The Hawaiian-Emperor Chain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Life in Mauna Kea's Alpine Desert
Life in Mauna Kea’s by Mike Richardson Alpine Desert Lycosa wolf spiders, a centipede that preys on moribund insects that are blown to the summit, and the unique, flightless wekiu bug. A candidate for federal listing as an endangered species, the wekiu bug was first discovered in 1979 by entomologists on Pu‘u Wekiu, the summit cinder cone. “Wekiu” is Hawaiian for “topmost” or “summit.” The wekiu bug belongs to the family Lygaeidae within the order of insects known as Heteroptera (true bugs). Most of the 26 endemic Hawaiian Nysius species use a tube-like beak to feed on native plant seed heads, but the wekiu bug uses its beak to suck the hemolymph (blood) from other insects. High above the sunny beaches, rocky coastline, Excluding its close relative Nysius a‘a on the nearby Mauna Loa, the wekiu bug and lush, tropical forests of the Big Island of Hawai‘i differs from all the world’s 106 Nysius lies a unique environment unknown even to many species in its predatory habits and unusual physical characteristics. The bug residents. The harsh, barren, cold alpine desert is so possesses nearly microscopically small hostile that it may appear devoid of life. However, a wings and has the longest, thinnest legs few species existing nowhere else have formed a pre- and the most elongated head of any Lygaeid bug in the world. carious ecosystem-in-miniature of insects, spiders, The wekiu bug, about the size of a other arthropods, and simple plants and lichens. Wel grain of rice, is most often found under rocks and cinders where it preys diur come to the summit of Mauna Kea! nally (during daylight) on insects and Rising 13,796 feet (4,205 meters) dependent) community of arthropods even birds that are blown up from lower above sea level, Mauna Kea is the was uncovered at the summit. -
Photographing the Islands of Hawaii
Molokai Sea Cliffs - Molokai, Hawaii Photographing the Islands of Hawaii by E.J. Peiker Introduction to the Hawaiian Islands The Hawaiian Islands are an archipelago of eight primary islands and many atolls that extend for 1600 miles in the central Pacific Ocean. The larger and inhabited islands are what we commonly refer to as Hawaii, the 50 th State of the United States of America. The main islands, from east to west, are comprised of the Island of Hawaii (also known as the Big Island), Maui, Kahoolawe, Molokai, Lanai, Oahu, Kauai, and Niihau. Beyond Niihau to the west lie the atolls beginning with Kaula and extending to Kure Atoll in the west. Kure Atoll is the last place on Earth to change days and the last place on Earth to ring in the new year. The islands of Oahu, Maui, Kauai and Hawaii (Big Island) are the most visited and developed with infrastructure equivalent to much of the civilized world. Molokai and Lanai have very limited accommodation options and infrastructure and have far fewer people. All six of these islands offer an abundance of photographic possibilities. Kahoolawe and Niihau are essentially off-limits. Kahoolawe was a Navy bombing range until recent years and has lots of unexploded ordinance. It is possible to go there as part of a restoration mission but one cannot go there as a photo destination. Niihau is reserved for the very few people of 100% Hawaiian origin and cannot be visited for photography if at all. Neither have any infrastructure. Kahoolawe is photographable from a distance from the southern shores of Maui and Niihau can be seen from the southwestern part of Kauai. -
Mauna Loa Reconnaissance 2003
