperatureandsubstrate, beforethey startthe developmentofsexual organsandreproduction.Thepreviousauthorsdescribedthegrowthandreproduction of T. tubifex on activated sludge. Newly hatched specimens of T. tubifex started reproducingafter30days,whichwasconsiderablyfasterthanonsedimentswithalow organic content. Reproduction of L. variegatus was also positively correlated with organic matter content of sediments and it was found that it reproduces through division when a certain individual worm wet weight was reached (Leppänen & Kukkonen, 1998b; Lesiuk & Drewes, 1999), depending on the culture conditions (Chapter 2). With waste sludge as their substrate, there is also a trend that larger specimens divide more often than smaller specimens do. The average biomass and numbergrowthratesof L. variegatus inseveralbatchexperimentswithwastesludge were0.04(±0.03)and0.01(±0.02)d 1 (Chapter5). Some researchers found high sludge digestion and worm growth rates with sessile Tubificidae, even though results were also sometimes variable or unstable (Chapter1).Tofindoutwhether L. variegatus ismoresuitableforsludgereduction,a directcomparisonbetweensessileTubificidaeand L. variegatus wasmadeinseveral shortterm batch experiments, similar to those we used to demonstrate the sludge reduction potential of L. variegatus . In addition, combining different worm types in mixed cultures may enhance sludge digestion rates and/or worm growth. Several authorsdescribedthatsomespeciesofsessileTubificidaepreferablyfeedonfaecesof otheraquaticworms,becauseeachseparatespeciescontainsdifferentspeciesspecific bacteria in their intestines and faeces (Brinkhurst et al. , 1972; Brinkhurst, 1974; Brinkhurst & Austin, 1979; Milbrink, 1987b; MermillodBlondin et al. , 2003). These authorsreportedincreasedgrowthandfeedingratesanddecreasedrespirationratesin mixedwormculturesasaresultofthis.Componentsthatcannotbedigestedorbacteria thatareexcretedbyonespeciesmaythusbedegradablebyanotherspecies.Therefore, we investigated whether sludge digestion and growth rates were enhanced in batch experimentswithmixedculturesofsessileTubificidaeand L. variegatus. L. variegatus isabletoingestfaecesofitsownkind(conspecifics)buthardlyanyadditionaldigestion takesplace,aswasshowninChapter6.Inbatchexperiments,weinvestigatedwhether the same is true for sessile Tubificidae. In addition, crossfeeding batch experiments weredone,inwhichculturesofsessileTubificidaeorL. variegatus werefedwithfaeces oftheotherspecies(intraspecifics). Whenapplying(mixturesof)wormspeciesforsludgedigestion,itisimportantto knowtowhichextentthewormsaccumulatemetalsfromthesludge.SessileTubificidae areknowntobioaccumulateheavymetals(e.g.Patrick&Loutit, 1976),dependenton environmentalconditionslikeorganicmatterconcentrations(Bervoets et al. ,1997)and temperature (Back, 1990). They possess detoxification mechanisms for metals like internalcompartmentalization(Ciutat et al. ,2005;SteenRedeker et al. ,2007),lossof their tail section (induced autotomy) (LucanBouché et al. , 1999) and binding to

╡113 ╞

╡Chapter 7╞

metallothioneinproteins(Roesijadi,1992;Mosleh et al. ,2006).Theseproteinspossibly are also involved in excretion of the metals (Stürzenbaum et al. , 2001) and a similar protein was detected in L. variegatus (BauerHilty et al. , 1989). The uptake of heavy metalsfromsludgewasinvestigatedinshortbatchexperimentsdescribedinChapter6 for L. variegatus andthisspeciescontainedlowerconcentrationsofCd(cadmium),Cu (copper),Cr(chromium),Ni(nickel),Pb(lead)andZn(zinc)thanthewastesludge(dry matterbased).Thiswaspresumablyduetostrongbindingofmetalstothesludgeflocs ortounknowndetoxificationmechanisms.Therefore,longtermbioaccumulationofthe same metals in sessile Tubificidae was compared to that in L. variegatus . The bioaccumulation of heavy metals from sludge was compared to that from a control substrate—fishfood—inbothwormtypes. 7.2 Materials and methods 7.2.1 Organisms SessileTubificidaeoriginatedfrompetshops,wheretheyaresoldasfishfoodunderthe name‘Tubifex’.Thesemixturescontainmostly Limnodrilus udekemianus , Limnodrilus hoffmeisteri and Tubifex tubifex .Thiswasregularlyconfirmedbyidentificationofsome adult specimens (recognizable by their clitellum i.e. reproductive organs) after mounting in polyvinyl lactophenol according to Brinkhurst (1971) and Timm (1999). The exact composition of the mixtures in each experiment was unknown, because identification with the naked eye (and without killing the worms) is impossible. Lumbriculus variegatus specimensthatwereusedintheexperimentsoriginatedfroma culturegrownoneffluentcontainingflushedoutsludgeflocsofapilotscalemunicipal wastewatertreatmentsystem. 7.2.2 Sludge digestion by monocultures and mixed cultures of sessile Tubificidae and L. variegatus TheexperimentalsetupwasdescribedinChapter4.Drymatterbasedsludgedigestion ratesD(d 1),wormbiomassgrowthratesG(d 1)andyieldsY()werecalculatedforboth wormtypesaccordingtoChapter5,aswellasnumbergrowthratesGn(d 1).However, numbergrowthratesforsessileTubificidaeweresometimesnotcalculatedbecauseof practicalreasons.InTable7.1,thesetupofthebatchexperimentsisdescribed.

╡114 ╞ ╡Comparison between L. variegatus and Tubificidae ╞

Table7.1Table7.1Setupofthebatchexperimentswith L. variegatus andsessileTubificidae.Abbreviationsused: Bk = WWTP Bennekom, Fae= faeces of sessile Tubificidae or L. variegatus, Lv = monoculture of L. variegatus ,Mi=mixedcultureofsessileTubificidaeand L. variegatus (1:1dryweightbased),na=not analysed,R1=pilotscaleconventionalactivatedsludgesystem1(sludgeage~20days),R2=pilot scaleconventionalactivatedsludgesystem2(sludgeage~38days),Sludgequantityatt 0=sludgein wormbatchesatt 0(TSSbased),Tu=‘monoculture’ofsessileTubificidae,W/Sratioatt 0=wormto sludge ratio at t 0 (dry matter based), t = experiment duration, ___=nonaeratedcontrol,+ +++=aerated control. ExpExpSludgeSludge W/SW/S Sludge Number of tttt Number Number TTTT ratioatt 000 quantity wormsatt 000 (d)(d)(d)(d) ofofof ofofof (°C)(°C) att 000(g)(g) batchesbatches controlscontrols 1111 R1 Tu0.30.5 Tu0.3 Tu103120 4 11 3,2+ 18.7(±0.6) Lv0.20.3 Lv0.51.0 Lv201232 2222 R2 Tu0.20.3 0.9 Tuna 6 6 2 1822 Lv0.2 Lv100 3333 Bk Tu0.60.7 0.2 Tu6271 3 8 2,2+ 17.5(±0.8) Lv0.40.5 Lv173201 4444 R1 Tu0.3 Tu0.81.0 Tu300 6 10 2,2+ 1618 Lv0.50.6 Lv0.80.9 Lv150 Mi0.4 Mi0.9 Mi375425 5555 Fae Tu0.40.6 Tu0.10.2 Tu150160 4 10 3,2+ 1618 Lv0.30.7 Lv0.20.4 Lv96105 Sludge digestion and worm growth rates were compared between sessile Tubificidae and L. variegatus in Experiments 13 with sludges from two pilotscale systems(R1andR2)andonefullscaleWWTP(Bk)(Chapter5).InExperiment4,the sludgedigestionandwormgrowthratesofmixedculturesof L. variegatus andsessile Tubificidae (1:1 dry weight based) were compared to those of L. variegatus monoculturesandTubificidae‘monocultures’.Processconditions,includingW/Sratios, were kept similar for all worm batches. The average individual wet weight (5 mg) of sessile Tubificidae was lower than that of L. variegatus (14 mg) and therefore worm numbers in the batches with sessile Tubificidae were higher. The dry (to wet) weight percentage of sessile Tubificidae (17 %) is higher than that of L. variegatus (13 %) (Chapter2). Because sessile Tubificidae showed population decreases in the sludge concentrations that were applied in the above experiments (24 g TSS/ kg sludge), growth in biomass and numbers of L. variegatus or sessile Tubificidae in highly concentratedsludges(1030gTSS/kgsludge)wasevaluatedinaddition(experiment notshowninTable7.1).Thesesludgeswereconcentratedbycentrifugation.

╡115 ╞

╡Chapter 7╞

7.2.3 Faeces digestion by conspecific and intraspecific worms In Experiment 5 (Table 7.1), the digestion of worm faeces by conspecifics and intraspecifiswasinvestigated.Faeceswereobtainedbyincubatingsludgefromreactor R1for10dayswith L. variegatus oramixtureofsessileTubificidaeinPetridishes.After thisperiod,thefaecespercentagewas100%.Thefaecesof L. variegatus werethenfed totheirconspecificsandtointraspecifics(sessileTubificidae)during4days.Thesame wasdonewithsessileTubificidaefaeces . 7.2.4 Heavy metal bioaccumulation in sessile Tubificidae or L. variegatus Worm tissue concentrations of Cd, Cr, Cu, Ni, Pb and Zn of longterm (> 6 months) culturesofsessileTubificidaefedwithactivatedsludgefrompilotscalereactorsR1and R2 were analysed as described in Chapter 6: a microwave assisted aqua regia destructionstepfollowedbyanalysisonanICPMS.Inaddition,totalsludgesamples were analysed (i.e. the sludge was not fractionated prior to analysis as described in Chapter 6). For comparison, heavy metal concentrations were also analysed in long term L. variegatus culturesonthesamesludgesandinlongtermculturesofbothworm typesonTetraMin®fishfood.Wormsgrownontheformersubstratewereregardedas controlgroupforwormsgrownonsludge.Theheavymetalconcentrationsinthefood sourceswerealsoanalysed. 7.3 Results and discussion 7.3.1 Sludge digestion by monocultures and mixed cultures of sessile Tubificidae and L. variegatus The faeces of L. variegatus couldbeeasilydiscernedfromthewastesludgeby their cylindricalcompactshape,evenwiththenakedeye(Chapters4&5),whereasthoseof sessileTubificidaehadmorevariableshapes.Brinkhurst&Austin(1979)describedlong and short cylindrical faeces for Limnodrilus sp. and Tubifex sp. respectively when feeding on sediment. In addition to these shapes, wefoundfloclikeorroundsessile Tubificidae faeces that were often indistinguishable from the waste sludge in our experiments. Digestion and growth rates (in biomass and usually numbers, except in Experiment2)formonoculturesof L. variegatus orsessileTubificidaefeedingonR1, R2 and Bennekom sludge were calculated (Figure 7.1a). Subsequently, digestion and growth rates (in biomass and numbers) for monocultures of L. variegatus or sessile TubificidaewerecomparedtothoseofmixedculturesofbothwormtypesfeedingonR1 sludge(Figure7.1b).

╡116 ╞ ╡Comparison between L. variegatus and Tubificidae ╞

a)a)a)a)

0.15

0.10 ) ) ) ) 1 1 1 1 D 0.05 G Gn Rate(d Rate(d Rate(d Rate(d 0.00

0.05 LvLvLvTuTuTu LvLvLv TuTuTu LvLvLv TuTuTu

R1R1R1R2R2R2 BkBkBk b)b)b)b)

0.10 ) ) ) ) 0.05 1 1 1 1 D G GnLv Rate(d Rate(d Rate(d Rate(d 0.00

0.05 LvLvLvTuTuTu MiMiMi

Figure7.1Figure7.1Comparisonofsludgedigestionandwormgrowthbetweenmonoculturesandmixedcultures of L. variegatus and sessile Tubificidae.a)a)a) a) Average digestion rates D and growth rates G and Gn for monocultures of L. variegatus (Lv) or sessile Tubificidae (Tu) feeding on R1 (N = 3), R2 (N = 2) and Bennekom (Bk, N = 2) sludges in Experiments 13 (all in d 1). The number growth rates Gn were not calculatedforsessileTubificidaeinExperiment2.b)b)b)AveragedigestionratesDandgrowthratesGandb) Gnfor L. variegatus (Lv),sessileTubificidae(Tu)oramixtureofboth(Mi)feedingonR1(N=2)sludgein Experiment4(allind 1).ThenumbergrowthrateGnwasonlycalculatedfor L. variegatus (GnLv),but notforsessileTubificidae.ThebiomassgrowthrateGisdisplayedforthe total biomassineachbatch, buttheaveragebiomassgrowthratesGinthemixedculturesforthe separate wormtypeswere0.04 (±0.01)d 1forthesessileTubificidaeand0.09(±0.00)d 1for L. variegatus (notshown). Figure7.1(a&b)showsthatthedigestionandbiomassgrowthratesforsessile Tubificidaeweresignificantlylowerthanfor L. variegatus undersimilarconditionsin

╡117 ╞

╡Chapter 7╞

three of the four experiments (with R1 and Bk sludges). The biomass of sessile Tubificidae often even decreased. However, the number growth rates of sessile Tubificidae (determined in Experiments 1 & 3) were comparable to those of L. variegatus . Because of the different reproductive strategies and growth patterns of sessile Tubificidae and L. variegatus , care should be taken when comparing their growthrates,especiallysincetheformationofcocoonsbysessileTubificidaeduringthe experiments was not taken into consideration. The digestion and growth rates for L. variegatus displayedtheusualvariability,aswasdescribedinChapter5ofthisthesis. TheaverageyieldinthebatcheswheresessileTubificidaebiomassdidincreasewas0.7 (±0.2),whileintheparallelbatcheswith L. variegatus theaverageyieldwas0.5(±0.1). Thisdifferencewashowevernotsignificant. Inthemixedcultures(Figure7.1b),theaveragecombineddigestionratewasas highasinthe L. variegatus cultures,butlowerthaninthesessileTubificidaecultures. Theinfluenceonindividualdigestionrateswasnotclear,becausewecouldnotconclude whichpartofthebreakdowncouldbeattributedtotheseparatewormtypes,asitwas impossible to discern sessile Tubificidae faeces from the waste sludge. In addition, it could not be ruled out that the worms had ingested each other’s faeces. Figure 7.1b shows that the average total biomass growth rate of the mixed cultures was also relatively high compared to that of the monocultures. This resulted from average separatebiomassgrowthrates(notshown)of0.04(±0.01)d 1forthesessileTubificidae and 0.09 (±0.00) d 1 for L. variegatus , which were both high in comparison to monocultures.Inaddition,theseparatenumbergrowthrateof L. variegatus (‘GnLv’) in the mixed cultures was also high (0.05 (±0.03) d 1) compared to that in the monocultures,whilethatofthesessileTubificidaewasnotdetermined. ItseemsthatespeciallythesessileTubificidaeprofitfrommixedcultures.Thisis inaccordancewiththeenhancedfeedingandbiomassgrowth ratesinmixedcultures found by several authors (e.g. Brinkhurst et al. , 1972; Milbrink, 1987b) as a result of selective feeding on bacteria associated with the faeces of other worm species (intraspecifics).Inaddition,Chapman et al. (1982b)mentionedthatmixedculturesof sessileTubificidaearemoretoleranttotoxiccompoundsthanmonocultures,whichmay, nexttoincreasedbiomassgrowthrates,beafurtheradvantagefortheapplicationof mixedculturesof L. variegatus andsessileTubificidae. The low sludge digestion and growth rates in the monocultures of sessile Tubificidaeincomparisonwiththoseof L. variegatus mayhavebeencausedbytheir reproductive behaviour in combination with experiment duration. Even though L. variegatus doesnotfeedforupto7daysafterreproduction(Leppänen&Kukkonen, 1998b), their numbers and biomass increased steadily in our batches, because the populations consisted of random mixtures of reproducing (dividing) and non reproducing (nondividing) specimens. At the same time, the biomass of sessile Tubificidae decreased in more than half of the batches for unknown reasons, even thoughtherewassludgedigestioninadditiontoendogenoussludgedigestioninmost cases.InthreeofthefivebatchesinwhichthesessileTubificidaewerecounted,there

╡118 ╞ ╡Comparison between L. variegatus and Tubificidae ╞

wasasmallincreaseinnumbersandintheremainingtwobatchesasmalldecrease.The durationofthebatchexperimentswashowevertooshortforafulldevelopmentalcycle of the sessile Tubificidae, because that of T. tubifex takes for example 30 days and embryonic development at least 7 days (Finogenova & Lobasheva, 1987; Marchese & Brinkhurst,1996).Therefore,theonlyexplanationfortheincreasingnumberswouldbe hatchingofeggsthatwerealreadypresentinthebatches.Whenassumingthegrowth rate for juvenile T. tubifex on waste sludge calculated by Finogenova & Lobasheva (1987), the populations in our batch experiments could have increased 250 % in biomass in 6 days, a substantial higher biomass increase than with L. variegatus . However, they also mentioned decreasing biomass growth rates and death in older cultures, which resembles our results better. The negative results with sessile Tubificidaecouldthushavebeencausedbytheshortdurationofthebatchexperiments, in combination with their reproductive stage. Therefore, worm growth of sessile Tubificidae would probably be more stable in longterm experiments, in which all reproductivestagesarerepresentedandfullreproductivecyclescantakeplaceandthis wasconfirmedbyBuys(2005). Anotherfactor,whichmayhaveaffectedsessileTubificidaegrowthratesandalso thesludgedigestionrates(whichwerehighlyunstableandusuallylow)incombination with the short experiment duration, could be the nature of the substrate. It is known that sessile Tubificidae species like T. tubifex and L. hoffmeisteri arelinkedtohighly pollutedhabitatsanddisplayreducedgrowthandreproductionratesin‘clean’waters (Finogenova&Lobasheva,1987).Brinkhurst&Austin(1979)andMcMurtry et al. (1983) suggested that sessile Tubificidae specifically ingest organically rich fractions of sediments.ItispossiblethatsessileTubificidaeneededhighlyconcentratedsludgesand could not thrive in the concentrations that were applied in the described batch experiments (24 g TSS/ kg sludge). Therefore, growth of L. variegatus or sessile Tubificidae was compared at increased sludge concentrations of 10 to 30 g TSS/ kg sludgeduring25days.Unexpectedly,growthratesfor L. variegatus were positive in biomassandnumbers(bothrangingfrom0.02to0.05d 1)forallconcentrations,while numbers and biomass of sessile Tubificidae still remained constant or decreased. In analogy,Densem(1982)foundthat T. tubifex populationsdecreasedsharplyinnumbers andbiomasswhengrownonconcentratedactivatedsludge(around70gTSS/kgsludge) for40days.Heexplainsthisbyanaerobiosisofthesubstrate,leadingtotheformation of unknown toxic compounds and higher expenditures by the worms for maintaining aerobic conditions. Again in analogy with our batch experiments, the duration of Densems’ experiments (< 40 days) may not have been long enough for a significant increase in sessile Tubificidae numbers, but this cannot explain the simultaneous decreaseinbiomass.Itremainsunexplainedaswell why L. variegatus cancopewith these seemingly adverse conditions and why some authors reported growth of sessile Tubificidaeonactivatedsludge(alsoonlowconcentrationsasBuys(2005)did)while others did not. Results for sludge digestion rates of sessile Tubificidae are also contradictory: Liang et al. (2006b) found 0.54 d 1 for T. tubifex , while we found only

╡119 ╞

╡Chapter 7╞

0.02(±0.03)d1onaverageforsessileTubificidae(Figure7.1).Inconclusion,theresults with L variegatus aremuchmorestablethanwithsessileTubificidae.Theexactreasons for the variable results with sessile Tubificidae remain unknown. Nevertheless, the applicationofmixedculturesofbothwormtypescouldhavesomeadvantages,butnot forthesludgedigestionrates. 7.3.2 Faeces digestion by conspecific and intraspecific worms ConspecificfaecesingestionofsessileTubificidae(inanalogywith L. variegatus )was confirmedbyfaecesproductionbywormsthathadbeenfeedingonfaeces.Intraspecific faeces ingestion (or crossfeeding) was confirmed by the conversion of L. variegatus faecesintosessileTubificidaefaecesandviceversa.Theincreasedparticlesizeofthe faeces(incomparisontothatofthewastesludge)wasthereforenotlimitingforuptake by the worms. This was also observed in experiments with different sludge floc size fractions,describedinChapter5,anditislikelythatthewormsbitepiecesofthesludge flocs,whenthesearetoolargetobeingestedasawhole. Followingingestion,thefaecesofsessileTubificidae(inanalogywiththoseof L. variegatus )werehardlydegradableanddigestionrateswereverylow,whencompared totheaveragerateonmunicipalsludgeof0.09(±0.04)d 1(Chapter5).Thesedigestion rates were zero when feeding on their own faeces, and very low in the crossfeeding experiments:0.02d 1for L. variegatus fedwithsessileTubificidaefaecesand0.01d 1 forsessileTubificidaefedwith L. variegatus faeces.Thebiomassgrowthrateswereall negativeandnumbergrowthrateslessthan0.01d 1.Apparently,thewormfaeceshad no nutritional value to the worms since there was no biomass increase, as was also found in Chapter 6. The slightly higher digestion rates in these crossfeeding experiments (compared to experiments where the worms were fed with faeces of conspecifics)mayindicatedifferencesindigestionmechanismsbetween L. variegatus and sessile Tubificidae and could result from a different faeces composition (e.g. Milbrink, 1987b). They are possibly capable of breaking down a small fraction of the sludgethattheotherspeciesisincapableofandthiscouldbeafurtherindicationthat mixedculturesmaybemoreadvantageous.

7.3.3 Heavy metal bioaccumulation in sessile Tubificidae or L. variegatus Averageconcentrations(inmg/kgdrymatter)ofCu,Zn,Cd,Ni,PbandCrincultures ofsessileTubificidaeorL. variegatus andtheirfoodsources(sludgesfromreactorsR1 andR2orTetraMin®fishfood)areshowninFigure7.2.

╡120 ╞ ╡Comparison between L. variegatus and Tubificidae ╞

120 1200 100 1000 80 800 Tetra Tetra Lv LvLvLv 600 60 Tub Tub mg/kgTSS mg/kgTSS mg/kgTSS mg/kgTSS 400 40 200 20 0 0 CuCuCuZnZnZn CdCdCdNiNiNi PbPbPb CrCrCr 120 1200 100 1000 80 Sludge 800 Sludge LvLvLv 60 Lv 600 Tub Tub mg/kgTSS mg/kgTSS mg/kgTSS mg/kgTSS 400 40 200 20 0 0 CuCuCuZnZnZn CdCdCdNiNiNi PbPbPb CrCrCr Figure 7.27.2 Average heavy metal concentrations (in mg/ kg dry matter) with standard deviations in cultures of L. variegatus (Lv) or sessile Tubificidae (Tub) on Tetra Min® fish food (upperupper graphs) or sludge(lowerlowerlowergraphs).Forcomparingtheresultsbetweenthetwofoodsources,thescalesoftheYaxes arekeptsimilarintheupperandlowergraphs. As expected, the heavy metal concentrations in sludge— except for Ni and Cr, whichwerealmostequalinbothfoodsources—werehigherthaninfishfood.Theheavy metal concentrations in both worm types were very similar, except for higher Zn concentrationsinthesessileTubificidae.Table7.2showsthedrymatterbasedaverage biota‘sediment’accumulationfactors(BSAFs)forthesixheavymetalsin L. variegatus or sessile Tubificidae feeding on sludge or fish food were calculated according to Williams(2005)as[ tissue concentration of metal/ food source concentration of metal ]. Table7.2Table7.2AverageBSAFsforsixheavymetalsin L. variegatus orsessileTubificidaefeedingonsludgeor TetraMin®fishfood.BoldnumbersindicateBSAFshigherthan1. SludgeSludgeTetraMin®TetraMin® L. variegatus SessileSessileTubificidaeTubificidae L. variegvariegatusatus SessileSessileTubificidaeTubificidae CuCuCuCu 0.2 0.24.94.94.9 4.9 7.17.17.1 7.1 ZnZnZnZn 0.92.02.02.0 2.0 5.55.55.5 5.5 7.97.97.9 7.9 CdCdCdCd 2.02.02.0 2.0 0.88.88.88.8 8.8 1.21.21.2 1.2 NiNiNiNi 0.2 0.1 0.2 0.3 PbPbPbPb 0.0 0.13.63.63.6 3.6 5.85.85.8 5.8 CrCrCrCr 0.0 0.0 0.0 0.0

╡121 ╞

╡Chapter 7╞

Table 7.2 shows that the BSAFs for both worm types were similar for each differentsubstrate.Heavymetalconcentrationsinbothwormtypeswerealwayslower thaninwastesludge,exceptforCdin L. variegatus andZninsessileTubificidae.Both wormtypesaccumulatedmetalsuptoconcentrationsafactor9higherthaninfishfood, exceptforNiandCr,whichwerehardlyaccumulated. In Chapter 6, the heavy metal concentrations in L. variegatus were always lower than in sludge, but Cd and Zn concentrationswererelativelyhightothoseinsludge(Table6.5).Thismayhavebeen due to higher bioavailability of Cd and Zn, but the differences in bioavailability and bioaccumulation for the different metals could not be related to their partitioning betweensludgeflocsandwaterphase(Chapter6). Most importantly, the absolute metal concentrations in the worms were rather constant in spite of the different metal concentrations in the substrates. Gunn et al. (1989)alsofoundthatconcentrationsofZninsessileTubificidaewereindependenton thesubstrateconcentrationandtheyproposedthatthiswasduetouptakeregulation. The worms possibly excreted heavy metals above a certain concentration by an unknownmechanism,forexamplerelatedtometallothioneinlikeproteins(BauerHilty et al. , 1989; Stürzenbaum et al. , 2001), but these mechanisms are virtually unknown and seem slow (Chapter 6). Densem (1982) showed that sessile Tubificidaegrown on sludge of similar composition to that in our experiments contained much higher Cu concentrations(285mg/kgdrymatter)thanwefound,whiletheycontainedsimilarCd andZnconcentrationstothewormsinourexperiment.Therefore,itislikelythatmetal concentrationsinwormsarealsodeterminedbyotherchemical,biologicalandphysical characteristicsofthesubstrate. ZnandCdseemtobethemetalsofmostconcernforbothsessileTubificidaeand L. variegatus , because their bioaccumulation factors were highest. In addition, the averageconcentrationsofZninsessileTubificidaeandZnandCdin L. variegatus in this experiment (Figure 7.2) were above the BOOM regulations in contrast to the concentrationsin L. variegatus foundinanearlierexperiment(Chapter6).Thiswould preventagriculturalreuseofthewormbiomassintheNetherlands.Becausethesludge metalconcentrationsinthecurrentexperimentwereequaltoorlowerthanthoseinthe earlier experiment, the higher worm metal concentrations are possibly caused by unknowndifferencesinsludgecharacteristicsorbythedifferenceinexperimentsetup. Thewormsdescribedinthischapterwereexposedforalongtimetosludgeonly,while the worms described in Chapter 6 were first exposed for a long time to effluent containing sludge flocs, followed by a shortterm exposure to sludge only in a batch experiment.

╡122 ╞ ╡Comparison between L. variegatus and Tubificidae ╞

7.4 Conclusions Inthischapter,batchexperimentsweredescribedthatcomparedthesludgereduction capacity of Lumbriculus variegatus and sessile Tubificidae. Shortterm batch experiments with L. variegatus , sessile Tubificidae or mixed cultures of both showed that: ╡ Digestionratesandgrowthratesinbiomassof L. variegatus weremorestableand usuallyhigherthanthoseofsessileTubificidaeinlowsludgeconcentrations.Growth ratesinnumberswerecomparableforbothwormtypesintheseexperiments. ╡ Biomass and numbers of sessile Tubificidae often decreased when the sludge was highlyconcentrated,incontrasttothoseof L. variegatus . ╡ Mixed cultures enhanced biomass and number growth rates of L. variegatus and biomassgrowthratesofsessileTubificidae.The(combined)sludgedigestionrateof mixedcultureswasequaltothatofmonoculturesof L. variegatus ,buthigherthan thatof‘monocultures’ofsessileTubificidae.Therefore,theonlyclearadvantagefor L. variegatus ,resultingfromtheuseofmixedcultureswithsessileTubificidae,was theincreaseinbiomassgrowthratesof L. variegatus . Shorttermbatchexperimentsthatinvestigatedtheingestionanddigestionoffaecesof conspecificsandintraspecificsshowedthat: ╡ Worms ingest faeces of conspecifics and intraspecifics when fed with activated sludgebutdigestionratesandnumbergrowthrateswerelowandbiomassgrowth rateswerealwaysnegative. ╡ Thedigestionrateswereslightlyhigherwhenfaeceswerefedtointraspecifics,which suggestsdifferencesindigestionmechanisms. Experiments that investigated the longterm heavy metal bioaccumulation in sessile Tubificidaefromsludgeincomparisontothatin L. variegatus showedthat: ╡ Heavy metal concentrations in both worm types grown either on sludge or the control substrate Tetra Min® fish food were similar, regardless of the concentrationsinthesesubstrates. ╡ Bioaccumulation factors of cadmium and zinc were relatively high and concentrationsinsludgeandbothwormtypesweresimilar.Inaddition,thebiomass concentrationsofzincinsessileTubificidaeandcadmiumandzincin L. variegatus were above the limits of the BOOM regulations for heavy metal concentrations in sludge. Acknowledgments We thank Bas Buys (Wageningen University) and Tim Hendrickx (Wageningen University,Wetsus)forcodesigningandcoperformingmanyofthebatchexperiments describedinthischapter.

╡123 ╞

╡╡╡Chapter 8 ╞╞╞ A new reactor concept for sludge reduction using Lumbriculus variegatus

Based on paper in Water Research (Elissen, Hendrickx, Temmink & Buisman, 2006)

╡Chapter 8╞

Abstract Biologicalwastewatertreatmentresultsintheproductionofwastesludge.Thefinaltreatment optionintheNetherlandsforthiswastesludgeisusuallyincineration.Abiologicalapproachto reducetheamountofwastesludgeisthroughconsumptionbyaquaticworms.Inthischapter, wetestedtheapplicabilityofanewreactorconceptforsludgereductionbytheaquaticworm Lumbriculus variegatus . In this reactor concept, the worms are immobilized in a carrier material. In a sequencing batch experiment, the sludge reduction in the worm reactor was compared to sludge reduction in a control reactor (i.e. without worms). Consumption by the worms results in a distinct sludge reduction, which is almost three times higher than in the control experiment. Due to the configuration of the worm reactor, waste sludge, worm faeces andwormsareseparated,whichisbeneficialtofurtherprocessing.Theobtainedresultsshow that the proposed reactor concept has a high potential for use in fullscale sludge processing. However, comparisons with the results of other experiments shows that sludge reduction percentages and other parameters of the process can be variable, dependent on the process conditions. 8.1 Introduction Both municipal and nonmunicipal wastewaters are often treated by the (aerobic) activatedsludgeprocess.Thisresultsintheproductionoflargeamountsofwastesludge, consistingofbiomassand(in)organicmaterial.Thiswastesludgeneedstobeprocessed anddisposedof.Regulationsforitsdisposalarebecoming more stringent, as it often contains contaminants such as heavy metals and organic micropollutants. Usually incineration is the final option for sludge treatment in the Netherlands. Since sludge consistsmainlyofwater,withonlyasmallpercentageofsolids,incinerationispreceded by dewatering and thickening. In particular, at small WWTPs (wastewater treatment plants), transport of the thickened sludge to central sludge processing installations is required.Thisincreasesboththeenvironmentalburdenandthetotalsludgeprocessing costs.Thelattermaybeashighas50–60%ofthetotaloperationalcostsofWWTPs (Wei et al. ,2003a).Areductionintheamountofwastesludgeis therefore attractive frombothanenvironmentalandaneconomicalpointofview.Thiscanbeaccomplished bymechanical,chemical,physicalandbiologicalmethods(Ødegaard,2004).Themain disadvantage of most of these techniques is a high energy input and/or the use of chemicals.Abiologicalapproachisconsumptionofwastesludgebyhigherorganisms, such as protozoans and metazoans. The idea is to extend the food chain, which is accompanied by a decrease in the total amount of biomass. Several researchers have proposed to apply higher organisms that naturally occur in wastewater treatment processes (Wei et al. , 2003a). In particular, aquatic ‘bristle worms’ (Oligochaeta and Aphanoneura) have received a lot of attention, such as the freeswimming species Aeolosoma spp., Nais spp.andthesessileTubificidae.Thefreeswimmingwormscan appear in high densities—during peak periods (Chapter 3)—in the aeration tanks or sludgebasinsofWWTPs.Thepeakperiodsarereportedtobeaccompaniedbylower

╡126 ╞ ╡Reactor concept for sludge reduction by L. variegatus ╞

sludge production rates. However, Wei et al. (2003b) mentioned that a practical application is still uncontrollable as there is no clear relationship between process conditions(e.g.retentiontimes,temperature,sludgeloadingratesandshearforces)and worm growth. They state that one of the challenges is to maintain high densities of worms for a long time, in particular in fullscale applications. However, conditions beneficialtogrowthofthewormsorothersludgeconsumers may not be optimal for bacterialprocessesandoveralltreatmentefficiency.Toovercomethisproblem,Lee& Welander(1996)appliedatwostagesysteminwhichthefirstreactorfavouredbacterial growth,whereasthesecondstepwasoptimizedforsludgeconsumergrowth.Although Protozoawereusedforsludgeconsumption,the same principlecouldalsobeapplied with aquatic worms. The introduction of the consumption step resulted in lower apparentsludgeyieldscomparedtosystemswithoutsludgeconsumers. Severalaquaticwormspecieswereinvestigatedfortheirsludgereductionability (Buys,2005;owndata).Weconcludedthatthesessilespecies Lumbriculus variegatus (Oligochaeta; Lumbriculidae) showed high potential for waste sludge reduction in a separatereactor. L. variegatus rarelyoccursinwastewatertreatmentprocesses,butis foundwidelythroughoutEuropeandNorthAmericainnaturalwaterbodies.Specimens canbeupto10cmlongand1.5mmthick.Initsnaturalhabitat L. variegatus usesits head to forage in sediments and debris, while its tail end— specialized for gas exchange—typicallyprojectsupwards(Drewes&Fourtner,1989).Asreproductiontakes place through fragmentation (autotomy), L. variegatus has a clear advantage over sexuallyreproducingaquaticwormssuchassessileTubificidae,whichneeda‘breeding’ stage. It has been shown in batch experiments that L. variegatus can double the reduction rate of activated sludge (Chapter 4). This reduction is the sum of sludge digestionbythewormsandnaturalsludgedigestionbyseveralmicrobialprocessesthat take place in activated sludge such as maintenance and endogenous respiration (van Loosdrecht & Henze, 1999). Initial experiments also showed that separation of waste sludgeandwormfaecesispossiblewithanewreactorconceptinwhich L. variegatus is immobilizedinacarriermaterial.Thisalsoeliminatestheneedtoseparatetheworms fromthesludge.Thischapterdescribestheresultsofasequencingbatchexperimentin whichthefeasibilityofthisreactorconceptforsludgereductionwasinvestigated.

╡127 ╞

╡Chapter 8╞

8.2 Materials and methods 8.2.1 Reactor concept An outline of the reactor concept is presented in Figure 8.1. It consists of a beaker (sludgecompartment)containingbothwastesludgeandworms.Theopensideofthe beakeriscoveredwithacarriermaterial,throughwhichthewormscanprotrudetheir tails. The beaker is placed in the water compartment (partially submerged) with the carrier material facing downwards. By aerating the water compartment, the worms positionthemselvesinthecarriermaterialsince L. variegatus feedswithitshead,but respiresanddefecatesviaitstail.Asaresult,thewormskeeptheirheadsinthesludge compartmentandprotrudetheirtailsintothewatercompartment.Thecarriermaterial, therefore,actsasbothasupportmaterialforthewormsandaseparationlayerbetween the waste sludge and the worm faeces. The feasibility of this reactor concept was investigatedwithasequencingbatchexperiment. dissolved oxygen measurement sludge compartment aeration carrier materialwith worms water compartment worm faeces Figure8.1Figure8.1Experimentalsetupforthesequencingbatchexperiment.

8.2.2 General analyses TSS (total suspended solids) of sludge and worm faeces in the experiment were determined according to Standard Methods (APHA, 1998) using Schleicher & Schuell 589 1blackribbonashfreefilters(retention>1225m).Possibleerrors,asaresultof samplehandling,werecheckedbyfillingthesludgecompartmentandthenimmediately emptyingitforTSSanalysis.Onaverage99%oftheTSSwasrecovered,demonstrating theaccuracyoftheappliedmethod.Thewetweightofthewormswasdeterminedby placingthewormsonaperforatedpieceofaluminiumfoil.Adheringwaterwasremoved bypushingthebackofthefoilagainstdrytissuepaperandgentlysqueezingtheworms. Dryweightof L. variegatus is13%ofitswetweight(Chapter2).

╡128 ╞ ╡Reactor concept for sludge reduction by L. variegatus ╞

8.2.3 Sequencing batch experiment ThesetupshowninFigure8.1wasusedforthesequencingbatchexperiment.Daily,the contents of the water and the sludge compartment were replaced. The sludge compartmentwasfilledwith100mLofactivatedsludge(nitrifyingsludge,±4gTSS/ kg sludge) from the municipal WWTP of the city of Leeuwarden, the Netherlands. Sludgewasprovidedinexcesstotheworms,toensurethatsludgeavailabilitywasnota limitingfactor.Toremovecoarsematerialfromthesludge,itwasfirstsievedusinga1 mm mesh. The water compartment was filled with effluent from the same treatment plant.ThiseffluentwasfirstfilteredusingSchleicher &Schuell589 1blackribbonash freefilters(retention>1225m)toremoveanysuspendedmaterialthatcouldinterfere withtheaccuracyoftheTSSmeasurements.Attheendofeachstep(24h)inthebatch sequence,thesludgecompartmentwastakenawayfromthewatercompartment.The worms wereseparatedfromtheremainingsludge,counted, weighed and used in the nextstepinthebatchsequence.TSSoftheremainingsludgeinthesludgecompartment and of the worm faeces in the water compartment were determined. As a carrier material,apolyamidemesh(300m;SEFAR)withasurfaceareaof7.5cm 2wasused. The water compartment was aerated to maintain the DO (dissolved oxygen) concentration between 8 and 9 mg/ L, which was checked using a Hach® LDO (luminescentdissolvedoxygen)meter.Thisensuredthattheprocesswasnotlimitedby oxygen availability. Hendrickx et al. (2006) showed that a lower DO (~2.5 mg/ L) indeedresultsinalowersludgeconsumptionrate.Togetherwiththesequencingbatch experimentwithworms,acontrolsequencingbatchexperimentwithoutwormswasrun under the same conditions. In these control tests, only the TSS of the sludge in the sludgecompartmentwasdetermined. 8.3 Results Within a few minutes after the start of each step in the batch sequence, the worms protrudedtheirtailsthroughthecarriermaterial(asshowninFigure8.1).Duringthe experiment,amaximumof5%ofthewormsfellfromthecarriermaterialintothewater compartment. The sludge within the sludge compartment settled onto the carrier material,formingasludgeblanketthatdidnotsettlethroughthemeshopenings. 8.3.1 Sequencing batch experiment Figure8.2comparesthecumulativesludgereductioninthewormexperimentandthe control experiment. As sludge had been provided in excess, the sludge was never completely consumed at the end of each run. The sludge reduction rates were approximatelyconstant,with77mgTSS/dinthewormexperimentand28mgTSS/d in the control experiment. If we assume that the natural sludge reduction/digestion takesplacetothesameextentinbothexperiments,thedifferenceof49mgTSS/dcan

╡129 ╞

╡Chapter 8╞

beattributedtoconsumptionbytheworms,whichequals0.48mgsludge/mgworm/d (drymatterbased).

700

600

500 Sludgereductionin wormexperiment Sludge 400 consumption byworms 300

Sludgereductionin 200 controlexperiment CumulativeTSS(mg)CumulativeTSS(mg) CumulativeTSS(mg)CumulativeTSS(mg) 100 Collectedwormfaeces 0 1 2 3 4 5 6 7 8

Time(d) Figure8.2Figure8.2Cumulativesludgereductioninthesludgecompartmentsfromthecontrol(○)andworm(●) sequencingbatchexperimentsandfaecesproduction(×)inthewormsequencingbatchexperiment.T= 22.9±1.2°C.DOconcentrationinthewaterphase=8.4±0.4mgO 2/L.Initialweightof77worms: 0.79±0.04gwetweight(~0.10gdryweight). Also shown in Figure 8.2 is the amount of produced worm faeces in the worm experiment.Comparingsludgeconsumptionbythewormswithproducedwormfaeces showsthatonly25%oftheconsumedsludgewasconvertedintowormfaeces(basedon TSS).Undertheconditionsofthisexperiment,thismeansthatthewormshavedigested 75%oftheconsumedsludge.Figure8.3showsadrymatterbasedmassbalanceforthe sludgethatwasconsumedbytheworms. Mineralized(73%) 36mgTSS/d + Digestedsludge(75%) 37mgTSS/d Consumedsludge(100%) Newwormbiomass(2%) 49mgTSS/d 1mgdryweight/d + Faeces(25%) 12mgTSS/d Figure8.3Figure8.3Drymatterbasedmassbalanceforthesludgethatwasconsumedbythewormsperdayin thesequencingbatchexperiment.

╡130 ╞ ╡Reactor concept for sludge reduction by L. variegatus ╞

Basedonatotalwormdryweightofaround0.1g,thismassbalanceresultedin consumption,digestionanddefecationratesof0.48,0.36and0.12d 1respectively(dry matterbased).Duringtheexperimentchangesinwormbiomassvariedbetween8and 7mgdryweight/d,withanaverageof1mgdryweight/d(~8mgwetweight/d),which resultedinanaveragewormbiomassyieldof0.03gdryweight/gdigestedTSS(3%). However,itshouldbenotedthatthedailywormgrowthratesareinthesameorderas theexperimentalerrorofthewetweightdetermination. 8.3.2 Worm faeces As mentioned earlier, the proposed reactor concept makes it possible to separate the wastesludgefromthewormfaeces.Figure8.4showsthedistinctcompactstructureof thecollectedwormfaecesfromthesetupincomparisontothesludgeflocsofthewaste sludge.AsdescribedinChapter6,thefaecessettlemuchfasterthanthewastesludge andthefinalSVIvaluesarealsolower.

Figure8.4Figure8.4Wastesludge(left)versuswormfaeces(right)inthereactorsetup.Scalebar=1mm. 8.4 Discussion 8.4.1 Sludge reduction rate Therateofsludgereductioninthewormexperimentwassignificantlyhigherthanthe sludgereductionrateintheabsenceofworms.Undertheconditionsdescribedinthis chapter,asinglelayersurfaceareaof81,000 m2wouldberequiredtodealwithawaste sludge production of 5,300 kg TSS/ d (from a 100,000 p.e. (population equivalent) WWTP)(StatisticsNetherlands(CBS),2007).However,weusedawormdensityof1kg wet weight per m 2 (~100,000 specimens per m 2), which was not yet optimized. In practice,muchhigherwormdensitieswithahighersludgereductionratecanpossibly be obtained. This is determined by the available sludge and the maximum possible wormdensitypersurfacearea.Especiallythelatterfactorwilldeterminetheeconomic feasibilityofthereactorconcept. 8.4.2 Sludge reduction percentage A75%reductionintheTSSamountofconsumedwastesludgewasobservedinaddition to natural sludge reduction/digestion. Not only would this substantially reduce the amountofwastesludgethatneedstobedisposedof,butitcanalsoleadtoadecreasein

╡131 ╞

╡Chapter 8╞

theassociatedsludgeprocessingcostsandenvironmentalburden.Bywayofprecaution, wecanhowevernotruleoutthatthehighreductionpercentagecouldpartlybedueto defecation of the worms in the sludge compartment. This means that not all worm faeces were collected in the water compartment and accounted for and, therefore, a higherapparentsludgereductionefficiencywasobserved. 8.4.3 Worm faeces Wormfaecesandwastesludgewereseparatedbythecarriermaterial.Aswasshownin Chapter 6, the worm faeces settled much faster than the waste sludge and final SVI values were lower than those of the waste sludge. These improved settling characteristics of the final waste product will contributetowardsadecreaseinsludge processingcostsifdewaterabilitycharacteristicswillimproveaccordingly.Eventhough wefoundnoimprovementofthedewaterabilitywiththeCSTmethod(Chapter6),this shouldbeinvestigatedfurther,preferablyonalargescale. 8.4.4 Worm biomass Thewormyieldof3%inthesequencingbatchexperimentwaslow,whencomparedto theyieldsmentionedelsewhereinthisthesis(e.g.Chapter5).Thiscouldbeduetothe immobilization and inverted positioning of the worms in the carrier material, which could restrain the worms in their feeding behaviour. Additionally, the daily worm growthwasinthesameorderastheexperimentalerrorandonlysmallinrelationtothe average total wet weight of 790 mg. To accurately determine the growth rate of the wormsinthisreactorsetup,longtermexperimentswithlargeramountsofsludgeand wormswillhavetobecarriedout.Itwillbeimportanttoconsiderthefateoftheworm biomass,aswehavepartiallyconvertedthewastesludgeintowormbiomass.Thehigh proteincontentoftheworms,60%oftheirdryweight(Hansen et al. ,2004),makesre useanattractiveoption,forexampleaslivefishfoodorasslowfertilizerinagriculture (Winters et al. ,2004).However,careshouldbetakenregardingthefateofsomeheavy metals(Chapters6&7)andorganicmicropollutantsoriginatingfromthewastesludge, as these possibly accumulate in the worms. This should be further investigated dependingontheapplication. 8.4.5 Comparison with other experiments To estimate the feasibility of the reactor setup, the data from the sequencing batch experimentwerecomparedtothosefromthebatchexperimentselsewhereinthisthesis (Table 8.1). The average consumption rate and digestion percentage in the batch experiments withmunicipalwastesludgedescribedinTable5.4(Chapter5)couldbe calculatedaftersubtractionofendogenoussludgedigestionandbytakingintoaccount the faeces percentage in these batch experiments. Table 8.1 also shows the average digestionratecalculatedinChapter5andtheresultingapproximatedefecationrate.

╡132 ╞ ╡Reactor concept for sludge reduction by L. variegatus ╞

Table8.1Table8.1Comparisonofsludgeconsumptionanddigestionrates(ind 1),digestionpercentagesofthe consumedsludgebywormsonly(in%)andwormyieldsbasedontheamountofsludgedigestedby wormsonly(in%)inbatchexperimentsandthereactorsetup(alldrymatterbased). ParameterParameterBatchexperimentsBatchexperiments ReactorsetReactorset upupupup ConsumptionrateConsumptionrate 0.46(±0.23) 0.48 DigestionrateDigestionrate 0.09(±0.04) 0.36 DefecationrateDefecationrate ~0.3 0.12 DigestionpercentageDigestionpercentage 17(±6) 75 WormyieldpercentageWormyieldpercentage 38(±22) 3

Table8.1showsthatonlytheconsumptionratesweresimilar,whilethedigestion ratesanddigestionpercentagesweremuchloweranddefecationratesandwormyield were much higher in the batch experiments. This suggests a higher sludge reduction efficiency in the reactor setup. However, further experiments with this setup under varyingconditionsshowedusuallylower,butvariablereductionpercentagesbetween15 and 80 % and lower consumption, digestion and defecation rates than in the initial experiment (Hendrickx et al. , 2006; Hendrickx, 2007). The worm yield was usually equallylow. The variable results indicate that the performance of the process is strongly dependent on process operation and conditions, such as the immobilization and invertedpositioningoftheworms,thetypeofsludgeandoxygenconcentration.Kaster et al. (1984)forexamplefoundthatsessileTubificidaehavelowerdefecationrateswhen theirpositionisinvertedandthesameseemstoapplyto L. variegatus inthereactor setup,withpossiblyhighersludgereductionpercentagesasaresultduetolongergut retentiontimes.Inaddition,thedefecationrates of L. variegatus inwastesludgeare relativelylow.Insedimentsforexample,Leppänen(1999)andWilliams(2005)found much higher defecation rates for L. variegatus of around 411 d 1(drymatterbased). They found that substrates with a low organic content (i.e. less nutritious value) are processedatmuchhigherratesthanthosewithahighorganiccontentandthismaybe thecauseoftheoveralllowerratesonsludge.Thisisalsosupportedbytheresultsof Gaskell et al. (2007)andGnaiger&Staudigl(1987a)whofoundaveragegutretention timesof3and6hoursinsedimentsandsandwithspinachrespectively.

╡133 ╞

╡Chapter 8╞

8.5 Conclusions Inthischapter,anewreactorconceptforsludgereductionby L. variegatus isdescribed. Asequencingbatchexperimentwiththisreactorconceptshowedthat: ╡ A75%reductionintheamountofwastesludgecouldbeachieved,becausethesum of worm faeces and produced worm biomass was much lower than the amount of wastesludgethatthewormsconsumed. ╡ L. variegatus couldbeimmobilizedinameshlikecarriermaterialandacomplete separation between waste sludge and worm faeces with highly improved settling characteristicscouldbeachieved. Eventhoughthereactorconceptisnotoptimizedyet,andsludgedigestionandworm growth parameters seem to be dependent on process conditions, it seems to have potentialfordecreasingtheenvironmentalburdenandcostsofwastesludgeprocessing atWWTPs. Acknowledgments We thank Bas Buys (Wageningen University) for his valuable contribution to the researchpresentedinthisarticle.WealsothanktheoperatorsofWWTPLeeuwarden fortheirassistanceinobtainingthesludgeandeffluentusedinourexperiment.