“Giant of the Pacific” Mauna Loa Reconnaissance 2003 Plan of encampment on Mauna Loa summit illustrated by C. Wilkes, Engraved by N. Gimbrede (Wilkes 1845; vol. IV:155) Prepared by Dennis Dougherty B.A., Project Director Edited by J. Moniz-Nakamura, Ph. D. Principal Investigator Pacific Island Cluster Publications in Anthropology #4 National Park Service Hawai‘i Volcanoes National Park Department of the Interior 2004 “Giant of the Pacific” Mauna Loa Reconnaissance 2003 Prepared by Dennis Dougherty, B.A. Edited by J. Moniz-Nakamura, Ph.D. National Park Service Hawai‘i Volcanoes National Park P.O. Box 52 Hawaii National Park, HI 96718 November, 2004 Mauna Loa Reconnaissance 2003 Executive Summary and Acknowledgements The Mauna Loa Reconnaissance project was designed to generate archival and inventory/survey level recordation for previously known and unknown cultural resources within the high elevation zones (montane, sub-alpine, and alpine) of Mauna Loa. Field survey efforts included collecting GPS data at sites, preparing detailed site plan maps and feature descriptions, providing site assessment and National Register eligibility, and integrating the collected data into existing site data bases within the CRM Division at Hawaii Volcanoes National Park (HAVO). Project implementation included both pedestrian transects and aerial transects to accomplish field survey components and included both NPS and Research Corporation University of Hawaii (RCUH) personnel. Reconnaissance of remote alpine areas was needed to increase existing data on historic and archeological sites on Mauna Loa to allow park managers to better plan for future projects. The reconnaissance report includes a project introduction; background sections including physical descriptions, cultural setting overview, and previous archeological studies; fieldwork sections describing methods, results, and feature and site summaries; and a section on conclusions and findings that provide site significance assessments and recommendations. -
Nihoa Manawai Holoikauaua Pearl & Hermes Atoll Kapou Papa'āpoho Lisianski Island Kamole Kauō Laysan Island Kamokuokamohoali'i Ko'anako'a Maro Reef
175°E 180° 175°W 170°W 165°W 160°W 155°W 150°W 35°N 35°N North America Japan Map Area Photo by Dan Clark/USFWS Hawaiian Islands Photo by Na‘alehu Anthony P a c i f i c Seabird Refuge A Living Hawaiian Culture O c e a n The monument is home to over 14 million seabirds 30°N Hiryū USS Yorktown Equator representing 23 species. This includes the world's Traditional Hawaiian accounts describe largest colonies of Laysan and black-footed Papahānaumokuākea as a sacred area from which Rapa Sōryū albatross. Pictured above is the world's oldest life first emerged and to which spirits return after Nui Australia known bird in the wild – a Laysan albatross named 30°N death. Akagi Wisdom! Banded in 1956 when she was at least five Kaga years old, Wisdom may have hatched more than 36 New Zealand chicks in her lifetime. Hōlanikū Manawai Unnamed Holoikauaua Mokupāpapa Seamount Kure Atoll Pearl & Hermes Atoll 582,578 square miles, only six square miles of land Helsley Seamount Ladd Seamount Kamole Kauō ‘Ōnūnui, ‘Ōnūiki Photo by Mark Sullivan/NOAA Laysan Island Photo by NOAA/OER Endemic Sanctuary Pūhāhonu New Discoveries The monument is home to many species found Kuaihelani Gardner Pinnacles The majority of the seafloor in the Northwestern nowhere else on Earth and is a critically important Pihemanu Salmon Hawaiian Islands lies at depths below 10,000 feet nesting ground for green sea turtles and breeding Bank (3,000 meters). Using advanced technologies like ground for Hawaiian monk seals. -
Effectiveness of Social Stimuli in Attracting Laysan Albatross to New Potential Nesting Sites
EFFECTIVENESS OF SOCIAL STIMULI IN ATTRACTING LAYSAN ALBATROSS TO NEW POTENTIAL NESTING SITES RICHARD H. PODOLSKY • Universityof Michigan,School of Natural Resources,Ann Arbor,Michigan 48109 USA Al•sTRACT.--Seabirdcolonies usually grow as first-time breeders join existing groups. I testedthe hypothesisthat the presenceof conspecifics,specifically the sight and sound of establishedbreeders, was the stimulus responsiblefor first-time breeders to join existing colonies.The attractivepower of conspecificswas testedby presentingto conspecificsmodels of LaysanAlbatross (Diomedea immutabilis) in severalbehavior postures, with accompanying recordings of vocalizations. I found that Laysan Albatross landed more frequently in areas where both albatrossmodels and vocalizationswere present than in areaswith only visual stimuli or no vocal stimuli. Landing albatrossand those on the ground were found nearer to the artificial social stimuli