╡134 ╞

╡╡╡Chapter 9 ╞╞╞ General discussion and outlook towards application of Lumbriculus variegatus inwastewatertreatment

╡Chapter 9╞

9.1 Introduction Sludge reduction by aquatic worms TheoverviewinChapter2showedthatseveral species of sessile Tubificidae and Lumbriculidae and freeswimming Aeolosomatidae andNaidinaehavespecificcharacteristics,whichcouldmakethemsuitabletoreduce the amount of sludge that is produced in wastewater treatment. These characteristics include—nexttotheconsumptionanddigestionofwastesludge—theirhighpollution tolerance, potential to reach very high population densities or natural presence in WWTPs(wastewatertreatmentplants).Thisinitiatedseveralauthorstoinvestigatethe application of Naidinae, Aeolosomatidae and sessile Tubificidae in sludge reduction processesandtheyconcludedthatthistechnologyhaspotential.However,theirresults were highly variable and to maintain a stable continuous system for sludge reduction with aquatic worms was almost impossible (Chapter 1). The reasons for the unstable (anduncontrollable)growthofespeciallythefreeswimmingspeciesareunknown.Our own, longterm survey of four Dutch WWTPs (Chapter 3) showed similar unstable populationdensitiesoffreeswimmingspecies.Furthermore,amultivariateanalysisdid notdemonstrateadistinctrelationbetweenthesedensitiesandprocesscharacteristics orprocessperformance(e.g.wastesludgeproduction).Basedontheseresultsandthose found by the other authors, the application of freeswimming species will not be an option,untiltheirgrowthcanbecontrolledandtheirinfluenceonprocessperformance isclear. Incontrast,thesessilespecies Lumbriculus variegatus howeverdiddemonstrate a clear reduction in the amount of waste sludge, a stable growth and other positive effectsonsludgecharacteristics(Buys,2005;owndata)anditwasselectedforfurther research(Chapters4,5,6&8).Withthisspecies,adistinctioncanbemadebetween sludge reduction by worms, sludge reduction by endogenous processes and worm growthinbatchexperiments.Theimportanceofthisdistinctionhasbeenoverlookedin manypreviousresearchesanditcannotbemadewithfreeswimmingworms,becauseof theirsize(Chapters1&2).Adirectexperimentalcomparisonwithothersessileworms ofthefamilyTubificidaesuggestedthatsludgereductionandwormgrowthweremore stablewith L. variegatus (Chapter7). Themainresultsofourresearchthusindicatedthat L. variegatus ingeneralisa moresuitablecandidateforsludgereductionthanAeolosomatidae,Naidinaeandsessile Tubificidae.Thefurtherdiscussionthereforefocusesontheapplicationof L. variegatus inwastewatertreatment. Sludge reduction by L. variegatus Five factors that are considered especially importantfortheapplicationof L. variegatus inwastewatertreatmentaretheeffectof waste sludge consumption by L. variegatus on total TSS (total suspended solids) reduction,theTSSreductionrate,thesettleabilityanddewaterabilityoftheremaining sludge,andtheproductionofwormbiomassresultingfromTSSconsumption.Ashort overviewofthemainresultsispresentedbelow.

╡136 ╞ ╡Discussion and outlook towards application of L. variegatus ╞

To assess the sludge reduction potential of Lumbriculus variegatus , we distinguishedbetweensludgereductionbywormsandsludgereductionbyendogenous processes(Chapters4&5).Figure9.1showsanoverviewofthemainresultsofsucha typicalbatchexperimentwithmunicipalwastesludge. 100%faeces 50 ±17%extra sameendpoint 40 30 20 Control 10 Lumbriculus TSSdigestionpercentageTSSdigestionpercentage TSSdigestionpercentageTSSdigestionpercentage ±doubledigestionrate 0 0 5 10 15 20 25 30 Timeindays Figure 9.19.1 Overview of the main results of a typical batch experiment with Lumbriculus variegatus feedingonmunicipalwastesludge. Mostimportantly,Figure9.1showsthat L. variegatus acceleratedthedigestion ofmunicipalwastesludgewithatleastafactor2.Aftercompleteconsumptionofthe waste sludge by L. variegatus (i.e. a faeces percentage of 100 %), the maximum reductionpercentageofwastesludgewasaround50%.Only17%wasduetodigestion by L. variegatus (Chapter8).Theremainingpartofthe50%sludgereductioncouldbe attributed to endogenous sludge digestion. In addition, the final sludge reduction percentageinthepresenceof L. variegatus provedtobenodifferentfromthatinthe absenceof L. variegatus .Amassbalancefortheabovementionedprocessesandworm growth,basedondrymatter,isshowninFigure9.2.

╡137 ╞

╡Chapter 9╞

Wastesludge (100%)

Consumption by worms Endogenous digestion ~0.46mgsludge/mgworm/d Mineralized (33%) Digestion by worms ~0.09mgsludge/mgworm/d Mineralized (10%) Wormfaeces Digested

(50%) (17%)

Growth by worms Wormbiomass ~0.38mgworm/mgsludgedigested (7%)

Figure9.2Figure9.2Drymatterbasedaveragemassbalanceforsludgedigestioninbatchexperimentswith L. variegatus andmunicipalwastesludge. Figure9.2showsthatdigestionofmunicipalwastesludgeby L. variegatus took place at average consumption (Chapter 8) and digestion rates of 0.46 and 0.09 mg sludge/mgworm/drespectively.Theyieldforthisprocesswasonaverage38%,i.e. 0.38mg wormbiomass wasformedwhen1mgofwaste sludge was digested by the worms.Asaresult,7%ofthewastesludgewasconvertedintoaproteinrichresource withreusepotential( Paragraph 9.2.5 ). Thewormfaecessettledmuchfasterthanthewastesludgeduetotheircompact shapeandhigherdensity.ThefinalSVI(sludgevolumeindex)ofthefaeceswasalways low, around 60 mL/ g (Chapter 6). The worm faeces did not show improved dewaterabilityaccordingtotheCSTmethod,butourresultsindicatedthatthismethod wasnotreliable(Chapter6). However, a sequencing batch experiment (Chapter 8) and further experiments withareactorsetup (Hendrickx et al. ,2006;Hendrickx,2007),inwhichtheworms wereimmobilized,oftendemonstratedhighersludgereductionpercentages(1580%), butalsolowerconsumption,digestionanddefecationratesaswellasalowerwormyield. It is therefore likely that immobilization of L. variegatus in a continuous system for sludgereductionwillinfluencesludgedigestionandwormgrowth.

╡138 ╞ ╡Discussion and outlook towards application of L. variegatus ╞

Full-scale application Foracontinuousfullscalesystembasedon L. variegatus ,six aspectsshouldbeconsidered:thewastesludge,thewormpopulation,thereactorsetup, thewormfaeces,theeffluent,andfinally,theproducedwormbiomass.Figure9.3shows anoverviewoftheconsiderationsforeachofthesixaspects,whichwillbediscussedin theindicatedparagraphs. Wormfaeces 9.2.4 LocationinWWTP Useofcarriermaterials Settleabilityanddewaterability Temperatureandaeration Composition Light/darkconditions Wormbiomass 9.2.5 Reactor Wastesludge 9.2.2 9.2.1 Worms Harvesting 9.2.3 Composition Pollutants Applications Type Pretreatmentoradditions Toxiccompounds Monocultureormixedpopulation Densityandwormtosludgeratio Effluent 9.2.6 9.2.6 Nutrients Suspendedsolids Figure 9.39.3 Overview of a continuous fullscale system with L. variegatus as sludge consumer with considerationsforeachaspect. Finally,theoverallfeasibilityofacontinuousfullscalesystemwith L. variegatus willbediscussedandrecommendationswillbegivenforfutureresearch.

╡139 ╞

╡Chapter 9╞

9.2 Considerations for a full-scale system for sludge reduction with L. variegatus 9.2.1 Waste sludge Sludge type, pre-treatment and Fe 3+ -addition In our batch experiments, L. variegatus was fed with various waste sludges from municipal and nonmunicipal WWTPs (Chapters 4 & 5). The latter sludge originated from a plant treating beer wastewater.Thewormswereabletoconsumeallthesludgetypes.Thesludgeflocsize was not limiting for uptake and did not influence sludge digestion or worm growth. However,digestionandgrowthrates(inwormbiomassandnumbers)werehigheron municipalsludgesthanonbeersludge.Thebeersludgewashardlydigestedandledto loworevennegativegrowthrates.Thevariabilityoftherateswashighforeachsludge type. A linear regression analysis with the two most common municipal sludge types indicated that this variability was almost independent of variations in experiment duration (28 days), temperature (1620 °C), worm density (2,00011,000 m 2), W/S ratio (0.11.0), pH (4.87.6) and ash percentage of the waste sludge (1320 %). Apparently,thevariabilitybetweenandwithinsludgetypesseemedtobecausedbyan unknownsludgecompositionintermsofdigestible,refractoryandtoxiccompounds. The influence of waste sludge composition was investigated in several experiments.Mostreductionconcernedtheorganicfractionofthesludge(Chapter4), whichincreasestheashfractionofthewormfaeces.Batchexperimentsontheinfluence of sludge protein content suggested that L. variegatus specifically digests part of the protein fraction. A higher protein content however did not necessarily lead to higher digestion rates (Chapter 6). The absence of live bacteria in waste sludge suppressed reproduction,butnotsludgedigestionandbiomassgrowth(Chapter5).Thiswasalso observed in batch experiments with sludges that were predigested under oxic conditionsforperiodsupto114daysandmostlikelyhadalowcontentoflivebacteria (Chapter5).Eventhoughtheseexperimentssuggestedthatsludgeswithahighprotein content (e.g. sludges from the food industry) or large fraction of live bacteria (e.g. sludgeswithshortsludgeages)maybemoresuitable for digestion by L. variegatus , furtherresearchonwhichspecificcomponentsofthesludgearedigestedandtowhat extentcanbeusefulforpredictingthesuitabilityofdifferentsludges. Although the maximum digestion percentage of waste sludge after endogenous digestionwasequaltothataftera simultaneous combinationofendogenousandworm digestion(Chapter4),oneofourexperimentssuggestedthata successive combination of endogenous digestion under oxic conditions (up to 48 days) with worm digestion sometimesresultedinanincreaseofthetotalmaximumdigestionpercentagefrom60 to 68 % (Chapter 5). This may be due to the development of different bacterial populationsanddecompositionproductsduringthesuccessivedigestionstages,which arethendegradedduringthefollowingdigestionstage.Park et al. (2006)andJung et al. (2006) found similar increased digestion percentages by successive combinations of

╡140 ╞ ╡Discussion and outlook towards application of L. variegatus ╞

oxic and anoxic digestion and the latter authors suggested that a combination with sludgeconsuminghigherorganismsmayleadtoevenhigherdigestionpercentages.In theory, feeding worms with predigested sludges (e.g. after composting or anaerobic digestion)orwithsludgestreatedbyforexampleultrasound(Khanal et al. ,2007)thus couldbeadvantageousforreducingthetotalamountofsludgeproducedinaWWTP.In practice, the applicability of this variant of waste sludge digestion will however be limitedforanaerobicsludge,unlessammonia,ofwhichtheunionizedformistoxicto L. variegatus (Chapter5),isstripped.Asmentionedbefore,sludgeswithalowfractionof livebacteriamayalsobeunsuitable. Startingfromtheseobservations, L. variegatus hasmostpotentialfordigesting activatedsludgedirectlywastedfromtheaerationtanksofmunicipalWWTPs.Afurther investigation of different sludge types, e.g. from foodrelated industries or from differentprocessstagesinWWTPs,isnecessarytoassessthecompletepotentialofthis technology. Other substrates may also be suitable for digestion by L. variegatus. For example, several authors (e.g. Garg et al. , 2006; Turnell et al. , 2007) described the consumption of related waste substrates with high organic contents (e.g. manure, kitchenwaste,vegetablematerial)ormixturesthereofwithwastesludgebyearthworms. Inaddition,otherauthors(e.g.Landesman,1996;Marsh et al. ,2005;Schneider,2006; Bischoff,2007)describedthecultureofdifferentdetritivores(e.g. L. variegatus , Nereis diversicolor ) on aquaculture waste products and their subsequent reuse as consumptionfishfood. Toxic compounds in sludge Waste sludge can contain many toxic compounds. At certainconcentrations,thesetoxiccompoundscanformathreattotheviabilityoreven survival of the worm population feeding on this sludge, since they are known to bioaccumulatetoxiccompoundsthroughtheirfood,and,tolesserextent,throughtheir skin (Leppänen, 1999). Toxicity data for L. variegatus are abundantly available (e.g. UnitedStatesEnvironmentalProtectionAgency,2007;PesticideActionNetworkNorth America,2007),sinceitisastandardtestorganism for toxicity and bioaccumulation assays (United States Environmental Protection Agency, 2000). Toxic effects in L. variegatus are for example evaluated by changes in growth, mortality, reproduction, feeding, clumping, burrowing, colour and motility but also by swellings and mucus production(e.g.Bailey&Liu,1980;Dermott&Munawar,1992;Williams,2005). So far, we identified only ammonia —and especially its unionized form— as important toxic compound in experiments with L. variegatus in sludge that was pre incubatedunderanoxicconditions.Itcouldcausemassive mortality in L. variegatus populationsatconcentrationsaslowas2mg/LunionizedammoniaatpH8(~70mg/ Ltotalammonia;Chapter5).Thisspeciesishowevernotmorevulnerablethanother aquaticwormspecies,sincethetoxicityofunionizedammoniaisapproximatelyequal for L. variegatus and sessile Tubificidae (SchubauerBerigan et al. , 1995). In aerobic WWTPswithNremoval,ammoniaconcentrationsshouldnotexceedthosetoxicto L. variegatus ,butprocessfailures(e.g.interruptedaeration)thatleadtohighammonia concentrationscanendangertheentirewormpopulation.Inaddition,highpHvalues

╡141 ╞

╡Chapter 9╞

andtemperaturesincreasetheratiooftoxicunionizedammoniatototalammoniain wastesludge. Ingeneral,wormmortalitywasnotoftenobservedandapparently, L. variegatus survivesmosttoxiccompoundspresentinsludge.However,thepresenceofunknown toxiccompoundsandsublethaltoxicityeffectsmayhavebeenreflectedbytheobserved variabilitiesinsludgedigestionandwormgrowthrates(Chapter5). Simple toxicity, digestion and growth tests should be done with small worm populationsandtheappliedwastesludge.Furthermore,asuperficialriskanalysisofthe toxiccompoundsthatcouldharmthewormpopulationshouldbemadebasedonthe compositionofthewastewater,fromwhichthesludgeisproduced.Inaddition,anearly warningsystemforhighammoniaconcentrationsisnecessary. 9.2.2 Reactor Location in WWTPs and use of carrier materials L. variegatus canbeappliedina separate reactor fed with waste sludge. Direct application in the aeration tank is probablylesssuitable,becausegoodaccessofthewormstothewastesludgeisessential and too much turbulence —and washout of worms— should be avoided, because L. variegatus isasessilespecies.Carrierscanbeapplied,e.g.meshlike(Chapter8)but also spongelike (e.g. Recticel®) materials. The use of these carrier materials also facilitatesconcentratingandharvestingofwormbiomass.Tooptimizetheworm/sludge contactareaandlimitthesizeofareactor,stackedlayersofcarriermaterial(racks)can beappliedatanintermediatedistanceofseveralcm.Thereshouldbeaconstantflowof sludgeoreffluenttomaintainahealthywormpopulation.Severalauthors(Leppänen& Kukkonen,1998b;Williams,2005)havefoundthatthegrowth ratesof L. variegatus arehigherinsystemswherethewaterisconstantlyrenewedthaninstagnantsystems, duetotheremovalofimpuritiesandenhancedaeration. Temperature, aeration and light/dark conditions Based on our experiments and literaturedata, L. variegatus isspecificallyadaptedtotemperateregionsanditsoptimal temperatureliesaround1525 °C.Temperaturesapproaching30 °Cshoulddefinitelybe avoided,becausetheyareharmfultotheworms.Temperaturestowards5 °Cshouldalso beavoided,becauseatthistemperaturegrowthandfeedingalmoststops(Chapter5). TheaveragetemperatureintheaerationtanksofseveralDutchWWTPswasaround 16 °C (Chapter 3) with minimum and maximum values of 7 and 25 °C. Additional heating may therefore be necessary in cold periods to maintain high digestion and growth rates by the worms, but also endogenous digestion. This option however requirestheinputofasubstantialextraamountofenergy.Thiscouldforexamplebe providedbyexcessheatfromanearbyindustry(e.g.theinfluentofWWTPNijmegenis heatedwithcoolingwaterfromthenearbywasteincinerator,Chapter3).Alternatively, thereactordimensionscouldbeenlarged.

Therespirationrateof L. variegatusunderaerobicconditionsis1.22.7gO 2/kg wormdryweight/hattemperaturesof1020 °C(Kaufmann,1983;Gnaiger&Staudigl,

╡142 ╞ ╡Discussion and outlook towards application of L. variegatus ╞

1987a; Brodersen et al. , 2004). During normal activity L. variegatus is an oxy conformer, which means that higher oxygen concentrations lead to higher oxygen uptake rates (Gnaiger et al. ,1987b).Sludgedigestionratesalsoincreasewith oxygen concentration(Hendrickx et al. ,2006).Eventhough L. variegatus cansurviveperiods of anoxia and is regarded as a facultative anaerobe (Putzer et al. , 1990), anoxic conditionsslowdowntheirfeedingratesandinadditionleadtotoxicammoniabuiltup inthesludge.Therefore,inareactor,accessofthewormtailstooxygeninaliquidor gas phase is crucial and oxygen supply to the worms should be as high as possible. Oxygen can be supplied by aerating waste sludge or effluent (e.g. Chapter 8), but optimal use should also be made of the oxygen naturally present in air or flowing effluent,forexamplebymakinguseofthebeforementionedthinlayers.Notmuchis known about the optimal oxygen concentration for L. variegatus , but usually, researchers keep their populations in aquaria with sediment and water at concentrationsofatleast6mg/L(e.g.Williams,2005).When L. variegatus feedson sludgeandhasnodirectaccesstoair,atentativeminimumof34mgO 2/Lsludgeis advisable,basedonourownobservationsandthoseofHendrickx et al. (2006).When thereisdirectaccesstoair,minimumconcentrationsinthesludgecanbelower(e.g.12 mgO 2/L)accordingtoourownobservations.However,theeffectofanoxiaandpossible toxic compound formation in the sludge surrounding their head part should be determinedinmoredetail. Duetothenaturalcharacteristicsof L variegatus ,areactorforsludgereduction withthisspeciesdoesnotrequireasubstantialamountofextraenergyinputintheform ofconstanthightemperaturesorlight(Chapter5).Ratsak(1994)foundthattheenergy consumption for oxygen supply in a municipal WWTP decreased with increasing numbersof(freeswimming) Nais sp.withoutaclearreason.Anexplanationwouldbe thatthenetoxygenconsumptionofwormsplusthereducedsludgeamountislessthan thatofthesludgewithoutworms.Spanjers(1993)forexamplementionsanendogenous respirationrateof48g/kgTSS/hforactivatedsludge.Because L. variegatus hasa substantiallylowerrespirationrate,thiswouldexplainadecreasedoxygendemandasa resultofsludgedigestionbytheseworms. 9.2.3 Worms Monoculture or mixed culture with other species Inpollutedhabitats,aquaticworms are often present in mixed cultures. A mixed culture of aquatic worms may have advantages over a monoculture. Even though digestion rates of L. variegatus did not increaseinamixedculturewithsessileTubificidae,growthratesdidincrease(Chapter 7). Their sensitivity to toxic compounds may also decrease (Chapman et al. , 1982b). Furthermore, detrimental conditions may not affect the complete worm population, whenitconsistsofdifferentspecieswithdifferentcharacteristics. Regardlessoftheuseofamonoormixedculture,aquaticwormsareanatural food source for many organisms. Some of these organisms (e.g. leeches, flatworms, mosquitolarvae)areknowntoinhabitactivatedsludgesystems(Curds&Hawkes,1975).

╡143 ╞

╡Chapter 9╞

SeveralauthorsmentionpredationofOligochaetabytheseorganisms(e.g.Cross,1976; Young,1978;Marian&Pandian,1985;Young&Procter,1985)andindividualleeches canforexampleconsumearound1wormperday(Cross,1976).Awormpopulationina confinedreactorsetupcouldthusbeseriouslyendangeredbyamassiveinvasionofany ofthesepredators. Worm growth rates, density and worm to sludge ratio In batch experiments, we found average biomass growth rates of around 25 % per day and average number growthratesof12%perday.Inareactorwithcontinuous sludge supply, the worm population will grow until equilibrium is reached between worm density and food (sludge) supply. Worm to sludge ratios and population densities can be regulated to someextentbyfrequentharvestingandadjustingthesludgeamountthattheyarefed with. Both should be as high as possible without causing negative effects (on sludge digestion and also worm growth rates) like competition for food or oxygen and the accumulationofexcretionproductsfromtheworms.Innaturalsediments,densitiesof L. variegatus hardlyexceed12,000specimensperm 2,whichcorrespondstoaround0.1kg wet weight per m 2. However, tests with the spongelike carrier material Recticel® in sludge showed that it could contain densities of 120,000132,000 specimens per m 2, which corresponds to 1.01.1 kg wet weight per m 2 (own data). This is similar to the densityinthemeshlikecarrierofthereactorsetup(Chapter8),butHendrickx(2007) mentioned higher densities of 217,000 specimens per m 2 with this setup, which corresponds to 0.32 kg wet weight per m 2. Batch experiments described inChapter 5 indicatedthatdensitiesof39,000139,000specimensper m2andwormtosludgeratios ofaround1.5negativelyaffectedsludgedigestionandwormgrowthrates,respectively mostlikelyasaresultofaccumulationofexcretionproducts,likeunionizedammonia, and food limitation. However, in continuous systems with high population densities, thismaybepreventedbyprovidingsufficientsludgetokeepthewormtosludgeratios below1,sufficientoxygenandflowthrough. It was also found that a minimum worm to sludge ratio was required for a measurable effect on sludge digestion, dependent on the endogenous activity of the sludge used (Chapter 4). Therefore, a sufficient stock of worm biomass is necessary whenareactorshouldbestartedupfast.Thiscaneitherbeobtainedbywaitinguntilthe wormshavecolonizedthereactororbycreatingabreedingfacility,whichservesasa central stock for supplying new reactors and in case of calamities. L. variegatus is howevernotbredcommerciallylikeintheUS,wheretheyarefedwithfishfoodinlarge outdoorpondsandaresoldforaround10€perkgwetweight(AquaticFoods,2007).In theNetherlands,onlyearthwormsarebredonalargescaleforcommercialpurposes. 9.2.4 Worm faeces Settleability and dewaterability Theincreasedsettleabilityofwormfaeceswillresult inadecreasedvolumeofsludgethathastobedisposedof.Thedewaterabilityofthe faeces should however be investigated further with other methods (e.g. specific

╡144 ╞ ╡Discussion and outlook towards application of L. variegatus ╞

resistancetofiltration(SRF)orcompacting),becausethisisoneofthemostimportant issuesinsludgetreatment. Composition Asmentionedbefore,wormfaecescontainmoreinorganicmaterialthan the waste sludge. We have also indications that their protein fraction is smaller. The effectofsludgeconsumptionby L. variegatus oncarbohydratesremainsunclear.Worm faecesstillcontainarelativelyhighamountoforganicmatter(typicallyaround70%, whentheashfractionbeforesludgeconsumptionbywormswasaround20%,Chapter 4),butthewormfaecesseemrefractorytofurtherdigestion.Returningthewormfaeces totheaerationtanksthereforeseemspointless.Furthermore,wefoundthatcadmium, copper,chromium,nickel,leadandzincinwastesludgewerenotaccumulatedtoalarge extentby L. variegatus duringsludgeconsumptionandthusendupinthewormfaeces, mostlikelybecausetheyremainboundtothelargeorganicfractionofsludge.Sludge consumption did not seem to influence the distribution of metals between the sludge and the supernatant phase. However, because the metal recovery in the experiment describedinChapter6wasnot100%,aclosedmetalmassbalanceincludingsludge, worms and supernatant before and after consumption deserves further investigation. Theoveralllowmetalconcentrationsinwormbiomassincreasesthereusepossibilities asdescribedin Paragraph 9.2.5 ,butdecreasesthoseofthewormfaecesandthelatter willhavetobeprocessedaccordingtoexistingmethods,e.g.incineration.Apartfrom the concentrations of the six metals mentioned before, those of arsenic and mercury shouldalsobedeterminedinwormfaeces,wastesludgeandworms. 9.2.5 Worm biomass Harvesting IncontrasttothesmallerfreeswimmingspecieslikeAeolosomatidaeand Naidinae, L. variegatus caneasilybeseparatedfromwastesludge.Using300msieves already leads to complete separation, as applied in our experiments, but using bigger mesh sizes may also have the desired effect, with less clogging of filter materials. However,harvestingofwormsfromaspongelikecarrier(e.g.Recticel®)byapplying mechanicaltechniques,lowoxygenconcentrations,lightsourcesorflushingthecarrier withwaterseemsineffective.Recently,amethodhasbeendevelopedforharvestingof pureandlivewormbiomassfromacarrier(Elissen et al. ,2007). Composition Waste sludge typically contains 3241 % protein and 1241 % ash (dry matter based) (Tchobanoglous et al. , 2003). Sludge consumption by L. variegatus thereforeresultsinamorevaluableresourceinthisrespect,sincewormbiomasshasa higherproteincontentandlowerashcontent(AppendixII,TableA1).However,italso leadstolossesinphosphoruscontent(drymatterbased),becausewastesludgecontains 311%(Tchobanoglous et al. ,2003),while L. variegatus containsonly2%(AppendixII, TableA1).Thecaloricvaluesofwastesludgeandwormsarethesame;around5kcal/g dry matter. The composition of L. variegatus roughly resembles the composition of otheraquaticOligochaetalike T. tubifex and L. hoffmeisteri (e.g.Whitten&Goodnight, 1966b), but also terrestrial Oligochaeta like Enchytraeus albidus (Ivleva, 1973) and other earthworms (de Boer & Sova, 1998). For one species, percentages are quite

╡145 ╞

╡Chapter 9╞

variablebetweenauthors,whichcouldbeduetodifferentfoodsources(Ivleva,1973), but also to different analytical methods. Mulder & Beelen (2007) determined the monosaccharideandaminoacidcompositionofthecarbohydrateandproteinfraction of L. variegatus (AppendixII,TableA2).Theaminoacidcompositionof L. variegatus againroughlyresemblesthatofsessileTubificidae(Yanar et al. ,2003;Mulder&Beelen, 2007),asdothemolecularweightsoftheproteins,exceptforaheavierfractionin L. variegatus (Mulder&Beelen,2007).Basedon L. variegatus biomasscomposition,new applicationscanbe thought of, but also existing applications for worm species with a similarcompositionshouldbeconsidered(section Applications ).However,because L. variegatus isgrownonawasteproduct,thenatureandimportanceofpollutantcontent ofthebiomassforeachapplicationshouldalsobeconsidered(section Pollutants) . Pollutants Because waste sludge contains pollutants, L. variegatus biomass possibly also contains pollutants after sludge consumption, such as heavy metals, micropollutantsandparasites. The concentrations of copper, chromium, nickel and lead in L. variegatus biomasswerewellbelowthoseinwastesludge(Chapter6&7).Onlycadmiumandzinc sometimes bioaccumulated to concentrations respectively higher (around 2 times) or equaltothoseinwastesludge.Theoveralllowbioaccumulationofheavymetalsbythe wormswasprobablycausedbymetalbindingtotheorganicfractionofsludgethatwas excretedbytheworms.MetalconcentrationsinwormsgrownonTetraMin®fishfood thatcontainedmuchlowermetalconcentrationsthanwastesludgeweresimilar.Nextto the basic composition of the substrate, unknown characteristics of the substrate and possibly regulation mechanisms in the worms may therefore also determine the concentrationsintheworms(Chapters6&7).Forpredictingmetalconcentrationson different kinds of sludges, further research on determinants for uptake is necessary. Storageofheavymetalsincertainwormtissuesisanotherinterestingtopicforfurther investigation. Heavy metals are often stored in chloragogenoustissuesof worms(e.g. Back&Prosi,1985),whicharealsoinvolvedinlipidstorage(Morgan&Winters,1991). Selective storage of metals in extractable fat fractions would for example enable selectiveremovalofcontaminatedfractionsfromthewormbiomass. Concentrationsofmicropollutantsinwastesludge(andeffluentsofWWTPs)are a reason for growing concern and currently legislation is prepared in the European FrameworkDirective.Because L. variegatus isusedasastandardorganismfortoxicity and bioaccumulation tests, information is available on many of these compounds in more than 100 peerreviewed papers. Examples are hormones (Liebig et al. , 2005), PAHs (e.g. Ankley et al. , 1997; Leppänen & Kukkonen, 2000; Ingersoll et al. , 2003), PCBs (e.g. Kukkonen & Landrum, 1995; Fisher et al. , 1999; Sun & Ghosh, 2007), insecticides/herbicides (e.g. Mäenpää et al. , 2003; Wiegand et al. , 2007), drugs (e.g. Oetken et al. ,2005;Nentwig,2007).Extensiveinternetdatabasescontainmostofthese data(UnitedStatesEnvironmentalProtectionAgency,2007;PesticideActionNetwork NorthAmerica,2007). L. variegatus isabletobioaccumulatemanyofthesecompounds and some of them are toxic. L. variegatus presumably possesses mechanisms for

╡146 ╞ ╡Discussion and outlook towards application of L. variegatus ╞

organic micropollutants, in analogy with those for metals, which involve storage in certainbodytissues likechloragocytesanddecrease the toxicity of these compounds. This was found for hormones by Liebig et al. (2005). However, as with metals, bioaccumulation and toxicity of these compounds will be dependent on binding to componentsinthesludgeandcanbemuchlowerthanfromthestandardtestsubstrates (sedimentsandwater).Thisdeservesfurtherinvestigation. Several Oligochaeta like sessile Tubificidae can harbour myxozoan parasites (Lowers&Bartholomew,2003).Theseparasitescancausefishdiseasesinforexample trout (Brinkhurst, 1996; Morris & Adams, 2006) and Oligochaeta thus serve as an intermediate host for transfer. L. variegatus has also been mentioned as an intermediate host for these parasites (Morris & Adams, 2006), but it is unknown to whichextenttheseparasitesoccurinWWTPs. Depending on the anticipated application of L. variegatus biomass grown on waste sludge, a thorough screening of some of the abovementioned unwanted compoundsinthebiomasswillbenecessary. Applications L. variegatus biomass in theory can be used alive or dead (whole or fractions).Oneofthemostimportantconsiderationsforreuse,nexttothecomposition andproducedamount,isthepollutantcontentofthebiomass,becausetheyarefedwith wastesludge. Stephenson (1930) already mentioned the use of live sessile Tubificidae as aquariumfishfoodasearlyas1910.InEurope,sessileTubificidaearestilloftenusedas aquariumfishfood,whileintheUS, L. variegatus (‘blackworms’)isamorepreferred and popular live food for aquarium fish (Aquatic Foods, 2007). Some other aquatic animals that can be fed with L. variegatus are flatworms, crayfish, leeches, shrimps, insectlarvae,reptilesandfiddlercrabs(e.g.Drewes,2005).Manyauthors(e.g.Timm, 1980;Lietz,1987;deBoer&Sova,1998)describethepotentialofaquaticandterrestrial Oligochaeta(sessileTubificidae, L. variegatus andearthworms)asaliveordriedfood source for consumption fish. According to them and other authors (e.g. Krishnan & Reddy, 1989; Evangelista et al. , 2005), both applications have high potential, consideringthelowmaintenanceculturingofwormsaswellasincreasedappetiteand growthratesoffishes.However,pollutantsfromthesubstratethatisusedforfeeding thewormscanbetransferredtofish(e.g.Egeler et al. ,2001;Hansen et al. ,2004)with sometimesdetrimentaleffectswhenconcentrationsarehighenough(Stafford&Tacon, 1984; Hansen et al. , 2004). Therefore, as long as pollutant concentrations are low enough and do not affect fish health, as described for metals in L. variegatus in concentrationssimilartothoseinourexperiments(Hansen et al. ,2004),wormbiomass grown on waste sludge may be a suitable food source for aquarium fish and other animals not used for human consumption. This is illustrated by the fact that sessile TubificidaeusedforaquariumfishfoodusuallyoriginatefrompollutedriversinEastern Europe.However,itisquestionablewhethertheapplicationofwormbiomassgrownon wastesludgeforconsumptionfishfood(oranylivestockfeed)willbeaccepted,because oftheriskofpollutanttransfertohumansorforethicalreasons.Toalesserextent,this

╡147 ╞

╡Chapter 9╞

isalsotrueforapplicationsofwormbiomassinagriculture,forexampleasfertilizeror as carrier for agrochemicals (Winters et al. , 2004). Based on heavy metal concentrationsinsludge,theNetherlandscurrentlyhavethemoststringentlegislation (BOOM)fortheapplicationofsludgeinagriculturein the European Union, together with Denmark, Finland and Sweden. Even though the current and future EU requirementsarefarlessstringent(AppendixII,TableA3),thepossiblereuseofworm biomassinagriculturewilldependontheregulationsappliedineachindividualcountry. Alternatively,livewormscanbeappliedastoxicitytestorganism,iftheycomply withrequirements,suchasaconstantwormcompositionandawelldefinedfoodsource (UnitedStatesEnvironmentalProtectionAgency,2000).Inanalogy,theycanbeusedas preyorganismforconductingdietaryexposurestudieswithfish(Mount et al. ,2006)or as biocarriers for drugs delivery to fish as was described for Nereis virens eggs by Katharios et al. (2005). . Insteadofusingthebulkmaterial,fractionsofwormbiomassmayalsobeused,if economically feasible. Winters et al . (2004) tested the applicability of proteins from sessileTubificidaeascoatings,surfactantsandgluesandconcludedthatthelastoption had most potential. They also mentioned a possible application as carrier for agro chemicals. Because the composition of sessile Tubificidae resembles that of L. variegatus ,itislikelythatthequalitiesofthebiomassanditsderivedproductsarealso alike.Anotherapplicationfortheproteinsmaybeuseinbioplastics,asisforexample done with proteins in egg white (Jerez et al. , 2007). Amino acids (Table 9.3) and possibly enzymes may be commercially interesting. Amino acids can be applied in nutritionormedicine,buttheycanalsobeconvertedtoproductsforthepetrochemical industry,todecreasetheuseoffossilfuels(Scott et al. ,2007).DeBoer&Sova(1998) described a technique for isolating enzyme mixtures, which can be applied as biodegradabledetergents,fromearthwormsgrownonwastematerials.Theearthworms adaptedtheirenzymestotheappliedsubstrate. 9.2.6 Effluent Nutrients and suspended solids AbatchexperimentdescribedinChapter4suggested that digestion of sludge by L. variegatus mostly led to a higher ammonium release (0.0020.07 g N/ mg dry worm weight/ h) than was expected base on the TSS digestion percentage, possibly as a result of consuming the nitrifying bacteria populationortheextrareleaseofammoniumbytheworms.Gardner et al. (1981)and Postolache et al. (2006)foundthatsessileTubificidaeinsedimentswithfullorempty gutsexcretedammoniumandalsophosphate(inorganicandorganic)atratesof0.03 0.27gNand0.0020.01gP/mgwormdryweight/hrespectively.Theextrarelease ofammoniumishoweverincontradictionwiththehigherproteincontentofwormsin comparisontowastesludgeandtheobservedspecificdigestionoftheproteinfractionof wastesludge. Amoreturbidwaterphasewasalsoobservedaftersludgeconsumptionbyworms (Chapter 6). Discharging these extra suspended solids and nutrients from a worm

╡148 ╞ ╡Discussion and outlook towards application of L. variegatus ╞

reactor into surface waters should be prevented, because maximum permitted concentrationsforN total ,P total , BOD,CODandTSSare1015,12,20,125and30mg/L respectivelyineffluentsofDutchWWTPs(Loeffen&Geraats,2005).Theseregulations are expected to become stricter as a result of the European Framework Directive. Therefore, the exact release of these compounds in a continuous system should be further investigated or, in case of a separate worm reactor, the effluent can be dischargedintheWWTP. 9.3 Feasibility of a worm reactor for waste sludge reduction with L. variegatus at a 100,000 p.e. WWTP Eventhoughthedatafromourbatchexperimentscannotbedirectlyextrapolatedtoa continuoussystem,theycangivesomeindicationsofthefeasibilityofareactorsetup.A 100.000p.e.(personequivalent)WWTPhasadailywastesludgeproductionofaround 5,300 kg TSS (Statistics Netherlands (CBS), 2007). Based on Figure 9.2, a worm populationof11,520kg(~88,615kgwetweight)wouldbeneededtodigest50%ofthis sludge.Fromthedigestedsludge,371kgdrywormbiomass (~ 2,854 kg wet weight) could be produced. The optimal worm density and the number of layers that can be appliedwilldeterminethevolumeofareactor.Forexample,awormdensityof100,000 specimensperm 2(~1kgwetweightperm 2)wouldresultinarequiredsurfaceareaof around88.615m 2.Thirtylayersatanintermediatedistanceof5cmwouldresultina reactorvolumeof4431m 3andareactorsurfaceof2954m 2,whichisroughlyequalto 30 % of the aeration tank surface in these plants. Becausetheseresultsarebasedon batch experiments and an assumed population density, we can only give rough indicationsoftheeconomicfeasibility,basedonapproximatesludgeprocessingcostsof 300€pertonTSS(Wiegant et al. ,2005)andapproximatereactorinvestmentcostsof 300€perm 3reactorvolume(Janssen,2007).Iftheproducedwormbiomasscouldbe soldforaround2€perkgdryweight,theresultingperiodforreturnofinvestmentwould be2.4years,whichisacceptable. The feasibility of this concept in continuous applications will thus not only be dependentonthereducedsludgeprocessingcosts,butmostlikelyevenmoreonboth theinvestmentcostsofareactor(basedonthemaximumpopulationdensitiesthatcan be maintained at high sludge reduction rates) and the production and sale of worm biomass. However, results in a continuous system may be entirely different, as was alreadyshownbythecomparisonbetweendataofthebatchexperimentsanddataofthe sequencing batch experiments with the reactor setup (Chapter 8). Currently, the reactorsetupdescribedinChapter8isunderinvestigationbyHendrickx(2007),who alreadyfounddensitiesofaround200,000specimensperm 2. Other profits were not considered at this stage. These are possible economical profits from improved sludge settleability and dewaterability and from reduced dimensions of mechanical installations in the WWTPs. In addition, environmental

╡149 ╞

╡Chapter 9╞

profits,resultingfromthedecreaseinCO 2emissionsassociatedwithadecreasedsludge transport, were not considered. However, methane production in anaerobic waste sludgedigestersprobablyislowerfromwormfaecesthanfromwastesludge,duetothe reduction of its organic content, and possible costs for aerating and heating a worm reactorshouldalsobetakenintoaccount. 9.4 Overall feasibility of sludge reduction with L. variegatus and recommendations for further research Based on the above information, the application of L. variegatus in wastewater treatment has potential. This aquatic worm can reduce the amount and volume of differentmunicipalwastesludges.Itseemspossibletomaintainastablepopulationof L. variegatus with steady biomass and number growth rates in a continuous setup for sludge reduction in WWTPs when the abovementioned conditions are met. These conditionslargelyresembletheconditionsintheaerationtanksofmunicipalWWTPs. Inaddition,theproteinrichwormbiomassthatisproducedfromthewastesludgehas potentialforreuse,becauseitcaneasilybeseparatedfromthesludgeandcontainslow levelsofcopper,chromium,leadandnickelincomparisontothewastesludge.Finally, L. variegatus can be immobilized in a reactor setup for sludge reduction with a completeseparationbetweenwastesludgeandwormfaeces.However,thefeasibilityof thisprocesscannotbewellassessedbasedonthedatacurrentlyavailable.Tobeableto makeacorrectassessmentisitnecessarytogetmoredetailedinformationaboutthe followingaspects: ╡ The dependence of sludge digestion rates, worm growth rates and worm yield on processconditionsinacontinuoussetupshouldbefurtherinvestigated,aswellas themaximumeffectivewormpopulationdensitythatcanbemaintained,thereuse possibilitiesforwormbiomassandprofitsfromit,thedewaterabilityofwormfaeces, and the reduction of waste sludges from different origins and predigested waste sludges. ╡ Inafeasibilitystudybasedondatafromacontinuous system, a comparison with other technologies for sludge reduction and energy recovery must be made. It is likely that sludge reduction with worms is especially suitable for smaller WWTPs withoutanaerobicsludgedigesters,whichhavetotransporttheirwastesludgesfor furtherprocessing.

╡150 ╞

╡╡╡Summary and conclusions ╞╞╞ InWWTPs(wastewatertreatmentplants),largeamountsofwastesludgeareproduced (Chapter 1 ).Thecostsforprocessingthissludgeareestimatedtobearoundhalfofthe total costs of wastewater treatment. In the Netherlands, the final option is usually incineration, mainly because the application of sludge in agriculture or disposal in landfillsisnolongerallowedduetoitshighheavymetalcontent.Currenttechnologies for sludge minimization involve chemical, physical, mechanical and biological technologies and combinations thereof. In addition, the recovery of materials and energyfromsludgehasahighpriority.Abiologicaltechnologyforreducingtheamount of produced sludge and simultaneous conversion into proteinrich biomass is sludge consumptionbyaquaticworms.Experimentalresultswiththistechnologypublishedby several research groups in the Netherlands, Japan and China are promising, but also highlyvariable.Thiswasmainlycausedbyuncontrollablewormpopulationgrowth.An additionalproblemwasthelackofareliableexperimentalsetup,whichcouldexactly quantifysludgereductionbyaquaticworms. Both problems were addressed in the research described in this thesis, by studying the population dynamics of freeswimming aquatic worms Naidinae and AeolosomatidaeinWWTPsandbystudyingsludgereductionandwormgrowthinbatch experiments with the sessile aquatic worms Lumbriculus variegatus and Tubificidae. Importantfactorsfortheapplicationofworms(especially L. variegatus )inwastewater treatmentwereidentified. In Chapter 2 an overview of the aquatic worms investigated in this thesis is presented,whichincludestheirappearance,naturalhabitat,food,reproductionanduse in sludge reduction research. Sessile Tubificidae and freeswimming Aeolosomatidae and Naidinae are common in WWTPs and are therefore commonly used in sludge reductionresearch,incontrastwith L. variegatus .Thisoverviewshowsthateachofthe described(sub)familieshascharacteristicsthatcanbeadvantageousordisadvantageous forapplicationinsludgereductionprocesses.Logically,specieswiththemostoptimal combinationofthesecharacteristicsundertheconditionsinWWTPsshouldtherefore be applied. Alternatively, specific conditions in a separate worm reactor can also be optimizedfortheselectedspecies. To get more insight in the population dynamics of freeswimming worms in WWTPs,andtorelatetheirpresencetoprocesscharacteristicsandperformance,these wormsweresampledregularlyovera2.5yearperiodintheATs(aerationtanks)offour DutchWWTPs( Chapter 3 ).Thespeciescompositionwaslimited.Themostabundant worms were Aeolosoma hemprichi , A. tenebrarum , A. variegatum , Chaetogaster diastrophus, Nais spp., and Pristina aequiseta . Worms were present all year round, eveninwinter.Thewormpopulationsdisplayedpeakperiods,whichlasted23months andweresimilarbetweentheATsofeachWWTP,butnoyearlyrecurrencesofthese

╡151 ╞

periods were observed. The population doubling times in these periods were short, around 36 days, probably as a result of stable food supply and temperature, and the absenceofpredationfromtheWWTPs.Thedisappearanceofwormpopulationsfrom theWWTPswaspresumablycausedbydecliningasexualreproductionandsubsequent removalwiththesludge.Multivariateanalysisindicatedthat36%ofthevariabilityin worm populations was only due to variations in sampled WWTP, sampling year and month. No more than 4 % of the variability in worm populations was related to variationsintheavailableprocesscharacteristics.Thisdatasetsuggeststhatpopulation growthoffreeswimmingaquaticwormsisratheruncontrollableandthattheireffects on treatment performance (e.g. sludge settleability and production, nutrient removal) are unclear, which makes stable application in wastewater treatment for sludge reductiondifficult. Thesessilespecies L. variegatus wasselectedforfurtherinvestigation,because initialexperimentswiththisspeciesshowedstablesludgereductionandwormgrowth (Buys, 2005; own data). Other advantages are its asexual reproduction by division (architomy)andthecompactshapeofitsfaeces,whichcanbedistinguishedfromsludge withthenakedeye. In Chapter 4 , a simple batch test with L. variegatus is described, that can accurately distinguish between sludge reduction by worms, sludge reduction by endogenous processes and worm growth. Sludge reduction by L. variegatus was approximately twice as fast as endogenous reduction of sludge, but the final sludge reductionpercentage,whichwasusuallyaround50%,wasnotaffected.Around16%of the sludge TSS (total suspended solids) was digested by L. variegatus next to endogenousdigestion.Thisequalsaround19%ofthesludgeVSS(volatilesuspended solids),becausemostreductionconcernedtheorganicfractionofthesludge.Thetest alsoshowedthataminimuminitialW/Sratio(ratioofwormtosludgedrymatter)will be required for a noticeable effect of worms on sludge reduction. The exact ratio is howeverdependentontheendogenousactivityofthesludgeandwas0.4inthiscase. Underthetestconditions,2040%ofthetotalamountofdigestedsludge—theinitial sludge amount minus the amount of worm faeces and possible residual sludge—was converted into worm biomass (organic matter based). Based on its sludge reduction rates and growth, L. variegatus shows high potential for application in wastewater treatment. For effective application, it is essential to know if and how several sludge properties, worm properties and process conditions influence sludge digestion by L. variegatus and resulting worm growth. Therefore, sludge digestion, worm biomass growth and worm number growth rates, as well as the worm growth yield, were calculatedindifferentshorttermbatchexperiments,describedin Chapter 5 .Inthese experiments, L. variegatus consumed a variety of municipal sludges as well as non municipal beer sludge. The municipal sludges from WWTPs and pilotscale conventionalandmembranebioreactorsystemsweredigestedataverageratesof0.09 (±0.04) d 1(drymatterbased)andwormbiomassandnumbergrowth rates were on

╡152 ╞ ╡Summary and conclusions ╞

average 0.04 (±0.03) d1 (dry matter based) and 0.01 (±0.02) d 1 respectively. On average38(±22)%ofthesludgedigestedbywormswasconvertedintowormbiomass (dry matter based). The rates and yield on beer sludge were substantially lower. Moreover,forbothmunicipalandnonmunicipalsludges,theoverallratesandyields showedahighvariability.However,astatisticalanalysisoftheresultswithtwoofthe most frequently used municipal sludges showed that this was only caused to a small extentbyvariationsinexperimentalconditions,pHandashpercentageofthesludge. Therefore,mostofthevariabilityseemedtobecausedbyunknowndifferencesinsludge composition. Experiments with different sludge floc size fractions indicated that L. variegatus isabletoconsumeallflocsizes,even<4.5mand>300m,atcomparable digestion and growth rates, as long as the sludge concentrations are high enough. Experiments with sterilized and predigested sludges suggested that a low content of livebacteriainthesubstratesuppresseswormreproduction.Theexperimentswithpre digestedsludges(underoxicoranoxicconditions)alsosuggestedthat L. variegatus is abletoincreasethefinalreductionpercentage(from60%to68%)ofsludgesthatwere predigestedforatmost48daysunderoxicconditions. However, this effect was not observedwitholdersludgesorsludgesthatwerepredigestedunderanoxicconditions. In this latter experiment, worm growth was often negatively affected, most likely because of the presence of toxic unionized ammonia. Larger worm sizes seemed to enhancereproduction,aswasexpected,buttheeffectonsludgedigestionandbiomass growthwasnotclear.Highpopulationdensities(>39,000specimensperm 2)andW/S ratios (> 1.4) negatively affected sludge digestion and worm growth in the batch experiments. The effects of ferric iron addition and complete darkness were tested, becauseliteraturedatasuggestthatbothfactorspossibly havea positiveinfluenceon wormgrowthandsludgedigestion.Theadditionofferricirondidnothaveaninfluence andincubationundercompletedarkconditionsonlyseemedtoenhancewormnumber growth slightly. Most importantly, L. variegatus thus seems applicable for different nontreatedmunicipalsludges. Sludgeconsumptionby L. variegatus notonlyreducestheamountofsludge,but also changes the physical structure and most likely the composition of the sludge. Therefore,theinfluenceofsludgeconsumptionondifferentsludgecharacteristicswas investigated in shortterm batch experiments, described in Chapter 6 . Sludge consumption by L. variegatus always enhanced the initial settling rate of several municipalsludgesandledtoSVI 30 (sludgevolumeindexafter30min.)valuesofaround 60mL/g.Eventhoughthedewaterabilityofwormfaeceswasexpectedto behigher than that of the sludge, the CST (capillary suction time) method did not reveal any changes,buttheresultsindicatedthatthismethodisnotreliable.Theturbidityofthe sludge water phase increased, due to the formation of colloidal and/or dissolved materials. The experiments indicated that these materials possibly consist of carbohydrates,butnotofproteins.Aftersludgeconsumption,thetotalproteinfraction as percentage of sludge TSS usually decreased, which indicates specific feeding by L. variegatus ontheproteinfractionofsludge.Thiswasnotfoundforthecarbohydrate

╡153 ╞

fraction.Heavymetals(cadmium,chromium,copper,lead,nickelandzinc)fromsludge were not bioaccumulated above concentrations already present in the worms and the latterconcentrationswerealwayssubstantiallylowerthaninsludge.Theheavymetal concentrations in worm faeces in contrast were higher than in the sludge, in this experiment 13( ±9) %. The distribution of absolute heavy metal amounts over sludge flocs,waterphaseandwormsdidnotseemtochangeaftersludgeconsumption.Finally, faecesof L. variegatus wereingestedbytheirownkind(conspecifics),butthedigestion ratesforthisprocesswereverylowandwormbiomassdecreased.Themostpronounced effectsofsludgeconsumptionby L. variegatus onsludgecharacteristicswerethusthe increasedsettlingratesandsettleability,anincreaseinheavymetalcontentandusually adecreaseinproteincontent.Thewormfaecesseemrefractivetofurtherdigestion. TofindoutwhetherL. variegatus hasmorepotentialthansessileTubificidaefor applicationinsludgereductionprocesses,sludgedigestionwascomparedbetweenboth wormtypesinbatchexperimentsdescribedin Chapter 7 .Itwasalsoinvestigatedifthe applicationofmixedculturesofbothwormtypescanbemoreadvantageousthanthe applicationofmonocultures.Theexperimentsshowedthatsludgedigestionandworm biomassgrowthwereusuallyhigherandmorestableinmonoculturesof L variegatus than in ‘monocultures’ of sessile Tubificidae, but the number growth rates were comparable.Mostofthelatterresultswerealsofoundwithsludgescontaininghigher TSSconcentrations,exceptfordecreasingsessileTubificidaenumbers.Theadvantage fromusingmixedculturesofbothwormtypesresultedmainlyfromincreasedbiomass growthratesof L. variegatus .The(combined)sludgedigestionrateofmixedcultures washoweverequaltothatofthemonoculturesof L. variegatus anditwasnotclearif mixedculturesenhancedtheindividualdigestionrates.Bothwormtypeswereableto ingest worm faeces of conspecifics (which was already shown in Chapter 6 for L. variegatus ) and intraspecifics, but digestion rates were low and biomass decreased. Digestionratesonintraspecificfaeceswereslightlyhigher,whichsuggestsdifferencesin digestive mechanisms between both worm types. Longterm monocultures of L. variegatus andsessileTubificidaeonsludgesoronthecontrolsubstrateTetraMin® fish food contained similar concentrations of the six heavy metals mentioned above, regardlessoftheconcentrationsinthesesubstrates.Thebioaccumulationofcadmium and zinc was relatively high and concentrations in sludge and both worm types were similar for these two metals in contrast to the results of Chapter 6 for L. variegatus . Thiswaspossiblyduetounknowndifferencesinsludgecompositionortodifferencesin experimentduration.Mostimportantly, L. variegatus seemstohavemorepotentialfor application in sludge reduction processes than sessile Tubificidae, but mixed cultures may have some advantages for worm growth. Besides, literature data indicate that mixedculturesalsoenhancethestabilityofwormpopulations. Fortheapplicationof L. variegatus forsludgereductioninwastewatertreatment, a reactor setup has to be developed. Chapter 8 describes the results of an initial sequencing batch experiment in a reactor setup, in which L. variegatus was immobilizedinameshlikecarriermaterialandsludgeandwormfaeceswereseparated.