than would be expectedfrom a random distribution. Three- dimensionalmodels were more attractivethan two-dimensionalmodels, and paired models were more attractive than single models for both three-dimensionaland two-dimensional models.Three-dimensional models in a sky-pointingposture were the mostattractive overall, whereas models in head-forward posture were the most attractive two-dimensional models. Albatrossexhibited courtshipbehavior closerto the modelsthan would be expectedfrom a random distribution. The implicationsof attraction to endangeredbird managementand restorationare discussed.Received 3 April 1989,accepted -
MILLERBIRD Acrocephalus Familiaris Native Resident, Endemic, Endangered A.F
MILLERBIRD Acrocephalus familiaris native resident, endemic, endangered A.f. familiaris (Laysan) Laysan subspecies extinct A.f. kingi (Nihoa) The Millerbird is an endemic resident in the Northwestern Hawaiian Islands (AOU 1998), having likely colonized the archipelago from Asia or other Pacific Island groups (Bryan 1940; Berger 1972, 1981; E 31:47). Acrocephalus warblers have widely colonized the Pacific Basin (Pratt et al. 1987, Wiles 2005, Cibois et al. 2011), and Millerbird has been found to be genetically distant from other Pacific congeners (AOU 1983, Fleischer et al. 2007), being the first to diverge from other taxa within a Polynesian clade (Cibois et al. 2011). Cassin (1858) followed by Dole (1869, 1879) reported an Acrocephalus warbler (as "Tatare otaiensis") in the marshes of Kaua'i and Hawai'i, which caused Rothschild (1900) and Bryan (1901a) to consider it a possibility on these islands, but Cassin was apparently referring to Acrocephalus caffer which is not found in Hawaii (see Tahiti Reed Warbler). No subfossil evidence exists for the occurrence of Acrocephalus in the Southeastern Hawaiian Islands (Olson and Ziegler 1995), which is curious given the genus' widespread distribution within the Pacific Basin (Bryan 1940). Two subspecies of Millerbird have been found, on Laysan and Nihoa, which are distinct and could be treated as different species (Wetmore 1924, Munro 1944, Olson and Ziegler 1995, Olson 1996b, Fleischer et al. 2007) but most regard them as subspecies (see Synonymies). See Banko (1979) for locations of 104 specimens of Millerbird, and Morin et al. (1997) for a summary of the natural history and biology of the species. -
Albatross Or Mōlī (Phoebastria Immutabilis) Black-Footed Albatross Or Ka’Upu (Phoebastria Nigripes) Short-Tailed Albatross (Phoebastria Albatrus)
Hawaiian Bird Conservation Action Plan Focal Species: Laysan Albatross or Mōlī (Phoebastria immutabilis) Black-footed Albatross or Ka’upu (Phoebastria nigripes) Short-tailed Albatross (Phoebastria albatrus) Synopsis: These three North Pacific albatrosses are demographically similar, share vast oceanic ranges, and face similar threats. Laysan and Black-footed Albatrosses nest primarily in the Northwestern Hawaiian Islands, while the Short-tailed Albatross nests mainly on islands near Japan but forages extensively in U.S. waters. The Short-tailed Albatross was once thought to be extinct but its population has been growing steadily since it was rediscovered in 1951 and now numbers over 3,000 birds. The Laysan is the most numerous albatross species in the world with a population over 1.5 million, but its trend has been hard to determine because of fluctuations in number of breeding pairs. The Black-footed Albatross is one-tenth as numerous as the Laysan and its trend also has been difficult to determine. Fisheries bycatch caused unsustainable mortality of adults in all three species but has been greatly reduced in the past 10-20 years. Climate change and sea level rise are perhaps the greatest long-term threat to Laysan and Black-footed Albatrosses because their largest colonies are on low-lying atolls. Protecting and creating colonies on higher islands and managing non-native predators and human conflicts may become keys to their survival. Laysan, Black-footed, and Short-tailed Albatrosses (left to right), Midway. Photos Eric VanderWerf Status -
THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution
VOLCANISM IN HAWAII Chapter 1 - .-............,. THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution By David A. Clague and G. Brent Dalrymple ABSTRACT chain, the near-fixity of the hot spot, the chemistry and timing of The Hawaiian-Emperor volcanic chain stretches nearly the eruptions from individual volcanoes, and the detailed geom 6,000 km across the North Pacific Ocean and consists of at least etry of volcanism. None of the geophysical hypotheses pro t 07 individual volcanoes with a total volume of about 1 million posed to date are fully satisfactory. However, the existence of km3• The chain is age progressive with still-active volcanoes at the Hawaiian ewell suggests that hot spots are indeed hot. In the southeast end and 80-75-Ma volcanoes at the northwest addition, both geophysical and geochemical hypotheses suggest end. The bend between the Hawaiian and .Emperor Chains that primitive undegassed mantle material ascends beneath reflects a major change in Pacific plate motion at 43.1 ± 1.4 Ma Hawaii. Petrologic models suggest that this primitive material and probably was caused by collision of the Indian subcontinent reacts with the ocean lithosphere to produce the compositional into Eurasia and the resulting reorganization of oceanic spread range of Hawaiian lava. ing centers and initiation of subduction zones in the western Pacific. The volcanoes of the chain were erupted onto the floor of the Pacific Ocean without regard for the age or preexisting INTRODUCTION structure of the ocean crust. Hawaiian volcanoes erupt lava of distinct chemical com The Hawaiian Islands; the seamounts, hanks, and islands of positions during four major stages in their evolution and the Hawaiian Ridge; and the chain of Emperor Seamounts form an growth. -
Hawaiian Hotspot
V51B-0546 (AGU Fall Meeting) High precision Pb, Sr, and Nd isotope geochemistry of alkalic early Kilauea magmas from the submarine Hilina bench region, and the nature of the Hilina/Kea mantle component J-I Kimura*, TW Sisson**, N Nakano*, ML Coombs**, PW Lipman** *Department of Geoscience, Shimane University **Volcano Hazard Team, USGS JAMSTEC Shinkai 6500 81 65 Emperor Seamounts 56 42 38 27 20 12 5 0 Ma Hawaii Islands Ready to go! Hawaiian Hotspot N ' 0 3 ° 9 Haleakala 1 Kea trend Kohala Loa 5t0r6 end Mauna Kea te eii 95 ol Hualalai Th l 504 na io sit Mauna Loa Kilauea an 509 Tr Papau 208 Hilina Seamont Loihi lic ka 209 Al 505 N 98 ' 207 0 0 508 ° 93 91 9 1 98 KAIKO 99 SHINKAI 02 KAIKO Loa-type tholeiite basalt 209 Transitional basalt 95 504 208 Alkalic basalt 91 508 0 50 km 155°00'W 154°30'W Fig. 1: Samples obtained by Shinkai 6500 and Kaiko dives in 1998-2002 10 T-Alk Mauna Kea 8 Kilauea Basanite Mauna Loa -K M Hilina (low-Si tholeiite) 6 Hilina (transitional) Hilina (alkali) Kea Hilina (basanite) 4 Loa Hilina (nephelinite) Papau (Loa type tholeiite) primary 2 Nep Basaltic Basalt andesite (a) 0 35 40 45 50 55 60 SiO2 Fig. 2: TAS classification and comparison of the early Kilauea lavas to representative lavas from Hawaii Big Island. Kea-type tholeiite through transitional, alkali, basanite to nephelinite lavas were collected from Hilina bench. Loa-type tholeiite from Papau seamount 100 (a) (b) (c) OIB OIB OIB M P / e l p 10 m a S E-MORB E-MORB E-MORB Loa type tholeiite Low Si tholeiite Transitional 1 f f r r r r r r r f d y r r d b b -
Geology, Geochemistry and Earthquake History of Lō`Ihi Seamount, Hawai`I
INVITED REVIEW Geology, Geochemistry and Earthquake History of Lō`ihi Seamount, Hawai`i Michael O. Garcia1*, Jackie Caplan-Auerbach2, Eric H. De Carlo3, M.D. Kurz4 and N. Becker1 1Department of Geology and Geophysics, University of Hawai`i, Honolulu, HI, USA 2U.S.G.S., Alaska Volcano Observatory, Anchorage, AK, USA 3Department of Oceanography, University of Hawai`i, Honolulu, HI, USA 4Department of Chemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA *Corresponding author: Tel.: 001-808-956-6641, FAX: 001-808-956-5521; email: [email protected] Key words: Loihi, seamount, Hawaii, petrology, geochemistry, earthquakes Abstract A half century of investigations are summarized here on the youngest Hawaiian