╡154 ╞ ╡Summary and conclusions ╞

A setup with worms was compared to a control setup. As in the batch experiments from the previous chapters, sludge consumption by L. variegatus led to a distinct decreaseintheamountofsludgeandincreasedsettleability of the worm faeces. The obtainedresultsshowthattheproposedreactorconcepthasahighpotentialforusein fullscale sludge processing. The reactor concept should be further optimized as comparisons with the results of other experiments show that sludge reduction percentages(onaverage17(±6)%forexperimentsinChapter5,but75%inthischapter) andotherparametersoftheprocesscanbevariable.Thisisprobablydependentonthe processconditions,forexampletheimmobilizationoftheworms. In Chapter 9 ,theresultsofthepreviouschaptersarediscussedwithemphasis ontheimplicationsfortheapplicationof L. variegatus inwastewatertreatment.Figures 9.1&9.2summarizetheresultsofatypicalbatchexperimentwith L. variegatus feeding onmunicipalsludge.Theseresults(togetherwithliteraturedata)arediscussedforeach section of fullscale sludge treatment system with L. variegatus (Figure 9.3): sludge, reactor,worms,wormfaeces,wormbiomassandeffluent.Finally,theoverallfeasibility ofsuchasystemisdiscussedandrecommendationsforfurtherresearcharegiven. Asmentionedabove,municipalsludgesdirectlywastedfromtheATsofWWTPs seem most suitable for digestion by L. variegatus , but sludges with a high protein content (e.g. from foodrelated industries) or certain pretreated sludges (e.g. pre digested)mayalsobesuitable.Theconcentrationofunionizedammoniamayhowever never exceed 2 mg/ L and therefore anoxic conditions or high pH values should be prevented.Anearlywarningsystemforthistoxiccompoundisthereforenecessary. L. variegatus should preferably be applied in a separate reactor with layers of carrier material,withacontinuousflowofsludgeoreffluentandsufficientaerationtokeepthe oxygen concentrations in the medium surrounding their tails above 34 mg/ L. Additionalheatingmaybenecessaryincoldperiods,tomaintainhighdigestionrates. Temperaturesabove25°Cshouldbeavoided.Theapplicationofamixedculturewith sessileTubificidaemayincreasegrowthratesof L. variegatus andtheoverallstabilityof the worm population. The presence of large populations of predators (e.g. leeches) should be prevented. The W/S ratio will be dependent on the conditions (e.g. sludge supply)inareactor,butcanberegulatedtosomeextentbyfrequentharvestingofpart oftheworms.AminimuminitialW/Sratiowillberequiredforameasurableeffecton sludge digestion, dependent on the endogenous activity of the sludge used. The maximum and/or optimal worm densities that can be maintained in a continuous systemarehoweverstillunknownparameters.Themaincharacteristicsofthestructure and composition of the worm faeces that have to be disposed of are their decreased volumeandtheirincreasedashandheavymetalconcentrations.Inaddition,theprotein contentisoftenlower.Thedewaterabilityofthefaecesisstilltobedetermined,butis expectedtobebetterthanthatofthesludge.Themaincharacteristicsoftheproduced worm biomass are its high protein content and the low concentrations of chromium, copper,leadandnickelincomparisontothesludge. The concentrations of cadmium andzincarehoweversometimessimilartothoseinsludge.Thecontentofthesemetals

╡155 ╞

andotherpollutants(e.g.organicmicropollutants)hastobedetermineddependenton the anticipated application of L. variegatus biomass. Possible options for the whole biomassareaquariumfishfoodandfertilizerinagriculture.Alternatively,fractionsof thebiomass(e.g.aminoacidsorenzymes)canberecoveredandreused.Theeffluentof a worm reactor must probably be discharged in the WWTP, because it most likely containshigherconcentrationsofnutrientsandsuspendedsolidsthanregulareffluents. Calculationswiththedataobtainedfromthisresearchindicatethatacontinuoussystem with L. variegatus hashighpotentialforsludgereductioninwastewatertreatmentand the recovery of valuable materials. The ultimate feasibility will however not only be dependent on the reduced sludge processing costs. More important factors are the maximumeffectivewormpopulationdensitythatcanbemaintained(whichdetermines the reactor costs), and the production, reuse possibilities and value of the produced wormbiomass.Theseareallpointsforfurtherinvestigation.

╡156 ╞

╡╡╡Samenvatting en conclusies ╞╞╞ In RWZI’s (rioolwaterzuiveringsinstallaties) worden grote hoeveelheden zuiveringsslib geproduceerd( Hoofdstuk 1 ).Deverwerkingskostenvoorditslibbedragenongeveerde helftvandetotalekostenvanhetzuiveringsproces.InNederlandwordthetmeesteslib uiteindelijkverbrand,omdatdetoepassingalsmeststofindelandbouwenhetstorten niet meer zijn toegestaan vanwege een te hoog gehalte aan zware metalen. Om de productie van slib te verminderen worden chemische, fysische, mechanische, biologischeofgecombineerdemethodesingezet.Ook het terugwinnen van materialen en energie uit slib heeft een hoge prioriteit. Een biologische methode om de slibproductietereducerenengelijktijdighetslibomtezettenineiwitrijkebiomassais slibconsumptie door aquatische wormen. Resultaten van onderzoeksgroepen in Nederland, Japan en China met deze technologie zijn veelbelovend, maar ook erg variabel. Dit werd grotendeels veroorzaakt doordat de populatiegroei van de wormen niet gestuurd kon worden. Een bijkomend probleem was het ontbreken van een betrouwbareproefopzetwaarmeedeslibverteringdoordewormengekwantificeerdkon worden. Deexperimentendiebeschrevenwordeninditproefschriftbesteeddenaandacht aan beide problemen: in RWZI’s werd de populatiedynamica van vrijzwemmende aquatischewormen(NaidinaeenAeolosomatidae)bestudeerdeninbatchexperimenten de slibvertering door sessiele aquatische wormen ( Lumbriculus variegatus en Tubificidae).Tevenswerddegroeivandezesoortenbepaald.Belangrijkefactorenvoor hettoepassenvandewormenindeafvalwaterzuiveringwerdenmetnamevoordesoort L. variegatus geïdentificeerd. Hoofdstuk 2 beschrijft de morfologie, de habitat, het voedsel en de voortplantingvanverschillendesoortenaquatischewormenuitditproefschriftevenals hun gebruik in slibreductieonderzoek. Sessiele Tubificidae en vrijzwemmende AeolosomatidaeenNaidinaekomenvaakvoorinRWZI’senwordendaaromhetmeest gebruikt voor onderzoek naar slibreductie in tegenstelling tot L. variegatus . Het overzichtlietziendatelke(sub)familiekenmerkenheeftdievoordeligofnadeligkunnen zijnvoorslibreductie.Logischerwijszoudensoortenmetdemeestoptimalecombinatie vandezekenmerkenonderdespecifiekeconditiesinRWZI’stoegepastmoetenworden. Echter, de specifieke condities in een losstaande wormenreactor zouden ook geoptimaliseerdkunnenwordenvooreengeselecteerdewormensoort. Ommeerinzichttekrijgenindepopulatiedynamicavanvrijzwemmendewormen in RWZI’s werden deze gedurende tweeënhalf jaar regelmatig geteld in de ATs (aëratietanks)vanvierNederlandseRWZI’s( Hoofdstuk 3 )enwerdenhunaantallen gekoppeld aan de proceskarakteristieken (procescondities en effectiviteit van het zuiveringsproces). De soortendiversiteit was beperkt. De meest voorkomende vrijzwemmendewormenwaren Aeolosoma hemprichi , A. tenebrarum , A. variegatum ,

╡157╞

Chaetogaster diastrophus , Nais spp.en Pristina aequiseta .Dewormenwarenhethele jaar aanwezig, zelfs in de winter. De populaties vertoonden groeipieken van 2 tot 3 maanden,dievaaksynchroonverliepenindeverschillendeATsvanelkeRWZI.Erwerd geen jaarlijks patroon gevonden. De korte populatieverdubbelingstijden in deze periodes (ca. 3 tot 6 dagen) waren waarschijnlijk het gevolg van de stabiele voedselvoorziening en temperatuur en de afwezigheid van natuurlijke vijanden in de RWZI’s. De oorzaak van het verdwijnen van de populaties uit de RWZI’s was waarschijnlijkeenafnemendeongeslachtelijkevoortplanting,gevolgddoorafvoermet hetslib.Eenmultivariateanalyselietziendat36%vandevariatieinwormenpopulaties uitsluitendsamenhingmetdelocatievandeRWZI,monsterjaarenmaand.Slechts4% vandevariatiehingsamenmetdeproceskarakteristieken,diedoormedewerkersvande RWZI’s ter beschikking waren gesteld. De conclusie uit deze dataset is dat populatiegroei van vrijzwemmende aquatische wormen vrijwel oncontroleerbaar is en huninvloedopeffectiviteitvanhetzuiveringsproces(zoalsslibbezinkingen–productie ofnutriëntenverwijdering)onduidelijk,wateenstabieletoepassingvoorslibreductiein afvalwaterzuiveringbemoeilijkt. Desessielesoort L. variegatus werdgeselecteerdvoorverderonderzoek,omdat dezeinoriënterendeexperimenteneenstabieleslibverteringenwormengroeivertoonde (Buys, 2005; eigen data). Verdere voordelen van deze soort zijn de ongeslachtelijke voortplantingdoordeling(architomie)endecompactefeces,diemethetbloteoogvan slibvlokkenonderscheidenkunnenworden. Hoofdstuk 4 beschrijft een eenvoudig batchexperiment met L. variegatus , waarmeeslibverteringdoorwormen,slibreductiedoorendogeneprocesseninhetslib enwormengroeionderscheidenkunnenwormen.Slibverteringdoor L. variegatus was in dit experiment ruwweg twee keer zo snel als de endogene slibverteringssnelheid, maarerwasgeeneffectophetuiteindelijkereductiepercentage,datmeestalca.50% van de droge stof was. L. variegatus verteerde ongeveer 16 % van de droge stof. De meesteverteringvindtplaatsindeorganischefractievanhetslib,hetgeenresulteertin eenhogerverteringspercentageoporganischestofbasis,ongeveer19%.Hetexperiment lietookziendateenminimaleworm/slibverhouding(opdrogestofbasis)nodigisvoor eenmerkbaareffectopdeslibvertering.Deprecieze verhouding is echter afhankelijk vandeendogeneactiviteitvanhetslibenwas0.4inditexperiment.Ongeveer2040% vanhettotaalverteerdeslib—debeginhoeveelheidslibminusdewormenfecesenhet eventuele restslib— werd omgezet in wormenbiomassa op organische stof basis. Gebaseerdopdeversnellingvandeslibverteringendegroeisnelheden,is L. variegatus eenveelbelovendesoortvoortoepassinginafvalwaterzuivering. Vooreeneffectievetoepassingvan L. variegatus ishetnoodzakelijktewetenof en hoe slibvertering en wormengroei beïnvloed worden door verschillende slibeigenschappen, wormeigenschappen en procescondities. Hoofdstuk 5 beschrijft daarom verschillende kortdurende batchexperimenten, waaruit snelheden van slibvertering, wormengroei (in biomassa en aantallen) en wormenopbrengst berekend werden. L. variegatus consumeerde diverse slibsoorten, zowel van communale (uit

╡158 ╞ ╡Samenvatting en conclusies ╞

RWZI’sofconventioneleenmembraanbioreactorsystemenoplaboratoriumschaal)als industriële oorsprong (uit een zuivering van een bierbrouwerij). De communale slibsoorten werden verteerd met een gemiddelde snelheid van 0.09 (±0.04) d 1 (op droge stof basis). Wormenbiomassa en –aantal namen gemiddeld toe met respectievelijk 0.04 (±0.03) d 1 (op droge stof basis) en 0.01 (±0.02) d 1. Gemiddeld werd38(±22)%vanhetdoorwormenverteerdeslibomgezetinwormenbiomassa(op droge stof basis). Voor het bierslib waren deze getallen aanmerkelijk lager. Voor alle slibsoorten waren de snelheden en wormenopbrengsten bovendien erg variabel. Een statistischeanalysevanderesultatenmetdetweemeestgebruikteslibsoortengafaan dat deze variatie maar voor een klein deel samenhing met verschillen in de experimentele condities, pH en asgehalte van het slib. Het merendeel van de variatie leek veroorzaakt te worden door onbekende verschillen in slibsamenstelling. Experimenten met slibfracties van verschillende vlokgroottes lieten zien dat L. variegatus alle vlokgroottes (zelfs < 4.5 m en >300 m) kan opnemen. Vlokgrootte lijkt geen invloed te hebben op de verterings en groeisnelheden, mits de slibconcentratieshooggenoegzijn.Experimentenmetgesteriliseerdeenvoorverteerde slibsoortendedenvermoedendateenlageconcentratielevendebacteriëninhetvoedsel de voortplanting van de wormen onderdrukt. De experimenten met voorverteerde slibsoortengavenverderaandat L. variegatus hetuiteindelijkereductiepercentage(van 60%tot68%)kanverhogenindienhetslibmaximaal48dagenvoorverteerdwasonder beluchtecondities.Bijlangereperiodeswasergeenverhogingmeerenhetwerdook niet waargenomen bij anoxisch voorverteerde slibsoorten. In dit laatste experiment werddewormengroeinegatiefbeïnvloed,waarschijnlijkdoordeaanwezigheidvanhet toxischeongeïoniseerdeammonia.Zoalsverwachtleekdevoortplantingsnelheidtoete nemen met de wormengrootte, maar het effect hiervan op slibvertering en biomassagroeiwasnietduidelijk.Hogepopulatiedichtheden(>39.000wormenperm 2) en worm/slib verhoudingen (> 1.4) hadden een negatief effect op de slibvertering en wormengroei. De effecten van Fe 3+ toevoeging en volledige duisternis werden getest, aangezien literatuurgegevens suggereren dat beiden een positieve invloed zouden kunnen hebben op wormengroei en slibvertering. Het toevoegen van Fe 3+ had geen invloed en volledige duisternis leek alleen de voortplantingsnelheid licht te verhogen. De hoofdconclusie is dat L. variegatus toepasbaar lijkt voor een brede variatie van onbehandeldecommunaleslibsoorten. Consumptie van slib door L. variegatus vermindert niet alleen de hoeveelheid slib,maarverandertookdestructuurenhoogstwaarschijnlijkookdesamenstellingvan het slib. Hoofdstuk 6 beschrijft kortdurende batchexperimenten, waarin de invloed van slibconsumptie op verschillende slibeigenschappen onderzocht werd. Slibconsumptiedoor L. variegatus verhoogdealtijddeinitiëlebezinkingssnelheidvan verschillendecommunaleslibsoortenenresulteerdeinSVI 30 (slibvolumeindexna30 minuten) waarden van ongeveer 60 mL/g. Hoewel verwacht werd dat de ontwaterbaarheid van wormenfeces beter was dan die van slib, liet de CST (capillaire suctietijd)methodegeenveranderingenzien.Deresultatengavenechteraandatdeze

╡159 ╞

methodeonbetrouwbaaris.Detroebelheidvandewaterfasevanhetslibnamtoedoor het vrijkomen van zwevend en/of opgelost materiaal, dat mogelijk uit koolhydraten, maar niet uit eiwitten bestaat. Meestal daalde het totale eiwit als percentage van de droge stof na slibconsumptie, wat erop zou kunnen wijzen dat L. variegatus zich specifiek voedt met de eiwitfractie van slib. Dit werd niet gevonden voor de koolhydraatfractie.Zwaremetalen(cadmium,chroom,koper,lood,nikkelenzink)uit slibwerdennietopgehooptbovenconcentratiesdiereedsaanwezigwarenindewormen. Laatstgenoemde concentraties waren altijd veel lager dan in slib. De concentraties metalenindewormenfeceswarendaarentegenhogerdaninhetslib,inditexperiment 13(±9) %. De verdeling van de absolute hoeveelheden metalen over slibvlokken, waterfaseenwormenleeknietteveranderennaslibconsumptie.Tenslottewerdenfeces van L. variegatus weliswaar opgenomen door soortgenoten, maar de verteringssnelhedentijdensditproceswarenerglaagendebiomassavandewormen nam af. De belangrijkste effecten van slibconsumptie door L. variegatus op slibeigenschappen zijn dus de verhoogde bezinkingssnelheden en bezinkbaarheid, verhoogde concentraties zware metalen en meestal verlaagde eiwitconcentraties. De wormenfeceslijkenamperverderverteerbaartezijn. Hoofdstuk 7 beschrijftbatchexperimenten,waarindeslibverteringvergeleken werdtussen L. variegatus ensessieleTubificidaeomvastte stellenwelke soortmeer potentie heeft voor slibreductie. Ook werd onderzocht of de toepassing van mengpopulaties van beide typen wormen voordelen zou kunnen hebben boven de toepassingvanmonoculturen.Deslibverteringenwormenbiomassagroeiwarenmeestal hogerenstabielerinmonoculturenvan L. variegatus danin‘monoculturen’vansessiele Tubificidae. De groei in aantallen wormen was vergelijkbaar voor beide types. Voorgaanderesultatenwarenvrijwelidentiekvoorslibsoortenmethogereconcentraties droge stof, behalve dat de aantallen Tubificidae afnamen. Het voordeel van mengpopulaties uitte zich voornamelijk in de toegenomen biomassagroei van L. variegatus .De(gecombineerde)slibverteringssnelheidvanmengpopulatieswasechter gelijk aan die van monoculturen van L. variegatus en het was niet duidelijk of gemengde populaties de individuele verteringssnelheden bevorderden. Beide typen wormen waren in staat om wormenfeces van hun soortgenoten (wat al eerder beschreven was voor L. variegatus in Hoofdstuk 6) en het andere type worm op te nemen, maar de verteringssnelheden tijdens dit proces waren laag en de wormenbiomassa nam af. Verteringssnelheden op feces van het andere type worm warenietshoger,watzoukunnenduidenopverschilleninverteringmechanismenvan beide typen wormen. Monoculturen van L. variegatus en sessiele Tubificidae die langdurig met slib of het controlevoedsel Tetra Min® visvoer waren gevoed bevatten vergelijkbare concentraties van de zes eerder genoemde zware metalen, ongeacht de concentraties in deze twee voedselbronnen. In tegenstelling tot de resultaten met L. variegatus inHoofdstuk6,wasdeophopingvancadmiumenzinkrelatiefhoogende concentraties in slib en beide typen wormen waren vergelijkbaar. Dit kwam mogelijk door onbekende verschillen in slibsamenstelling of verschillen in experimentele duur.

╡160 ╞ ╡Samenvatting en conclusies ╞

Dehoofdconclusieisdat L. variegatus meerpotentieellijkttehebbenvoortoepassing in slibreductie dan sessiele Tubificidae, maar mengpopulaties hebben mogelijk voordelenvoorgroeivandewormenpopulatie.Literatuurdatagevenbovendienaandat mengculturesookdestabiliteitvandepopulatiekunnenbevorderen. Om L. variegatus te kunnen toepassen voor slibreductie in de afvalwaterzuivering is een reactorconfiguratie nodig. Hoofdstuk 8 beschrijft de resultaten van een oriënterend serieel batchexperiment met een prototype voor een reactorconfiguratie,waarin L. variegatus gepositioneerdisineennetachtigedrager,en slibenwormenfecesgescheidenworden.Eenprototypemetwormenwerdvergeleken met een prototype zonder wormen. Zoals in de batchexperimenten uit de voorgaande hoofdstukkenleiddeslibconsumptiedoor L. variegatus duidelijktoteenafnamevande hoeveelheidslibeneentoegenomenbezinkbaarheidvandewormenfeces.Ditgeeftaan dat het prototype veelbelovend is voor slibreductie. Dit prototype zal geoptimaliseerd moeten worden, omdat vergelijkingen met andere experimentele resultaten aangaven dat slibverteringspercentages (gemiddeld 17 (±6) % in Hoofdstuk 5 t.o.v. 75 % in dit hoofdstuk) en andere parameters van het proces variabel zijn. Dit is waarschijnlijk afhankelijkvanprocesconditieszoalshetpositionerenvandewormen. In Hoofdstuk 9 worden de resultaten van de voorgaande hoofdstukken besproken met nadruk op de gevolgen voor de toepassing van L. variegatus in afvalwaterzuivering. Figuren 9.1 & 9.2 vatten de resultaten samen van een typisch batchexperiment waarin L. variegatus gevoed wordt met communaal slib. Deze resultaten(samenmetliteratuurgegevens)wordenbesprokenvoorelkesectievaneen grootschalig systeem voor slibreductie met L. variegatus (Figuur 9.3): slib, reactor, wormen,wormenfeces,wormenbiomassaeneffluent.Tenslottewordtdehaalbaarheid vaneendergelijksysteembesprokenenwordenaanbevelingenvoorverderonderzoek gedaan. Zoalsbovenvermeld,lijkencommunaleslibsoortenrechtstreeksafkomstiguitde ATsvanRWZI’shetmeestgeschiktvoorverteringdoor L. variegatus ,maarslibsoorten met een hoog eiwitgehalte (zoals van voedselverwerkende industrieën) of voorbehandelde slibsoorten (bijv. voorverteerd) zouden ook geschikt kunnen zijn. De concentratieongeïoniseerdammoniamagechternooithogerzijndan2mg/Lenmede daarom moeten anoxische condities en hoge pH waarden vermeden worden. Een waarschuwingssysteemvoordezeverbindingisdaaromnoodzakelijk. L. variegatus kan hetbesttoegepastwordenineenafzonderlijkereactormetlagendragermateriaal,een voortdurende stroom slib of effluent en voldoende beluchting om de zuurstofconcentratie rond hun staarten boven 3 tot 4 mg/L te houden. In koudere perioden zou verwarming nodig kunnen zijn om hoge slibverteringssnelheden te handhaven,maartemperaturenboven25°Cmoetenvermedenworden.Detoepassing van een mengpopulatie met sessiele Tubificidae zou de groeisnelheden van L. variegatus kunnenverhogen,evenalsdetotalestabiliteitvandewormenpopulatie.De aanwezigheid van grote populaties natuurlijke vijanden, zoals bloedzuigers, moet voorkomen worden. De worm/slib verhouding zal afhankelijk zijn van de condities in

╡161 ╞

een reactor (zoals slibtoevoer), maar zou wellicht bijgestuurd kunnen worden door regelmatig een deel van de wormen te oogsten. Een minimale initiële worm/slib verhouding is nodig voor een meetbaar effect op slibreductie, afhankelijk van de endogene activiteit van het gebruikte slib. De maximale en/of optimale wormendichtheden die in een continu systeem gehouden kunnen worden zijn echter nog onbekende parameters. De belangrijkste eigenschappen van de structuur en samenstelling van de wormenfeces zijn het afgenomen volume, de toegenomen concentraties as en zware metalen en waarschijnlijk ook een lagere eiwitconcentratie. De ontwaterbaarheid van de feces moet nog bepaald worden maar het vermoeden bestaatdatdezebeterisdandievanhetslib.De belangrijkste eigenschappen van de geproduceerde wormenbiomassa zijn de hoge eiwitconcentraties en de lage concentratieschroom,koper,loodennikkelinvergelijkingmetslib.Deconcentraties cadmium en zink zijn echter soms vergelijkbaar met die in slib. Afhankelijk van de verwachtetoepassingvandewormenbiomassazullendeconcentratiesvandezemetalen enandereverontreinigingenzoalsorganischemicroverontreinigingen bepaald moeten worden. Mogelijke opties voor het totale wormenmateriaal zijn aquariumvisvoer en meststofindelandbouw.Anderzijdskunnenbepaaldefractiesuithetmateriaal(zoals aminozuren of enzymen) geïsoleerd en hergebruikt worden. Het effluent van een wormenreactor moet waarschijnlijk geloosd worden in de RWZI, aangezien het waarschijnlijk hogere concentraties nutriënten en zwevende stof bevat dan reguliere effluenten. Berekeningenmetdedatauitditonderzoeklatenziendatdetoepassingvande aquatischewormensoort L. variegatus inafvalwaterzuiveringvoorhetverminderenvan deslibproductieenhetterugwinnenvanwaardevollecomponentenpotentieheeft.De uiteindelijke haalbaarheid zal echter niet alleen afhankelijk zijn van de lagere slibverwerkingskosten. Minstens zo belangrijke factoren zijn de maximaal effectieve wormendichtheid die aan te houden is (welke de reactorkosten bepaalt), evenals de productie, hergebruiksmogelijkheden en waarde van de geproduceerde wormenbiomassa.Ditzijnallepuntenvoorverderonderzoek.

╡162 ╞

╡╡╡References ╞╞╞ A Alam, M. Z. & A. Fakhru'lRazi (2003). Enhanced settleability and dewaterability of fungal treated domestic wastewater sludge by liquid state bioconversion process. Water Research 37 :11181124. Alsterberg,G.(1922).DierespiratorischenMechanismenderTubificiden.Eineexperimentell physiologische Untersuchung auf ökologischer Grundlage. Lund, Hăkan Ohlssons Buchdrückerei(inGerman). Alsterberg,G.(1924).DieSinnesphysiologiederTubificiden.EineexperimentelleUntersuchung mit besonderer Berücksichtigung der respiratorischen Mechanismen. Lund, Hăkan OhlssonsBuchdrückerei(inGerman). Alvarenga,P.,P.Palma,A.P.Gonçalves,R.M.Fernandes,A.C.CunhaQueda,E.Duarte&G. Vallini (2007). Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environment International 33 :505513. Andreottola,G.&P.Foladori(2006).Areviewandassessmentofemergingtechnologiesforthe minimization of excess sludge production in wastewater treatment plants. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 41 :18531872. Ankley,G.T.(1996).Evaluationofmetal/acidvolatilesulfiderelationshipsinthepredictionof metal bioaccumulation by benthic macroinvertebrates. Environmental Toxicology and Chemistry 15 :21382146. Ankley, G. T., R. J. Erickson, B. R. Sheedy, P. A. Kosian, V. R. Mattson & J. S. Cox (1997). Evaluation of models for predicting the phototoxic potency of polycyclic aromatic hydrocarbons. Aquatic Toxicology 37 :3750. Ankley,G.T.,E.N.Leonard&V.R.Mattson(1994).Predictionofbioaccumulationofmetals from contaminated sediments by the oligochaete Lumbriculus variegatus . Water Research 28 :10711076. APHA (1998). Standard methods for the examination of water and wastewater. 20th edition. Washington,DC,AmericanPublicHealthAssociation. Appleby,A.G.&R.O.Brinkhurst(1970).Defecationrateofthreetubificidoligochaetesfoundin thesedimentofTorontoHarbour,Ontario. Journal of the Fisheries Research Board of Canada 27 :19711982. AquaticFoods(2007).'AquaticFoods'webpage,2007.www.aquaticfoods.com . Aston,R.J.(1973).Tubificidsandwaterquality:areview. Environmental Pollution 5:110. Aston, R. J. & A. G. P. Milner (1981). Conditions required for the culture of Branchiura sowerbyi (Oligochaeta:Tubificidae)inactivatedsludge. Aquaculture 26 :155160. B Back, H. (1990). Epidermal uptake of lead cadmium and zinc in tubificid worms. Oecologia Berlin 85 :226232.

╡163 ╞

Back, H. & F. Prosi (1985). Distribution of inorganic cations In Limnodrilus udekemianus Oligochaeta Tubificidae using laser induced microprobe mass analysis with special emphasisonheavymetals. Micron and Microscopica Acta 16 :145150. Bailey, H. C. & D. H. W. Liu (1980). Lumbriculus variegatus , a benthic oligochaete, as a bioassayorganism.InProceedingsof:AquaticToxicologyandHazardAssessment,3rd Symposium,ASTMSTP707,Philadelphia, Bajsa,O.,J.Nair,K.Mathew&G.E.Ho(2003).Vermicultureasatoolfordomesticwastewater management. Water Science and Technology 48 :125132. BauerHilty, A., R. Dallinger & B. Berger (1989). Isolation and partial characterization of a cadmiumbinding protein from Lumbriculus variegatus (Oligochaeta, Annelida). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 94 : 373379. Bell,G.(1984).Evolutionaryandnonevolutionarytheoriesofsenescence. American Naturalist 124 :600603. Berezina,N.A.(2001).InfluenceofambientpHonfreshwaterinvertebratesunderexperimental conditions. Russian Journal of Ecology 32 :343351. Bervoets,L.,R.Blust,M.deWit&R.Verheyen(1997).Relationshipsbetweenriversediment characteristicsandtracemetalconcentrationsintubificidwormsandchironomidlarvae. Environmental Pollution 95 :345356. Bischoff, A. A. (2007). Solid waste reduction of closed recirculated aquaculture systems by secondarycultureofdetritivorousorganisms.PhDthesis,ChristianAlbrechtsUniversity, Kiel,Germany. Boehler, M. & H. Siegrist (2006). Potential of activated sludge disintegration. Water Science and Technology 53 :207216. Borcard, D., P. Legendre & P. Drapeau (1992). Partialling out the spatial component of ecologicalvariation. Ecology 73 :10451055. Bouché, M.L., F. Habets, S. BiagiantiRisbourg & G. Vernet (2000). Toxic effects and bioaccumulationofcadmiumintheaquaticoligochaete Tubifex tubifex . Ecotoxicology and Environmental Safety 46 :246251. Bowker,D.W.,M.T.Wareham&M.A.Learner(1985).Theingestionandassimilationofalgae by Nais elinguis (Oligochaeta:Naididae). Oecologia 67 :282285. Boyer,R.F.(1993).Modernexperimentalbiochemistry.2ndedition.RedwoodCity,California, TheBenjamin/CummingPublishingCo.Inc. Brinkhurst, R. O. (1971). A guide for the identification of British Aquatic Oligochaeta. 2nd revisededition.Ambleside,FreshwaterBiologicalAssociation. Brinkhurst, R. O.(1974).Factors mediatinginterspecificaggregationoftubificidoligochaetes. Journal of the Fisheries Research Board of Canada 31 :460462. Brinkhurst, R. O. (1996). On the role of tubificid oligochaetes in relation to fish disease with specialreferencetothemyxozoa. Annual Review of Fish Diseases 6:2940. Brinkhurst, R. O. & M. J. Austin (1979). Assimilation by aquatic Oligochaeta. Internationale Revue der gesamten Hydrobiologie 64 :245250. Brinkhurst, R. O. & K. E. Chua (1969). Preliminary investigation of the exploitation of some potentialnutritionalresourcesbythreesympatrictubificidoligochaetes. Journal of the Fisheries Research Board of Canada 26 :26592668.

╡164 ╞ ╡References ╞

Brinkhurst, R. O., K. E. Chua & N. K. Kaushik (1972). Interspecific interactions and selective feedingbytubificidoligochaetes. Limnology and Oceanography 17 :122133. Brinkhurst, R. O. & B. G. M. Jamieson (1971). Aquatic Oligochaeta of the world. Edinburgh, OliverandBoyd. Brinkhurst,R.O.&C.R.Kennedy(1965).StudiesonthebiologyoftheTubificidae(Annelida, Oligochaeta)inapollutedstream. Jounal of Animal Ecology 34 :429443. Brodersen,K.P.,O.Pedersen,C.Lindegaard&K.Hamburger(2004).Chironomids(Diptera) and oxyregulatory capacity: An experimental approach to paleolimnological interpretation. Limnology and Oceanography 49 :15491559. Bukuru,G.&Y.Jian(2005).Synchronousmunicipalseweragesludgestabilization. Journal of Environmental Sciences 17 :5961. Buys, B. R. (2005). Personal communication. Subdepartment of Environmental Technology, WageningenUniversity,theNetherlands. C Cardosa,V.L.&C.E.Ramirez(2002).Vermicompostingofsewagesludge:Anewtechnology forMexico. Water Science and Technology 46 :153158. Cetin, S. & A. Erdincler (2004). The role of carbohydrate and protein parts of extracellular polymeric substances on the dewaterability of biological sludges. Water Science and Technology 50 :4956. Chapman,K.K.,M.J.Benton,R.O.Brinkhurst&P.R.Scheuerman(1999).Useoftheaquatic oligochaetes Lumbriculus variegatus and Tubifex tubifex for assessing the toxicity of copper and cadmium in a spikedartificialsediment toxicity test. Environmental Toxicology 14 :271278. Chapman, P. M. & R. O. Brinkhurst (1984). Lethal and sublethal tolerances of aquatic oligochaeteswithreferencetotheiruseasabioticindexofpollution. Hydrobiologia 115 : 139144. Chapman, P. M., M. A. Farrell & R. O. Brinkhurst (1982a). Relative tolerances of selected aquatic oligochaetes to combinations of pollutants and environmental factors. Aquatic Toxicology 2:6978. Chapman,P.M.,M.A.Farrell&R.O.Brinkhurst(1982b).Effectsofspeciesinteractionsonthe survival and respiration of Limnodrilus hoffmeisteri and Tubifex tubifex (Oligochaeta, Tubificidae)exposedto variouspollutantsand environmentalfactors. Water Research 16 :14051408. Christensen,B.(1980).AnimalCytogenetics.Volume2.Annelida.Berlin,Stuttgart,Gebrueder Borntraeger. Christensen,B.(1984).AsexualpropagationandreproductivestrategiesinaquaticOligochaeta. Hydrobiologia 115 :9195. Ciutat, A., M. Gerino, N. MesmerDudons, P. Anschutz & A. Boudou (2005). Cadmium bioaccumulation in Tubificidae from the overlying water source and effects on bioturbation. Ecotoxicology and Environmental Safety 60 :237246. Coenen,J.,M.vanGastel&K.deJong(2005).Potentieelvoorduurzameenergiemetbiogasuit rioolwaterzuiveringen.STOWA,theNetherlands.Report2005wO3.

╡165 ╞

Conrad, A. U., S. D. Comber & K. Simkiss (2002). Pyrene bioavailability; effect of sediment chemical contact time on routes of uptake in an oligochaete worm. Chemosphere 49 : 447454. Cook, D. G. (1969). Observations on the life history and ecology of some Lumbriculidae (Annelida,Oligochaeta). Hydrobiologia 34 :561574. Cross,W.H.(1976).Astudyofpredationratesofleechesontubificidwormsunderlaboratory conditions. Ohio Journal of Science 76 :164166. Curds,C.R.&H.A.Hawkes(1975).Ecologicalaspectsofusedwatertreatment.Volume1The organismsandtheirecology.London,AcademicPressInc. Curry,J.P.&O.Schmidt(2007).ThefeedingecologyofearthwormsAreview. Pedobiologia 50 :463477. D Dajoz,R.(1977).Introductiontoecology.London,HodderandStoughton. Dawson,T.D.,K.G.Lott,E.N.Leonard&D.R.Mount(2003).Timecourseofmetallossin Lumbriculus variegatus following sediment exposure. Environmental Toxicology and Chemistry 22 :886889. DeBoer,G.F.&O.Sova(1998).Vermicompostingasaresourceforbiodegradabledetergents. Concept article for the 4th International Congress on Zero Emissions Research and Initiatives (ZERI), Namibia, October 14-17, 1998. De Jong, K. (2007). Zelf zuiveringsslib verwerken wordt aantrekkelijk. Utilities 4: 2023 (in Dutch). Degn,H.&B.Kristensen(1981).Lowsensitivityof Tubifex sprespirationtohydrogensulfide andotherinhibitors. Comparative Biochemistry and Physiology B 69 :809818. Delmotte,S.,F.J.R.Meysman,A.Ciutat,A.Boudou,S.Sauvage&M.Gerino(2007).Cadmium transport in sediments by tubificid bioturbation: An assessment of model complexity. Geochimica et Cosmochimica Acta 71 :844862. Densem,J.W.(1982).Growthstudiesof Tubifex tubifex (Oligochaeta:Tubificidae)onsewage sludge.PhDthesis,UniversityofWales,UK. Dermott, R. & M. Munawar (1992). A simple and sensitive assay for evaluation of sediment toxicityusing Lumbriculus variegatus (Müller). Hydrobiologia 235-236 :407414. Drewes,C.D.(1999).Helicalswimmingandbodyreversalbehaviorsin Lumbriculus variegatus (Annelida::Lumbriculidae). Hydrobiologia 406 :263269. Drewes,C.D.(2005).‘Invertebatebiology, Lumbriculus variegatus ,Neurobiology:Educational materialsandresources’webpage,2007. http://www.eeob.iastate.edu/faculty/DrewesC/htdocs. Drewes, C. D. & C. R. Fourtner (1989). Hindsight and rapid escape reflex in a freshwater oligochaete. Biological Bulletin 177 :363371. Drewes,C.D.(2004).Personalcommunication.IowaStateUniversity,US. Dubois,M.,K.A.Gilles,J.K.Hamilton,P.A.Rebers&E.Swith(1956).Colorimetricmethodfor determinationofsugarandrelatedsubstances. Analytical Chemistry 28 :350356.

╡166 ╞ ╡References ╞

E Egeler,P.,M.Meller,J.Roembke,P.Spoerlein,B.Streit&R.Nagel(2001). Tubifex tubifex asa linkinfoodchaintransferofhexachlorobenzenefrom contaminated sediment to fish. Hydrobiologia 463 :171184. Elissen,H.J.H.,H.Temmink&C.J.N.Buisman(2007).Werkwijzevoorhetvrijmakenvan aquatische wormen uit een drager en predatiereactor. Wetsus, Centre for Sustainable Water Technology, the Netherlands. Patent application NL1032621 to be published in April 2008 (inDutch). Erseus, C., M. Kallersjo, M. Ekman & R. Hovmoller (2002). 18S rDNA phylogeny of the Tubificidae (Clitellata) and its constituent taxa: Dismissal of the Naididae. Molecular Phylogenetics and Evolution 22 :414422. Eskicioglu,C.,K.J.Kennedy&R.L.Droste(2006).Characterizationofsolubleorganicmatter of waste activated sludge before and after thermal pretreatment. Water Research 40 : 37253736. Evangelista,A.D.,N.R.Fortes&C.B.Santiago(2005).Comparisonofsomeliveorganismsand artificialdietasfeedforAsiancatfish Clarias macrocephalus (Günther)larvae. Journal of Applied Ichthyology 21 :437443. F Finogenova,N.P.&T.M.Lobasheva(1987).Growth of Tubifex tubifex Müller (Oligochaeta, Tubificidae) under various trophic conditions. Internationale Revue der gesamten Hydrobiologie 72 :709726. Fisher,S.W.,S.W.ChordasIII&P.F.Landrum(1999).Lethalandsublethalbodyresiduesfor PCB intoxication in the oligochaete, Lumbriculus variegatus . Aquatic Toxicology 45 : 115126. Forster, C. F. (1971). Activated sludge surfaces in relation to the sludge volume index. Water Research 5:861870. Frederickson,J.&G.Howell(2003).Largescalevermicomposting:emissionofnitrousoxide andeffectsoftemperatureonearthwormpopulations. Pedobiologia 47 :724730. Frossard, P. (1982). The erythrocruorin of Eisenia fetida . I. Properties and subunit structure. Biochimica et Biophysica Acta 704 :524534. G Gardner,W.S.,T.F.Nalepa,M.A.Quigley&J.M.Malczyk(1981).Releaseofphosphorusby certainbenthicinvertebrates. Canadian Journal of Fisheries and Aquatic Sciences 38 : 978981. Garg,P.,A.Gupta&S.Satya(2006).Vermicompostingofdifferenttypesofwasteusing Eisenia foetida :Acomparativestudy. Bioresource Technology 97 :391395. Gaskell,P.N.,A.C.Brooks&L.Maltby(2007).Variationinthebioaccumulationofasediment sorbed hydrophobic compound by benthic macroinvertebrates: Patterns and mechanisms. Environmental Science and Technology 41 :17831789. Gnaiger, E. & I. Staudigl (1987a). Aerobic metabolism and physiological responses of aquatic oligochaetes to environmental anoxia: heat dissipation, oxygen consumption, feeding anddefecation. Physiological Zoology 60 :659677.

╡167 ╞

Gnaiger,E.,R.Kaufmann&I.Staudigl(1987b).Physiologicalreactionsofaquaticoligochaetes toenvironmentalanoxia. Hydrobiologia 155 :155. Gujer,W.,M.Henze,T.Mino&M.vanLoosdrecht(1999).Activatedsludgemodelno.3. Water Science and Technology 39 :183193. Gunn, A. M., D. T. E. Hunt & D. A. Winnard (1989). The effect of heavy metal speciation in sedimentonbioavailabilitytotubificidworms. Hydrobiologia 188-189 :487496. Guo,X.s.,J.x.Liu,Y.s.Wei&L.Li(2007).SludgereductionwithTubificidaeandtheimpact on the performance of the wastewater treatment process. Journal of Environmental Sciences 19 :257263. Full article not yet available . H Hansen,J. A.,J. Lipton,P.G.Welsh, D.Cacela &B.MacConnell(2004).Reducedgrowthof rainbowtrout( Oncorhynchus mykiss )fedaliveinvertebratedietpreexposedtometal contaminatedsediments. Environmental Toxicology and Chemistry 23 :19021911. Harper,R.M.,J.C.Fry&M.A.Learner(1981a).Abacteriologicalinvestigationtoelucidatethe feedingbiologyof Nais variabilis (Oligochaeta:Naididae). Freshwater Biology 11 :227 236. Harper, R. M., J. C. Fry & M. A. Learner (1981b). Digestion of bacteria by Nais variabilis (Oligochaeta)asestablishedbyautoradiography. Oikos 36 :211218. Hartenstein, R., D. L. Kaplan & E. F. Neuhauser (1984). Earthworms and trickling filters. Journal of the Water Pollution Control Federation 56 :294298. Hawkes, H. A. & M. R. N. Shephard (1972). The effect of dosing frequency on the seasonal fluctuationsandverticaldistributionofsolidsandgrazingfaunainsewagepercolating filters. Water Research 6:721730. Hendrickx, T. L. G. (2007). Personal communication. Subdepartment of Environmental Technology,WageningenUniversity,theNetherlands. Hendrickx,T.L.G.,H.Temmink,C.J.N.Buisman&H.J.H.Elissen(2006).Sludgepredation using aquatic worms. In Proceedings of: IWA Specialized Conference Sustainable Sludge Management: State of the Art, Challenges and Perspectives, Moscow, Russia, 2006. Hessling,R.&G.Purschke(2000).Immunohistochemical(cLSM)andultrastructuralanalysis of the central nervous system and sense organs in Aeolosoma hemprichi (Annelida, Aeolosomatidae). Zoomorphology 120 :6578. Hornor,S.G.&M.J.Mitchell(1981).Effectoftheearthworm, Eisenia foetida (Oligochaeta),on fluxes of volatile carbon and sulfur compounds from sewage sludge. Soil Biology & Biochemistry 13 : Hospido,A.,M.T.Moreira,M.Martín,M.Rigola&G.Feijoo(2005).Environmentalevaluation of different treatment processes for sludge from urban wastewater treatments: Anaerobic digestion versus thermal processes. International Journal of Life Cycle Assessment 10 :336345. Huang,X.,P.Liang&Y.Qian(2007).Excesssludgereductioninducedby Tubifex tubifex ina recycledsludgereactor. Journal of Biotechnology 127 :443451. Hung, W. T., I. L. Chang, W. W. Lin & D. J. Lee (1996). Unidirectional freezing of waste activatedsludges:Effectsoffreezingspeed. Environmental Science and Technology 30 : 23912396.

╡168 ╞ ╡References ╞

I Inamori, Y., Y. Kuniyasu, N. Hayashi, H. Ohtake & R. Sudo (1990). Monoxenic and mixed cultures of the small metazoa Philodina erythrophthalma and Aeolosoma hemprichi isolatedfromawastewatertreatmentprocess. Applied Microbiology and Biotechnology 34 :404407. Inamori,Y.,Y.Kuniyasu&R.Sudo(1987).Roleofsmallermetazoainwaterpurificationand sludgereduction. Japanese Journal of Water Treatment Biology 23 :1223(inJapanese withEnglishabstract). Inamori,Y.,R.Suzuki&R.Sudo(1983).Masscultureofsmallaquaticoligochaeta. Research report from the National Institute for Environmental Studies 47 : 125137 (translated fromJapanese). Ingersoll,C.G.,E.L.Brunson,N.Wang,F.J.Dwyer,G.T.Ankley,D.R.Mount,J.Huckins,J. Petty&P.F.Landrum(2003).Uptakeanddepurationofnonionicorganiccontaminants from sediment by the oligochaete Lumbriculus variegatus . Environmental Toxicology and Chemistry 22 :872885. Ingersoll, C. G., G. A. Burton, T. D. Dawson, F. J. Dwyer, D. S. Ireland, N. E. Kemble, D. R. Mount,T.J.NorbergKing,P.K.Sibley&L.Stahl(2000).Methodsformeasuringthe toxicity and bioaccumulation of sedimentassociated contaminants with freshwater invertebrates.2ndedition.UnitedStatesEnvironmentalProtectionAgency,US.Report EPA600/R99/064. Ivleva, I. V. (1973). Mass cultivation of invertebrates. Biology and methods. Jerusalem, Keter Press. J Janssen,P.M.J.(2007).Personalcommunication.DHVWater,theNetherlands. Janssen,P.M.J.,W.H.Rulkens,J.H.Rensink&H.F.vanderRoest(1998).Thepotentialfor metazoainbiologicalwastewatertreatment. Sludge Management. WQI 2527. Janssen, P. M. J., J. Verkuijlen & H. F. van der Roest (2002). Slibpredatie door inzet van oligochaete wormen. Pilotonderzoek naar slibreductie op de rwzi Bennekom. STOWA, theNetherlands.Report200217(inDutchwithEnglishabstract). Jerez,A.,P.Partal,I.Martínez,C.Gallegos&A.Guerrero(2007).Eggwhitebasedbioplastics developedbythermomechanicalprocessing. Journal of Food Engineering 82 :608617. Jongman,R.H.,C.J.F.terBraak&O.F.R.vanTongeren(1987).Dataanalysisincommunity andlandscapeecology.Wageningen,theNetherlands,Pudoc. Jørgensen,K.F.&K.Jensen(1978).Massoccurrenceoftheoligochaete Aeolosoma hemprichi Ehrenberginactivatedsludge. Biokon Rep. 7:911. Juget,J.,V.Goubier&D.Barthélémy(1989).Intrinsicandextrinsicvariablescontrollingthe productivityofasexualpopulationsof Nais spp.(Naididae,Oligochaeta). Hydrobiologia 180 :177184. Jung, S.J., K. Miyanaga, Y. Tanji & H. Unno (2006). Effect of intermittent aeration on the decreaseofbiologicalsludgeamount. Biochemical Engineering Journal 27 :246251.

╡169 ╞

K Kamemoto,F.I.&C.J.Goodnight(1956).Theeffectsofvariousconcentrationsofionsonthe asexual reproduction of the oligochaete Aeolosoma hemprichi . Transactions of the American Microscopical Society Invertebrate Biology 75 :219228. Kaster,J.L.,J.V.Klump,J.Meyer,J.Krezoski&M.E.Smith(1984).Comparisonofdefecation ratesof Limnodrilus hoffmeisteri claparede(Tubificidae)usingtwodifferentmethods. Hydrobiologia 111 :181184. Katharios,P.,R.P.Smullen&V.Inglis(2005).Theuseofthepolychaeteworm Nereis virens eggsasvehicleforthedeliveryofoxytetracyclinein Solea solea larvae. Aquaculture 243 : 17. Kaufmann, R. (1983). VAMP: a video activity monitoring processor for the registration of animallocomotoractivity. Journal of Experimental Biology 104 :295298. Khanal, S. K., D. Grewell, S. Sung & J. van Leeuwen (2007). Ultrasound applications in wastewatersludgepretreatment:Areview. Critical Reviews in Environmental Science and Technology 37 :277313. Kim,M.H.&J.H.Hao(1990).Comparisonofactivatedsludgedecayunderaerobicandanoxic conditions. Research Journal of the Water Pollution Control Federation 62 :160168. Kizilkaya, R. & S. Hepsen (2004). Effect of biosolid amendment on enzyme activities in earthworm( Lumbricus terrestris )casts. Journal of Plant Nutrition and Soil Science 167 : 202208. Kosiorek,D.(1974).Developmentcycleof Tubifex tubifex Müll .inexperimentalculture. Polish archives of hydrobiology/Polskie archiwum hydrobiologii 21 :411422. Krishnan,N.&S.R.Reddy(1989).Combinedeffectsofqualityandquantityoffoodongrowth andbodycompositionoftheairbreathingfish Channa gachua (Ham.). Aquaculture 76 : 7996. Kroiss,H.(2004).Whatisthepotentialforutilizingtheresourcesinsludge? Water Science and Technology 49 :110. Kukkonen,J.&P.F.Landrum(1995).Measuringassimilationefficienciesforsedimentbound PAHandPCBcongenersbybenthicorganisms. Aquatic Toxicology 32 :7592. Kuniyasu, K., N. Hayashi, Y. Inamori & R. Sudo (1997). Effect of environmental factors on growthcharacteristicsofOligochaeta 33 :207214(translatedfromJapanese). Kuwahara, M. & T. Yamamoto (1981). Culture of Aeolosoma spp Archioligochaeta found in activated sludge. Kagawa Daigaku Nogakubu Gakujutsu Hokoku 33 : 7580 (in JapanesewithEnglishabstract). L Lake,D.L.,P.W.W.Kirk&J.N.Lester(1984).Fractionation,characterization,andspeciation of heavy metals in sewage sludge and sludgeamended soils: A review. Journal of Environmental Quality 13 :175183. Landesman,L.(1996).'Blackworms( Lumbriculus variegatus ),asecondcropfromtroutfarms' webpage,2007.http://us.share.geocities.com/landesman.geo/Blackworm.ppt . Learner,M.A.(1979).ThedistributionandecologyoftheNaididae(Oligochaeta)whichinhabit thefilterbedsofsewageworksinBritain. Water Research 13 :12911299.