volcano, Lō`ihi Seamount. It was discovered in 1952 following an earthquake swarm. Surveying in 1954 determined it has an elongate shape, which is the meaning of its Hawaiian name. Lō`ihi was mostly forgotten until two earthquake swarms in the 1970’s led to a dredging expedition in 1978, which recovered young lavas. This led to numerous expeditions to investigate the geology, geophysics, and geochemistry of this active volcano. Geophysical monitoring, including a real- time submarine observatory that continuously monitored Lō`ihi’s seismic activity for three months, captured some of the volcano’s earthquake swarms. The 1996 swarm, the largest recorded in Hawai`i, was preceded by at least one eruption and accompanied by the formation of a ~300-m deep pit crater, renewing interest in this submarine volcano. Seismic and petrologic data indicate that magma was stored in a ~8-9 km deep reservoir prior to the 1996 eruption. -
A Submarine Perspective of the Honolulu Volcanics, Oahu
Journal of Volcanology and Geothermal Research 151 (2006) 279–307 www.elsevier.com/locate/jvolgeores A submarine perspective of the Honolulu Volcanics, Oahu David A. Clague a,*, Jennifer B. Paduan a, William C. McIntosh b, Brian L. Cousens c, Alice´ S. Davis a, Jennifer R. Reynolds d a Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039-9644, USA b New Mexico Geochronology Research Laboratory, N.M. Bureau of Geology, New Mexico Tech, 801 Leroy Place, Socorro, 87801-4796, USA c Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6 d School of Fisheries and Ocean Sciences, West Coast and Polar Regions Undersea Research Center, University of Alaska Fairbanks, P.O. Box 757220, 213 O’Neill Building, Fairbanks, AK 99775, USA Accepted 15 July 2005 Available online 27 December 2005 Abstract Lavas and volcaniclastic deposits were observed and collected from 4 submarine cones that are part of the Honolulu Volcanics on Oahu, Hawaii. The locations of these and a few additional, but unsampled, vents demonstrate that nearly all the vents are located on or very close to the shoreline of Oahu, with the most distal vent just 12 km offshore. The clastic samples and outcrops range from coarse breccias to cross-bedded ash deposits and show that explosive volcanism at depths between about 350 and 590 m depth played a part in forming these volcanic cones. The eruptive styles appear to be dominantly effusive to strombolian at greater depths, but apparently include violent phreatomagmatic explosive activity at the shallower sites along the submarine southwest extension of the Koko Rift. -
RECORDS of the HAWAII BIOLOGICAL SURVEY for 1994 Part 2: Notes1
1 RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1994 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1994 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this volume [Bishop Museum Occasional Papers 41]. New Hawaiian Plant Records. I BARBARA M. HAWLEY & B. LEILANI PYLE (Herbarium Pacificum, Department of Natural Sciences, Bishop Museum, P.O. Box 19000A, Honolulu, Hawaii 96817, USA) Amaranthaceae Achyranthes mutica A. Gray Significance. Considered extinct and previously known from only 2 collections: sup- posedly from Hawaii Island 1779, D. Nelson s.n.; and from Kauai between 1851 and 1855, J. Remy 208 (Wagner et al., 1990, Manual of the Flowering Plants of Hawai‘i, p. 181). Material examined. HAWAII: South Kohala, Keawewai Gulch, 975 m, gulch with pasture and relict Koaie, 10 Nov 1991, T.K. Pratt s.n.; W of Kilohana fork, 1000 m, on sides of dry gulch ca. 20 plants seen above and below falls, 350 °N aspect, 16 Dec 1992, K.R. Wood & S. Perlman 2177 (BISH). Caryophyllaceae Silene lanceolata A. Gray Significance. New island record for Oahu. Distribution in Wagner et al. (1990: 523, loc. cit.) limited to Kauai, Molokai, Hawaii, and Lanai. Several plants were later noted by Steve Perlman and Ken Wood from Makua, Oahu in 1993. Material examined. OAHU: Waianae Range, Ohikilolo Ridge at ca. 700 m elevation, off ridge crest, growing on a vertical rock face, facing northward and generally shaded most of the day but in an open, exposed face, only 1 plant noted, 25 Sep 1992, J.