╡170 ╞ ╡References ╞

Learner,M.A.&H.A.Chawner(1998).Macroinvertebrateassociationsinsewagefilterbeds andtheirrelationshiptooperationalpractice. Journal of Applied Ecology 35 :720747. Learner,M.A.,G.Lochhead&B.D.Hughes(1978).AreviewofthebiologyofBritishNaididae (Oligochaeta)withemphasisontheloticenvironment. Freshwater Biology 8:357375. Lee,N.M.&T.Welander(1996).Reducingsludgeproductioninaerobicwastewatertreatment throughmanipulationoftheecosystem. Water Research 30 :17811790. Lee,S.,S.Basu,C.W.Tyler&I.W.Wei(2004).CiliatepopulationsasbioindicatorsatDeer IslandTreatmentPlant. Advances in Environmental Research 8:371378. Leppänen, M. T. (1999). Bioaccumulation of sedimentassociated polycyclic aromatic hydrocarbons in the freshwater oligochaete Lumbriculus variegatus (Müller). PhD thesis,UniversityofJoensuu,Finland. Leppänen,M.T.&J.V.K.Kukkonen(1998a).Factorsaffectingfeedingrate,reproductionand growthofanoligochaete Lumbriculus variegatus (Müller). Hydrobiologia 377 :183194. Leppänen, M. T. & J. V. K. Kukkonen (1998b). Relationship between reproduction, sediment typeandfeedingactivityof Lumbriculus variegatus (Müller):implicationsforsediment toxicitytesting. Environmental Toxicology and Chemistry 17 :21962202. Leppänen, M. T. & J. V. K. Kukkonen (2000). Fate of sedimentassociated pyrene and benzo[a]pyreneinthefreshwateroligochaete Lumbriculus variegatus (Müller). Aquatic Toxicology 49 :199212. Lesiuk,N.M.&C.D.Drewes(1999).Autotomyreflexinafreshwateroligochaete, Lumbriculus variegatus (Clitellata:Lumbriculidae). Hydrobiologia 406 :253261. Lester, J. N. (1987). Heavy metals in wastewater and sludge treatment processes. Volume 1. Sources,analysisandlegislation.BocaRaton,Florida,CRCPress,Inc. Liang, P., X. Huang & Y. Qian (2006a). Excess sludge reduction in activated sludge process throughpredationof Aeolosoma hemprichi . Biochemical Engineering Journal 28 :117 122. Liang, P., X. Huang, Y. Qian, Y. Wei & G. Ding (2006b). Determination and comparison of sludge reduction rates caused by microfaunas' predation. Bioresource Technology 97 : 854861. Liber,K.,D.J.Call,T.P.Markee,K.L.Schmude,M.D.Balcer,F.W.Whiteman&G.T.Ankley (1996). Effects of acidvolatile sulfide on zinc bioavailability and toxicity to benthic macroinvertebrates:aspikedsedimentfieldexperiment. Environmental Toxicology and Chemistry 15 :21132125. Liebig, M., P. Egeler, J. Oehlmann & T. Knacker (2005). Bioaccumulation of 14C17[alpha] ethinylestradiol by the aquatic oligochaete Lumbriculus variegatus in spiked artificial sediment. Chemosphere 59 :271280. Lietz,D.M.(1987).Potentialforaquaticoligochaetesaslivefoodincommercialaquaculture. Hydrobiologia 155 :309310. Little, C. (1984). Ecophysiology of Nais elinguis (Oligochaeta) in a brackishwater lagoon. Estuarine, Coastal and Shelf science 18 :231244. Liu, X., C. Hu & S. Zhang (2005). Effects of earthworm activity on fertility and heavy metal bioavailabilityinsewagesludge. Environment International 31 :874879. Lochhead,G.&M.A.Learner(1983).Theeffectoftemperatureonasexualpopulationgrowthof threespeciesofNaididae(Oligochaeta). Hydrobiologia 98 :107112.

╡171 ╞

Loden,M.S.(1981). Reproductive ecologyof Naididae(Oligochaeta). Hydrobiologia 83 :115 123. Loeffen,P.&B.Geraats(2005).Toekomstigekwantiteitenkwaliteitvanzuiveringsslib.STOWA, theNetherlands.Report200506(inDutch). Lotzof, M. (1999). The wonder of worms for sludge stabilisation. Journal of the Australian Water & Wastewater Association 26 :3842. Low,E.W.&H.A.Chase(1999).Reducingproduction of excess biomass during wastewater treatment. Water Research 33 :11191132. Lowers, J. M. & J. L. Bartholomew (2003). Detection of myxozoan parasites in oligochaetes importedasfoodforornamentalfish. Journal of Parasitology 89 :8491. LucanBouché, M.L., S. BiagiantiRisbourg, F. Arsac & G. Vernet (1999). An original decontaminationprocessdevelopedbytheaquaticoligochaete Tubifex tubifex exposed tocopperandlead. Aquatic Toxicology 45 :917. Luxmy, B. S., T. Kubo & K. Yamamoto (2001). Sludge reduction potential of metazoa in membranebioreactors. Water Science and Technology 44 :197202. M MacMichael,G.J.,L.R.Brown&C.M.Ladner(1988).Anoligochaeteasapotentialfoodsource forfishinaquaculture. The Progressive Fish-culturist 50 :3135. Madoni, P., D. Davoli & E. Chierici (1993). Comparative analysis of the activated sludge microfaunainseveralsewagetreatmentworks. Water Research 27 :14851491. Mäenpää,K.A.,A.J.Sormunen&J.V.K.Kukkonen(2003).Bioaccumulationandtoxicityof sedimentassociatedherbicides(ioxynil,pendimethalin,andbentazone)in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Ecotoxicology and Environmental Safety 56 :398410. Mahony,J.D.,D.M.DiToro,A.M.Gonzalez,M.Curto,M.Dilg,L.D.DeRosa&L.A.Sparrow (1996). Partitioning of metals to sediment organic carbon. Environmental Toxicology and Chemistry 15 :21872197. Marchese,M.R.&R.O.Brinkhurst(1996).Acomparisonoftwotubificidoligochaetespeciesas candidates for sublethal bioassay tests relevant to subtropical and tropical regions. Hydrobiologia 334 :163168. Marian,M.P.&T.J.Pandian(1985).Interferenceof Chironomus inanopenculturesystemfor Tubifex tubifex . Aquaculture 44 :249251. Marsh,L.,S.Subler,S.Mishra&M.Marini(2005). Suitability of aquaculture effluent solids mixedwithcardboardasafeedstockforvermicomposting. Bioresource Technology 96 : 413418. Marshall,J.W.&M.J.Winterbourn(1979).AnecologicalstudyofasmallNewZealandstream withparticularreferencetotheOligochaeta. Hydrobiologia 65 : Martinez,D.E.&J.S.Levinton(1992).Asexualmetazoansundergosenescence. Proceedings of the National Academy of Sciences of the United States of America 89 :99209923. McElhone, M. J. (1978). A population study of littoral dwelling Naididae (Oligochaeta) in a shallowmesotrophiclakeinNorthWales. Journal of Animal Ecology 47 :615626. McElhone, M. J. (1982). The distribution of Naididae ( Oligochaeta) in the littoral zone of selectedlakesinNorthWalesandShropshire. Freshwater Biology 12 :421425.

╡172 ╞ ╡References ╞

McMurtry, M. J., D. J. Rapport & K. E. Chua (1983). Substrate selection by tubificid oligochaetes. Canadian Journal of Fisheries and Aquatic Sciences 40 :16391646. MermillodBlondin, F., C. M. C. Des & M. Gerino (2003). Effects of the interaction between tubificid worms on the functioning of hyporheic sediments: An experimental study in sedimentcolumns. Archiv für Hydrobiologie 156 :203223. Merrington,G.,I.Oliver,R.J.Smernik&M.J.McLaughlin (2003). The influence of sewage sludge properties on sludgeborne metal availability. Advances in Environmental Research 8:2136. Michiels, I. C. & W. Traunspurger (2004). A three year study of seasonal dynamics of a zoobenthoscommunityinaeutrophiclake. Nematology 6:655669. Milbrink,G.(1987a).Biologicalcharacterizationofsedimentsbystandarizedtubificidbioassays. Hydrobiologia 155 :267275. Milbrink, G. (1987b). Mutualistic relationships between cohabiting tubificid species. Hydrobiologia 155 :193. Milbrink, G. & T. Timm (2001). Distribution and dispersal capacity of the PontoCaspian tubificidoligochaete Potamothrix moldaviensis VejdovskýetMrázek,1903intheBaltic SeaRegion. Hydrobiologia 463 :93102. Millward,R.N.,J.W.Fleeger,D.D.Reible,K.A.Keteles,B.P.Cunningham&L.Zhang(2001). Pyrenebioaccumulation,effectsofpyreneexposureonparticlesizeselection,andfecal pyrene content in the oligochaete Limnodrilus hoffmeisteri (Tubificidae, Oligochaeta). Environmental Toxicology and Chemistry 20 :13591366. Moore,J.W.(1978).Importanceofalgaeinthedietoftheoligochaetes Lumbriculus variegatus (Müller)and Rhyacodrilus sodalis (Eisen). Oecologia 35 :357363. Morgan, A. J. & C. Winters (1991). Diapause in the earthworm, Aporrectodea longa : Morphological and quantitative xray microanalysis of cryosectioned chloragogenous tissue. Scanning Microscopy 5:219227. Morris, D. J. & A. Adams (2006). Transmission of freshwater myxozoans during the asexual propagationofinvertebratehosts. International Journal for Parasitology 36 :371377. Mosleh,Y.Y.,S.ParisPalacios,F.Arnoult,M.Couderchet,S.BiagiantiRisbourg&G.Vernet (2004).Metallothioneininductionintheaquaticoligochaete Tubifex tubifex exposedto theherbicideisoproturon. Environmental Toxicology 19 :8893. Mosleh,Y.Y.,S.ParisPalacios&S.BiagiantiRisbourg(2006).Metallothioneinsinductionand antioxidative response in aquatic worms Tubifex tubifex (Oligochaeta, Tubificidae) exposedtocopper. Chemosphere 64 :121128. Mosleh, Y. Y., S. v. ParisPalacios, M. Couderchet, S. BiagiantiRisbourg & G. Vernet (2005). Effects of the herbicide isoproturon on metallothioneins, growth, and antioxidative defensesintheaquaticworm Tubifex tubifex (Oligochaeta,Tubificidae). Ecotoxicology 113. Mount, D. R., T. D. Dawson & L. P. Burkhard (1999). Implications of gut purging for tissue residues determined in bioaccumulation testing of sediment with Lumbriculus variegatus . Environmental Toxicology and Chemistry 18 :12441249. Mount,D.R.,T.L.Highland,V.R.Mattson,T.D.Dawson,K.G.Lott&C.G.Ingersoll(2006). Use of the oligochaete, Lumbriculus variegatus , as a prey organism for toxicant exposureoffishthroughthediet. Environmental Toxicology and Chemistry 25 :2760 2767.

╡173 ╞

Mulder,W.J.&B.Beelen(2007).Personalcommunication.Agrotechnology&FoodSciences Group,WageningenUniversityandResearchCentre,theNetherlands. N Nandini,S.&S.S.S.Sarma(2004).Effectof Aeolosoma sp.(Aphanoneura:Aeolosomatidae)on thepopulationdynamicsofselectedcladoceranspecies. Hydrobiologia 526 :157163. Ndegwa,P.M.&S.A.Thompson(2001).Integratingcompostingandvermicompostinginthe treatmentandbioconversionofbiosolids. Bioresource Technology 76 :107112. Nentwig, G. (2007). Effects of pharmaceuticals on aquatic invertebrates. Part II: The antidepressant drug fluoxetine. Archives of Environmental Contamination and Toxicology 52 :163170. Neyens,E.&J.Baeyens(2003).Areviewofthermalsludgepretreatmentprocessestoimprove dewaterability. Journal of Hazardous Materials 98 :5167. Neyens, E., J. Baeyens, B. de Heyder & M. Weemaes (2004). The potential of advanced treatmentmethodsforsewagesludge. Management of Environmental Quality 15 :916. Niederlehner,B.R.,A.L.Buikemajr.,C.A.Pittinger&J.Cairnsjr.(1984).Effectsofcadmium onthepopulationgrowthofabenthicinvertebrateAeolosoma headleyi (Oligochaeta). Environmental Toxicology and Chemistry 3:255262. Nowak, O. (2006). Optimizing the use of sludge treatment facilities at municipal WWTPs. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 41 :18071817. O Ødegaard, H. (2004). Sludge minimization technologies an overview. Water Science and Technology 49 :110. Ødegaard, H., B. Paulsrud & I. Karlsson (2002). Wastewater sludge as a resource: Sludge disposal strategies and corresponding treatment technologies aimed at sustainable handlingofwastewatersludge. Water Science and Technology 46 :295303. Oetken,M.,G.Nentwig,D.Löffler,T.Ternes&J.Oehlmann(2005).Effectsofpharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine. Archives of Environmental Contamination and Toxicology 49 :353361. P Park, C., M. M. AbuOrf & J. T. Novak (2006). The digestibility of waste activated sludges. Water Environment Research 78 :5968. Patrick, F. M. & M. Loutit (1976). Passage of metals in effluents, through bacteria to higher organisms. Water Research 10 :333335. Peeters,E.T.H.M.,A.Dewitte,A.A.Koelmans,J.A.vanderVelden&P.J.denBesten(2001). Evaluation of bioassays versus contaminant concentrations in explaining the macroinvertebrate community structure in the rhinemeuse delta, The Netherlands. Environmental Toxicology and Chemistry 20 :28832891. Pelegrí,S.P.&T.H.Blackburn(1995).Effectsof Tubifex tubifex (Oligochaeta:Tubificidae)on Nmineralization in freshwater sediments, measured with 15N isotopes. Aquatic Microbial Ecology 9:289294.

╡174 ╞ ╡References ╞

Penttinen,O.P.(1997).Effectsofanoxiaandxenobioticsonthemetabolicheatdissipationby freshwaterbenthicinvertebrates.PhDthesis,UniversityofJoensuu,Finland. PérezElvira, S. I., P. Nieto Diez & F. FdzPolanco (2006). Sludge minimisation technologies. Re-views in Environmental Science and Biotechnology 5:375398. Pesticide Action Network North America (2007). 'PAN Pesticides database' webpage, 2007. http://www.pesticideinfo.org . Petersen,S.,G.Arlt,A.Faubel&K.R.Carman(1998).Onthenutritivesignificanceofdissolved freeaminoaciduptakeforthecosmopolitanoligochaete Nais elinguis Müller(Naididae). Estuarine, Coastal and Shelf Science 46 :8591. Peterson, G. S., G. T. Ankley & E. N. Leonard (1996). Effect of bioturbation on metalsulfide oxidation in surficial freshwater sediments. Environmental Toxicology and Chemistry 15 :21472155. Phipps,G.L.,G.T.Ankley,D.A.Benoit&V.R.Mattson(1993).Useoftheaquaticoligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment associatedcontaminants. Environmental Toxicology and Chemistry 12 :269279. Pickavance, J. R. (1971). The ecology of Lumbriculus variegatus (Müller) (Oligochaeta, Lumbriculidae)inNewfoundland. Canadian Journal of Zoology 49 :337342. Poole,J.E.P.&J.C.Fry(1980).Astudyoftheprotozoanandmetazoanpopulationsofthree oxidationditches. Water Pollution Control 79 :1927. Postolache, C., G. Risnoveanu & A. Vadineanu (2006). Nitrogen and phosphorous excretion ratesbytubificidsfromthePrahovaRiver(Romania). Hydrobiologia 553 :121127. Protz,R.,W.J.Teesdale,J.A.Maxwell,J.L.Campbell&C.Duke(1993).Earthwormtransport ofheavymetalsfromsewagesludge:amicroPIXEapplicationinsoilscience. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 77 :509516. Putzer,V.M.,A.Zwaan&W.Wieser(1990).Anaerobicenergymetabolismintheoligochaete Lumbriculus variegatus Müller. Journal of Comparative Physiology B 159 :707715. Q Quinn, J. M., G. L. Steele, C. W. Hickey & M. L. Vickers (1994). Upper thermal tolerances of twelveNewZealandstreaminvertebratespecies. New Zealand Journal of Marine and Freshwater Research 28 :391397.

R Ramakrishna,D.M.&T.Viraraghavan(2005).Strategiesforsludgeminimizationinactivated sludgeprocessAreview. Fresenius Environmental Bulletin 14 :212. Rao,S.R.(2002).Appliednumericalmethodsforengineersandscientists.UpperSaddleRiver, NewJersey,PrenticeHall. Ratsak, C. H. (1994). Grazer induced sludge reduction in wastewater treatment. PhD thesis, VrijeUniversiteit,theNetherlands. Ratsak,C.H.(2001).Effectsof Nais elinguis ontheperformanceofanactivatedsludgeplant. Hydrobiologia 463 :217222. Ratsak,C.H.,S.A.L.M.Koouman&B.W.Kooi(1993).Modellingthegrowthofanoligochaete onactivatedsludge. Water Research 27 :739747.

╡175 ╞

Ratsak, C. H., K. A. Maarsen & S. A. L. M. Kooijman (1996). Effects of protozoa on carbon mineralizationinactivatedsludge. Water Research 30 :112. Ratsak, C. H. & J. Verkuijlen (2006). Sludge reduction by predatory activity of aquatic oligochaetesinwastewatertreatmentplants:scienceorfiction?Areview. Hydrobiologia 564 :197211. Reh,U.(1991).Calorimetryinecology. Thermochimica Acta 193 :107124. Reible,D.D.,V.Popov,K.T.Valsaraj,L.J.Thibodeaux,M.D.F.Lin,M.A.Todaro&J.W. Fleeger (1996). Contaminant fluxes from sediment due to tubificid oligochaete bioturbation. Water Research 30 :704714. Rensink, J. H. & W. H. Rulkens (1997). Using metazoa to reduce sludge production. Water Science and Technology 36 :171179. Reynoldson, T. B. (1939a). On the lifehistory and ecology of Lumbricullus lineatus Müll. (Oligochaeta). Annals of Applied Biology 26 :782799. Reynoldson, T. B. (1939b). Enchytraeid worms and the bacteria bed method of sewage treatment. Annals of Applied Biology 26 :138164. Reynoldson, T. B. (1948). An ecological study of the enchytraeid worm population of sewage bacterialbeds.Synthesisoffieldandlaboratorydata. Journal of Animal Ecology 17 :27 38. Reynoldson, T. B. (1987). The role of environmental factors in the ecology of tubificid oligochaetesanexperimentalstudy. Holarctic Ecology 10 :241248. Reynoldson, T. B., S. P. Thompson & J. L. Bamsey (1991). A sediment bioassay using the tubificid oligochaete worm Tubifex tubifex . Environmental Toxicology and Chemistry 10 :10611072. Roesijadi, G. (1992). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology 22 :81114. Roman,H.J.,J.E.Burgess&B.I.Pletschke(2006).Enzymetreatmenttodecreasesolidsand improvedigestionofprimarysewagesludge. African Journal of Biotechnology 5:963 967. Rulkens,W.H.(2004).SustainablesludgemanagementWhatarethechallengesforthefuture? Water Science and Technology 49 :1119. Rulkens,W.H.&J.D.Bien(2004).RecoveryofenergyfromsludgeComparisonofthevarious options. Water Science and Technology 50 :213221. S Schneider, O. (2006). Fish waste management by conversion into heterotrophic bacteria biomass.PhDthesis,WageningenUniversity,theNetherlands. Schönborn, W. (1984). The annual energy transfer from the communities of Ciliata to the population of Chaetogaster diastrophus (Gruithuizen) in the river Saale. Limnologica 16 :1523. Schönborn, W. (1985). Die ökologische Rolle der Gattung Nais (Oligochaeta) in der Saale. Zoologischer Anzeiger Jena 215 :311328. SchubauerBerigan,M.K.,P.D.Monson,C.W.West&G.T.Ankley(1995).InfluenceofpHon the toxicity of ammonia to Chironomus tentans and Lumbriculus variegatus . Environmental Toxicology and Chemistry 14 :713717.

╡176 ╞ ╡References ╞

Scott,E.,F.Peter&J.Sanders(2007).Biomassinthemanufactureofindustrialproductsthe useofproteinsandaminoacids. Applied Microbiology and Biotechnology 75 :751762. Sedlmeier, U. A. & K. H. Hoffmann (1989). Integumentary uptake of shortchain carboxylic acids by two freshwater oligochaetes Tubifex tubifex and Lumbriculus variegatus Specificityofuptakeandcharacterizationoftransportcarrier. Journal of Experimental Zoology 250 :128134. Selck,H.,A.W.Decho&V.E.Forbes(1999).Effectsofchronicmetalexposureandsediment organic matter on digestive absorption efficiency of cadmium by the depositfeeding polychaete Capitella species1. Environmental Toxicology and Chemistry 18 :12891297. Singer, R. (1978). Suction feeding in Aeolosoma ( Annelida). Transactions of the American Microscopical Society 97 :105111. Singh, N. B., A. K. Khare, D. S. Bhargava & S. Bhattacharya (2004). Optimum moisture requirement during vermicomposting using Perionyx excavatus . Applied Ecology and Environmental Research 2:5362. Smith,M.E.(1985).Populationandreproductivedynamicsof Nais communis (Oligochaeta: Naididae)fromaWisconsinlimnocrene. American Midland Naturalist 114 :152158. Smith,M.E.(1986).EcologyofNaididae(Oligochaeta)fromanalkalinebogstream:lifehistory patternsandcommunitystructure. Hydrobiologia 133 :7990. Solowiew, M. M. (1924). Uber die Rolle der Tubifex tubifex in der Schlammerzeugung. Internationale Revue der gesamten Hydrobiologie und Hydrographie 12 :90101. Spanjers,H.(1993).Respirometryinactivatedsludge.PhDthesis,WageningenUniversity,the Netherlands. Sperber, C. (1948). A taxonomical study of the Naididae. Uppsala, Almqvist & Wiksells BoktryckeriAb. Sperber,C.(1950).AguideforthedeterminationofEuropeanNaididae.InZoologiskabidrag frånUppsala29,p.4685. Sperry,W.A.(1943).Aurora(Illinois)sanitarydistrict1942. Sewage Works Journal 15 :949 953. Spinosa, L. (2001). Evolution of sewage sludge regulations in Europe. Water Science and Technology 44 :18. Spinosa,L.(2004).Fromsludgetoresourcesthroughbiosolids. Water Science and Technology 50 :18. Spinosa, L. (2007). Wastewater sludge: A global overview of the current status and future prospects.London,IWAPublishingLtd. Stafford, E. A. & A. G. J. Tacon (1984). Nutritive value of the earthworm, Dendrodrilus subrubicundus ,grownondomesticsewage,introutdiets. Agricultural Wastes 9:249 266. StatisticsNetherlands(CBS)(2007).'CBSStatline'webpage,http://statline.cbs.nl . SteenRedeker,E.,K.vanCampenhout,L.Bervoets,H.Reijnders&R.Blust(2007).Subcellular distribution of Cd in the aquatic oligochaete Tubifex tubifex , implications for trophic availabilityandtoxicity. Environmental Pollution 148 :166175. Stephan,C.,R.Erickson,C.Delos,T.Willingham,K.Ballentine&R.Pepin(1999).1999Update ofambientwaterqualitycriteriaforammonia.UnitedStatesEnvironmentalProtection Agency,US.ReportEPA822R99014. Stephenson,J.(1930).TheOligochaeta.Oxford,ClarendonPress.

╡177 ╞

Stürzenbaum,S.R.,C.Winters,M.Galay,A.J.Morgan&P.Kille(2001).Metaliontrafficking in earthworms. Identification of a cadmiumspecific metallothionein. Journal of Biological Chemistry 276 :3401334018. Sun, X. & U. Ghosh (2007). PCB bioavailability control in Lumbriculus variegatus through differentmodesofactivatedcarbonadditiontosediments. Environmental Science and Technology Szczesny,B.(1974).TheeffectofsewagefromthetownofKrynicaonthebenthicinvertebrate communitiesoftheKryniczankastream. Acta Hydrobiologica 16 :129. T Tchobanoglous,G.,F.L.Burton&H.D.Stensel(2003).Wastewaterengineering:treatmentand reuse.NewYork,McGrawHill. TerBraak,C.J.F.(1986).Canonicalcorrespondenceanalysis:aneweigenvectortechniquefor multivariatedirectgradientanalysis. Ecology 67 :11671179. Ter Braak, C. J. F. (1990). Update notes: CANOCO, Version 3.1. Wageningen, Wageningen University,AgriculturalMathematicsGroup. TerBraak,C.J.F.&P.Smilauer(1998).CANOCOreferencemanualanduser'sguidetoCanoco for Windows: Software for canonical community ordination (version 4.0). Ithaca, NY, MicrocomputerPower. Timm, T. (1980). Methods of culturing aquatic oligochaeta. In Proceedings of: Aquatic OligochaetaWorms.,ecologyandfaunisticstudiesintheUSSR.Proceedings ofthesymposiumonaquaticoligochaetaheldinTartu,1967,NewDelhi. Timm, T. (1999). A guide to the Estonian Annelida. Volume 1. Tallinn, Estonian Academy Publishers. Trodd, W. R., Mary KellyQuinn, P. Sweeney & B. Quirke (2005). A review of the status and distribution of the freeliving freshwater Oligochaeta of Ireland. Biology and Environment: Proceedings of the Royal Irish Academy 105B :5964. Turnell,J.R.,R.D.Faulkner&G.N.Hinch(2007).RecentadvancesinAustralianbroilerlitter utilisation. World's Poultry Science Journal 63 :223231. U UnitedStatesEnvironmentalProtectionAgency(2000).Methodsformeasuringthetoxicityand bioaccumulation of sedimentassociated contaminants with freshwater invertebrates. 2ndedition.EPA600/R99/064. United States Environmental Protection Agency (2007). 'ECOTOX database' webpage, 2007. http://cfpub.epa.gov/ecotox/ .

V Van Loosdrecht, M. C. M. & M. Henze (1999). Maintenance, endogeneous respiration, lysis, decayandpredation. Water Science and Technology 39 :107117. Van Rens, M., L.Luning&P.Loeffen(2005).Literatuurstudieslibdesintegratie. STOWA, the Netherlands.Report2005w04.

╡178 ╞ ╡References ╞

Vesilind,P.A.(1988).Capillarysuctiontimeasafundamentalmeasureofsludgedewaterability. Journal of the Water Pollution Control Federation 60 :215220. Vidal,D.E.&A.J.Horne(2003).Mercurytoxicityintheaquaticoligochaete Sparganophilus pearsei II: Autotomy as a novel form of protection. Archives of Environmental Contamination and Toxicology 45 :462467. W Wachs, B. (1967). Die OligochaetenFauna der Fliessgewässer unter besonderer Berücksichtigung der Beziehungen zwischen der TubificidenBesiedlung und dem Substrat. Archiv für Hydrobiologie 63 :310386(inGermanwithEnglishabstract). Wallace, J. B. & J. R. Webster (1996). The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41 :115139. Wang,X.&G.Matisoff(1997).Solutetransportinsedimentsbyalargefreshwateroligochaete, Branchiura sowerbyi . Environmental Science and Technology 31 :19261933. Wavre, M. & R. O. Brinkhurst (1971). Interactions between some tubificid oligochaetes and bacteriafoundinthesedimentsofTorontoHarbour,Ontario. Journal of the Fisheries Research Board of Canada 28 :335341. Wegener,J.W.M.,G.A.vandeBerg,G.J.Stroomberg&M.J.M.vanVelzen(2002).Therole ofsedimentfeedingoligochaete Tubifex ontheavailabilityoftracemetalsinsediment porewatersasdeterminedbydiffusivegradientsinthinfilms(DGT). Journal of Soils and Sediments 2:7176. Wei, Y. & J. Liu (2005). The discharged excess sludge treated by Oligochaeta. Water Science and Technology 52 :265272. Wei,Y.&J.Liu(2006).Sludgereductionwithanovelcombinedwormreactor. Hydrobiologia 564 :213222. Wei, Y., R. T. van Houten, A. R. Borger, D. H. Eikelboom & Y. Fan (2003a). Comparison performances of membrane bioreactor and conventional activated sludge processes on sludge reduction induced by Oligochaete. Environmental Science and Technology 37 : 31713180. Wei,Y.,R.T.vanHouten,A.R.Borger,D.H.Eikelboom&Y.Fan(2003b).Minimizationof excesssludgeproductionforbiologicalwastewatertreatment. Water Research 37 :4453 4467. Whitley, L. S. (1968). The resistance of tubificid worms to 3 common pollutants. Japanese Journal of Zoology 32 :193205. Whitten,B.K.&C.J.Goodnight(1966a).Toxicityofsomecommoninsecticidestotubificids. Journal of the Water Pollution Control Federation 38 :227235. Whitten,B.K.&C.J.Goodnight(1966b).Thecomparativechemicalcompositionoftwoaquatic oligochaetes. Comparative Biochemistry and Physiology 17 :1205. Wiederholm, T., A.M. Wiederholm & G. Milbrink (1987). Bulk sediment bioassays with five speciesoffreshwateroligochaetes. Water, Air and Soil Pollution 36 :131154. Wiegand, C., S. Pehkonen, J. Akkanen, O. P. Penttinen & J. V. K. Kukkonen (2007). Bioaccumulation of paraquat by Lumbriculus variegatus in the presence of dissolved naturalorganicmatterandimpactonenergycosts,biotransformationandantioxidative enzymes. Chemosphere 66 :558566.

╡179 ╞

Wiegant,W.M.,M.Würdemann,H.E.Kamphuis,J.vandeMarel&W.F.Koopmans(2005). Slibketenstudie.Onderzoeknaardeenergieenkostenaspectenindewaterenslibketen. STOWA,theNetherlands.Report200526(inDutch). Williams,N.V.,J.F.deL.G.Solbé&R.W.Edwards(1968).Aspectsofthedistribution,life historyandmetabolismoftheenchytraeidworms Lumbricullus rivalis (Levinsen)and Enchytraeus coronatus (N.&C.)inapercolatingfilter. Journal of Applied Ecology 6: 171183. Williams,P.M.(2005).Feedingbehaviourof Lumbriculus variegatus asanecologicalindicator of in situ sedimentcontamination.PhDthesis,UniversityofStirling,UK. Winters et al. ,R.O.(2004).Substantialreductionoforganicwastestreamsusingthenatural food chain. Public report. Wageningen University and Research Centre, DHV Water, GemeentelijkWaterbedrijfAmsterdam, Norit Membrane Technology,theNetherlands. Report235. Y Yanar, M., Y. Yanar & M. A. Genç (2003). Nutritional composition of Tubifex tubifex Müller, 1774(Annelida). E. U. Journal of Fisheries and Aquatic Sciences 20 :103110. Young, J. O. (1978). An ecological study of Phaenocora unipunctata (Örsted) (Turbellaria; Rhabdocoela):predatorpreyinterrelationships. Hydrobiologia 60 :145149. Young,J.O.&R.M.Procter(1985).Oligochaetesasafoodresourceoflakedwellingleeches. Journal of Freshwater Ecology 3:181187. Z Zhang, B. (1997). A study on microbial activities and the role of predators in membrane separationactivatedsludgeprocess.PhDthesis,UniversityofTokyo,Japan.

╡180 ╞

╡╡╡Appendix I ╞╞╞ SummaryofsludgeTSS(totalsuspendedsolids)reductionandgrowth(inbiomassand numbers) in time by Lumbriculus variegatus in 3 typical batch experiments. The experiments were done in aerated Erlenmeyer flasks (Experiment 1) or nonaerated Petridishes(Experiments2&3)at1520 °C,atW/S(wormtosludge)ratiosof0.20.3 (drymatterbased)withmunicipalsludges.Experiment1wasalsodescribedinChapter 4(Figure4.3).Inthisexperiment,allthesludgewasconsumed(faecespercentage=100 %)after6days.Faecespercentagesintheothertwoexperimentswerenotdetermined.

25

20 Exp120°C 15 Exp215°C Exp220°C 10 Exp315°C bywormsbyworms bywormsbyworms Exp320°C %TSSreduction%TSSreduction %TSSreduction%TSSreduction 5

0 0 5 10 15 20

Time(d) FigureA1FigureA1PercentageTSSreductionintimeby L. variegatus only(i.e.aftersubtractionofTSSreduction inthecontrolexperiments).

100

75 Exp120°C Exp215°C 50 Exp220°C Exp315°C bywormsbyworms bywormsbyworms 25 Exp320°C %biomassincrease %biomassincrease %biomassincrease%biomassincrease 0 0 5 10 15 20

Time(d) FigureA2FigureA2Percentagebiomassincreaseintimeof L. variegatus .

╡181 ╞

60

Exp120°C 40 Exp215°C Exp220°C Exp315°C byworms byworms byworms byworms 20 Exp320°C %numberincrease%numberincrease %numberincrease%numberincrease 0 0 5 10 15 20

Time(d) FigureA3FigureA3Percentagenumberincreaseintimeof L. variegatus .

╡182 ╞

╡╡╡Appendix II ╞╞╞ TableA1TableA1Basiccompositionof Lumbriculus variegatus (in%ofdryweight)ondifferentfoodsources. Wormdryweightis1315%ofthewetweight. Sludge 1)1)1) Sediments 2)2)2) ProteinsProteins 63 6266 CarbohydratesCarbohydrates 59 1318 LipidsLipids 2426 1112 AshAsh 67 911 CalciumCalcium 0.20.3 PhosphorusPhosphorus 1.6 1.42.1 Calories(kcal/Calories(kcal/gdgdgdgdrrrryweightyweightyweight)))) 4.764.88 1) Mulder&Beelen,2007,owndata 2) Hansen et al. ,2004) Table A2A2 Carbohydrate (monosaccharide) and amino acid composition of L. variegatus (Mulder & Beelen,2007). PercentageoftotalPercentageoftotalComponentComponent MonosaccharidesMonosaccharides 10101010 20202020 AraGalManRhaXyl >30>30 Glu AminoacidsAminoacids <1<1<1<1 CysGlnHyp 11115555 AsnHisMetPheProSerTrpTyr 555510101010 AlaArgAspGluGlyIleLeuLysThrVal TableA3TableA3Concentrationsofheavymetalsin L. variegatus biomass(averageofexperimentsinChapter6 &7)andlimitvaluesforheavymetalsinsludge(allinmg/kgdrymatter)accordingtocurrentand futureDutchandEuropeanlegislations. LimitvaluesLimitvalues Current Future MetalMetal L. variegatus theNetherlands 1)1)1) EUEUEU 2)2)2) EUEUEU 3)3)3) CdCdCdCd 1.3(±0.6) 1.25 2040 2 NiNiNiNi 1.2(±0.2) 30 300400 100 CrCrCrCr 2.1(±0.6) 75 PbPbPbPb 2.6(±0.2) 100 7501200 200 CuCuCuCu 47(±10) 75 10001750 600 ZnZnZnZn 395(±29) 300 25004000 1500 1) BOOMregulations 2) EuropeanDirective86/278/EEC 3) EuropeanDirectiveinpreparation,finalvalues Source: http://www.eumilieubeleid.nl/ch05s10.html

╡183 ╞

╡╡╡About the author ╞╞╞ HellenJohannesHubertinaElissenwasbornonthe14 th of July in 1975 in Heerlen, the Netherlands. After her pre university education (‘Gymnasium B’) at the Grotius CollegeinHeerlen,shestudiedBiologyattheUniversityof Groningen from 1993 on. She focused on Microbial Ecology (biodegradation of chloroethenes), Population Genetics (genetic variation in pine martens) and Animal Ecology(ecologyandbehaviourofblackcrownedcranesin Cameroon). In 1998, she obtained her MSc degree and worked at TNOMEP in Apeldoorn as analyst on the biodegradationofHCHinsoils.In2000,shestartedthe PhD research described in this thesis at the Sub Department of Environmental Technology at the WageningenUniversity.Since2006,sheworksatWetsus Centre for Sustainable Water Technology in Leeuwarden asresearcher.

╡185 ╞

╡╡╡Publications ╞╞╞ Scientific publications ╡ Drzyzga, O., J. Gerritse, J. A. Dijk, H. Elissen & J. C. Gottschal (2001). Coexistence of a sulphatereducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1indefinedchemostatculturesgrownwithvariouscombinationsofsulphate andtetrachloroethene. Environmental Microbiology 3:9299. ╡ Elissen,H.J.H.,T.L.G.Hendrickx,H.Temmink&C.J.N.Buisman(2006).Anewreactor conceptforsludgereductionusingaquaticworms. Water Research 40 :3713–3718. ╡ Hendrickx, T. L. G., H. Temmink, C. J. N. Buisman & H. J. H. Elissen (2006). Sludge predation using aquatic worms. In Proceedings of the IWA Specialized Conference Sustainable Sludge Management: State of the Art, Challenges and Perspectives, Moscow, Russia,2006. ╡ Elissen,H.J.H.,E.T.H.M.Peeters,B.R.Buys,A.Klapwijk&W.H.Rulkens(submitted). PopulationdynamicsoffreeswimmingAnnelidainfourDutchwastewatertreatmentplants inrelationtoprocesscharacteristics. Conditionally accepted for Hydrobiologia . ╡ Buys,B.R.,H.J.H.Elissen,A.Klapwijk&W.H.Rulkens(submitted).Developmentofa test to assess the sludge reduction potential of Lumbriculus variegatus in waste sludge. Submitted for Bioresource Technology. ╡ Elissen, H. J. H., Mulder, W. J., Hendrickx, T. L. G., Buys, B. R., Temmink, H. (in preparation). Production of aquatic worms from waste sludge: biomass composition and applications. Patents ╡ Elissen,H.J.H.,H.Temmink&C.J.N.Buisman(2007).Werkwijzevoorhetvrijmakenvan aquatischewormenuiteendragerenpredatiereactor.Wetsus,CentreforSustainableWater Technology,theNetherlands. Patent application NL1032621 to be published in April 2008 (inDutch). ╡ Elissen,H.J.H.,B.R.Buys,W.H.Rulkens&H.Temmink(2006).Werkwijzeeninrichting voorhetzuiverenvaneenwaterigeafvalstroom/Methodandplantforthetreatmentofan aqueous waste stream. Wageningen University and Research Centre, the Netherlands. Patent NL1029052C(inDutch)/WO2007040397(inEnglish).

Conferences ╡ Elissen,H.J.H.,B.R.Buys,C.R.Ratsak(2003).Applicationofoligochaetesinwastewater treatment. Part B: Growth of freeswimming oligochaetes in wastewater treatment plants. Presentation at the 9 th International Symposium on Aquatic Oligochaete Biology, Wageningen,theNetherlands,2003.

╡186 ╞

Reports and non-refereed publications ╡ Langenhoff,A.,H.Elissen,H.Rijnaarts,C.Pijls,A.Alphenaar,J.Boode,C.teStroet&M. van Zutphen (2000). Bioremediatie van HCH locaties. Eindrapportage fase 1. TNO, the Netherlands.ReportTNOMEP–R99/445(inDutch). ╡ Winters et al. , R. O. (2004). Substantial reduction of organic waste streams using the naturalfoodchain.Publicreport.WageningenUniversityandResearchCentre,DHVWater, Gemeentelijk Waterbedrijf Amsterdam, Norit Membrane Technology, the Netherlands. Report235. ╡ Wormenalsschoonmakers. EOS (inDutch) ╡ Vuilslib?Neemwormen! Nederlands Dagblad, Utrechts Nieuwsblad (inDutch) ╡ Zwemmendedarmkanalenlustenwelpapvanafvalslib.Volkskrant (inDutch) Supervised MSc theses ╡ Jansen, A. (2002). The possibilities for application of oligochaete worms in wastewater treatmentwithaMBR. ╡ Nogaj, K. (2003). The application of oligochaete worms in wastewater treatment. Sludge reductionbyusingaquaticworms( Lumbriculus variegatus ). ╡ Lei,K.(2004).Sludgestabilizationbyaquaticworms. ╡ Gustavo,J.G.(2006).PredationofactivatedsludgebyOligochaeta.

╡187 ╞

╡╡╡Acknowledgments/Dankwoord ╞╞╞╞

Zo!Datwashetdan.Enachterafgezienhadheteigenlijkheelsimpelkunnenzijn.Jeneemtde volgendetweezinneninhetachterhoofd: You can’t milk a cow with your hands in your pants (AdmiralFreebee) The Truth is out there…. (TheXFiles) Jecombineertditmethetschrijvenvannoggeentiendepaginaperdaggedurendeeenaantal jaren en ziedaar: Het ‘(afstudeer)verslag’, de ‘scriptie’ of hoe mensen het ook plachten te noemenisklaarenjebentde‘s’uitjetitelkwijt. Naeenkortetijdalsanalistegewerkttehebbenrealiseerdeikmedatikmeerverdiepingwilde en een onderzoek dat meer ‘van mezelf’ was. Het gekozen onderwerp ‘Slibreductie met aquatischewormen’wasgerichtophetoplossenvaneenmilieuprobleemencombineerdeook nog eens meerdere vakgebieden: milieutechnologie, aquatische ecologie en microbiologie. Dit geheel was erg aantrekkelijk, ook al kwam het niet helemaal overeen met ‘werken voor GreenpeaceopAntarctica’zoalsikopdelagereschoolaltijdwilde.Ikmoetzeggendatiknog nooitnietbegrijpendeblikken(welveelgeamuseerde!)gezienhebalsikuitlegdewaarikmee bezig was: Wormen en poep. Tot op de dag van vandaag kan ik zelf dan ook nog steeds gefascineerdzijnalsikzo’n‘zwemmendedarm’onderdestereomicroscoopzie,ookalblijkenze dan niet 93 % van het slib (zie Hoofdstuk 1) als sneeuw voor de zon te kunnen laten verdwijnen… Enfin, er waren goede en niet zulke goede momenten de afgelopen jaren en ik wil graag de mensenbedankendieerbijwaren. Bram en Wim, mijn copromotor en promotor, het is me helaas niet meer gelukt om het compleet af te ronden voor jullie afscheid van de vakgroep, maar dat heeft jullie er niet van weerhoudenombijnaalleversiesvanmijnhoofdstukkenmetzorgnatekijken.Hetbegeleiden vanditalsvrijcurieusteboekstaandeonderzoek,uitgevoerddoortweeeigenwijzepromovendi (diesteedsfundamentelergingenwerkenipveenreactoruitdegrondtestampen),zalnietaltijd meegevallenzijnmaareriseenproefschriftverschenenoverhetonderwerpwaarHenk†aldie jareningeloofde. EnnatuurlijkBas,metwieikde‘wurmen’vormde.Onzesamenwerkingwasnietaltijd evengemakkelijkenik hadhet graagsamenmet jouafwillenronden. Wehebben echterhet grootstedeelvanhetonderzoeksamengedaan(‘nogeven5000wormentellenvanavondendan zijnwealklaarennemenweeenwijntje’)enikhebontzettendveelvanjegeleerd.Mijndank daarvoorenikhoopdatikovereentijdjejouwdankwoordzallezen. Hardy, ook al ben je officieel niet als begeleider of copromotor aan dit onderzoek verbonden,jehebteenenormebijdragegeleverdindelaatstefasevanmijnpromotie.Ikheberg veel aan je supersnelle commentaar en opbeurende woorden gehad, ook al was het af en toe evenschrikkenvantermenals‘ditlijktweleenroman’of‘ditkantochhelemaalniet’of‘HUH?’ enlopenonzediscussiesweleensuitopeenwederzijds‘noujalaatookmaar,ikweethettoch beter’.

╡188 ╞

Christa, alias ‘opperwurm’, onze begeleidster in de eerste jaren. Je presteerde het om altijdenthousiastengefascineerddoorhetonderzoekteblijven.Ikwiljebedankenenikhoop datwebinnenkortelkaareengoedeliveupdatevandeafgelopenjarengaangeven. Tim, dit onderzoek trekt blijkbaar mensen aan die op 1 dag na even oud zijn en geen rijbewijs hebben. Ook jij bedankt voor al je experimentele hulp, je nuttige commentaren en zekerookvoorderustdiejeuitstraalt.Arie,Katarzyna,LeienJesús:dankjeenthankyoufor contributingtothisthesisthroughyourMScresearches.Arie,misschienhaddenwevantevoren kunnenbedenkendatwormeneensidestreammembraannietoverleven.Katarzyna,IamgladI didnotunderstandthePolishcursingwhentherewereanother1500wormstocount.Lei,Istill can’t answer your essential question ‘Why do worms divide?’. Jesús, I still think you should publishyourstoryabouttheProefhalsymposiumandthesludgeflood… Titia, je noemde ons in je eigen dankwoord al ‘partners in crime’ en ik wil me daar onorigineel bij aansluiten. Je bent zelfs meer vriendin dan collega, maar het besef dat er op zaterdagavondom10uurnogiemand20kmverderopaanhetwerkwasdiebijvoorbeeldook opeensdatakwijtwas(‘aaaarghhetisNIETtegeloven’)gafveelsteun.Nadezezoveelstelaatste loodjes(waarbijjemealsparanimfnogevenfanatiekopWim’srailshoudt)beloofikjedatonze nachtelijke‘dansenopverantwoordemuziek’hobbyheelbinnenkortweeropgepiktgaatworden. Ikhebhetgelukgehadopeenbijzondermooiafgelegen(ensomsbijzonderstinkendof stikheet of beide) plekje tussen de weilanden te mogen werken: de voormalige Proefhal MilieutechnologieinBennekom,enditbleekvooralopzomeravondentijdensborrelsen(halal) bbq’s met de bovengenoemde Bennekommers en oa Adriaan, Bert, Claudia, Darja, Eunhee, Ghada, Grietje, Hamed, Kasia, Katja, Lina, Lucas, Maha, Nedal, Renato, Rob, Tania, Tarek, VinnieenWendy.DeovergangnaarhetbordesvanhetBiotechnionwasdanookgroot,maarde weinigekerendatikerwashadikweleen‘niceroommate’ Sonia. Liesbeth, Gusta, Anita en Heleen;bedanktvoorhetbeantwoordenvanalmijnpraktischevragen. Buitendevakgroepwilikeenaantalmensenbedanken:EdwinvanAquatischeEcologie, jehebtmeeeninkijkjegegeven(enveelhulp)indecomplexewereldvandemultivariateanalyse ensteldemeeenbeetjegerustdoorhetterugtebrengentot‘dataindecomputerstoppentothij begintteroken’.Antoon†enWilmavanMicrobiologievoorjulliegastvrijheidengeduldigehulp bijonzeuitstapjesindewereldvanPCRenDGGE.Ookdebegeleidingcommissie(oaPaulen Jaap)enprojectmedewerkersvandeSTWenEETprojectenwilikhierbijbedankenvoorhun inbreng. Cees, door jou kon ik het onderwerp waar ik over aan het schrijven was verder bestuderen bij Wetsus. Alle andere ‘Wetsianen’ wil ik bedanken voor de goede atmosfeer en zekerLucia‘whoprovidedmysecondhomewith glovely musicintheNorth’. Ennatuurlijklievefamilieenvrienden:erleekgeeneindeaantekomen(vondikzelfook welhoor),maarjulliehebbenmealtijdeenriemonderhethartgestoken(zoalsJuulzouzeggen), hetisAFenikzaljullieongetwijfeldvakerkomenopzoeken…Royzekerookjijbedanktvoorje liefdeensteundeeerstejaren. Marc, het leven met een AIO valt inderdaad niet altijd mee (waar heb ik dat eerder gelezen),maarjeweetzelfookhoelastigdewormenkunnenzijnuitervaring.Mijndankvooral jeliefde,relativeringsvermogen,positiviteit(‘ikhaalfluitendmijnstartmotorvoordezesdekeer diedaguitelkaar’),ontbijtjesenhartigeflapjes…wemoestenmaareensopvakantiewatjij? Entoch..valternogveelmeeruittezoeken.. Hellen, 21 november 2007, Randwijk

╡189 ╞

╨╨╨ As one blackworm once said to another I am sure we're both sister and brother Now, if parents we're seeking Fragmentally speaking Our head end's our father AND mother

Charlie Drewes†, 1997 ╥╥╥

Caricature of Darwin's theory by Linley Sambourne in the Punch almanac for 1882 when Charles Darwin had recently published his last book ‘The Formation of Vegetable Mould Through the Action of Worms’.

The research described in this thesis was supported by the Dutch Economy, Ecology and Technology (EET) programme in the project ‘Substantial reduction of organic waste streams using the natural food chain’ and by the Dutch Technology Foundation STW.

Images on cover and title pages (by author, unless mentioned otherwise) Cover Lumbriculus variegatus specimenwithsludgeinitsgut p. 11 Sludgeflocs p. 19 Malereproductiveorgansof Limnodrilus sp. p. 31 Chaetae(‘bristles’)of Nais sp. p. 51 Lumbriculus variegatus tailproducingfaecesafterfeedingonsludge p. 65 Groupsof L. variegatus inPetridishcollectingsludge p. 91 Faecesof L. variegatusafterfeedingonsludge p. 111 CocoonwithunidentifiedjuvenileTubificidae(originalimagebyKatarzynaNogaj) p. 125 Detailofsetupusedfortestingthereactorconceptwith L. variegatus (original imagebyTimHendrickx) p. 135 Mucusbubblesproducedby L. variegatus duringstresssituations