Fermions and Solitons in the O(3) Nonlinear Sigma Model in 2 + 1 Space-Time Dimensions*

Total Page:16

File Type:pdf, Size:1020Kb

Fermions and Solitons in the O(3) Nonlinear Sigma Model in 2 + 1 Space-Time Dimensions* - - SLAC-PUB-5027 c .- October 1989 CT) FERMIONS AND SOLITONS IN THE O(3) NONLINEAR SIGMA MODEL IN 2 + 1 SPACE-TIME DIMENSIONS* PURUSHOTHAM VORUGANTI~ Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309 and Stanford University, Department of Physics .- Stanford, CA 94305 _. SEBASTIAN DONIACH Stanford University, Department of Applied Physics Stanford, CA 94305 ABSTRACT The field theory limit of antiferromagnetism with holes is described using the O(3) nonlinear sigma model. The minimal coupling to the spin-wave gives a Pauli term that couples the hole charge density to the topological charge density for solitons. This term leads to drastic consequences; an attractive potential for holes and solitons, spin-charge coupling for the holes and zero-momentum modes. The zero-momentum modes are exact nonperturbative solutions to the full coupled equations of motion for spin-waves and holes. The effect of a Chern-Simons term, connections to other mean-field approaches and the quantum boundstate problem are discussed. If the zero-modes are the states of lowest energy, then the holes in this field theory limit are attached to skyrmions. Submitted to Physical Review B. * Work supported by Department of Energy contract DE-AC03-76SF00515. o Now at University of Toronto, 60 St. George St., Toronto, Ontario, Canada M55 lA7. .- - I. MOTIVATION f Many of the new high-Tc superconductors exhibit a N&eel antiferromagnetic --I state at zero doping. After the addition of roughly one hole per ten Cu atoms, this ordering becomes short-ranged,’ and moreover, the system becomes supercon- ducting. The anisotropic magnetic and superconducting properties2 hint at the importance of dimensionality. If the feature of antiferromagnetism is at all crucial to the superconducting state, an adequate description of the magnetic state be- comes necessary. The unique feature of two-dimensional antiferromagnetism, once the connection to the nonlinear sigma model is made in the continuum limit, is the - _. finite energy soliton excitations. 3 If these are to play any role in the transition to the superconducting state, their interaction with holes must be fully addressed. If the holes and the solitons form bound pairs,* a natural explanation for the short- range magnetic order emerges, since each soliton presents a small area of disorder. Thus the disordered state could be equivalently viewed as the soliton condensed - state.5 If the soliton could bound two holes and no more, then the other half of the picture, namely Cooper pairs, provide an explanation for the superconductivity. -‘ -- Interestingly enough, many of these notions can be explicitly written as solutions to various equations. Although the solutions are difficult to extract, the classical and quantum regimes will be systematically discussed. Even though our conclusions are that soliton-hole energetics do not favor the above picture, the possibility remains that new methods may demonstrate the above scenario. The attractive feature of this description is its uniqueness to two dimensions and its deep connection to the magnetic properties. 2 xr. FIELD THEORY OF THE 2D HEISENBERG MODEL -. With the exception 6 of the 30K Bismuth-oxide superconductors, numerous f evidence exists that the most of the high-Tc compounds undergo a transition to --I the Neel state at low doping. The Neel state is a variational state for the S = l/2 - 2D Heisenberg model and is the exact ground state for spin S 2 1, due to a theorem by Dyson, Lieb and Simon. 7 Numerical simulations of the nonlinear sigma model and the Heisenberg model show that it is N&e1 ordered’ for S = l/2. Starting with the 2D Heisenberg model on the square lattice and expanding around the N&e1 State, Haldane was able to show that the relevant operators that appear in the long wavelength continuum limit are just given by the O(3) nonlinear sigma - -model. The assumption of this particular ground state then leads to a relativistic 2+1 field theory, which, after making the standard CP1 rnap,l’ is given by JkP = j(D,Z)+(D’Z) - q(Z+.Z’ - 1) 7 (1) with p = 0,1,2; D, = a,, + iA,; and 2 a complex two-spinor (a, /3). The theory - has one dimensionful coupling constant j and constraint fields ~(2) and A,(z). The Neel state corresponds to the field theory ground state of CI = constant and -‘ -- p2 = 1 -02. The field theory description has precisely the same number of massless spinwave modes as the lattice version, but unlike the lattice version, has a space- time Lorentz symmetry.lr The Hamiltonian in the presence of holes on the lattice is probably some- thing like the Hubbard Hamiltonian with onsite repulsion and nearest-neighbor hopping. I2 The field theory limit of the Hubbard Model is much more difficult to derive although many mean-field models exist.13 3 Writhe limit of large onsite repulsion, one can instead start with the t-J model - with hopping parameter t and a Heisenberg spin-stiffness term J. At zero doping, i the t term is irrelevant since it will lead to double occupancy which in the large I. U limit is energetically suppressed. The Heisenberg interaction is then mapped onto the sigma model by dividing the two-dimensional lattice into nonintersecting plaquettes of four sites each giving four mean-field variables for each plaquette. The massless modes in the large S limit are just the $ and n,#, fields which then describe the sigma model. The number of massless modes is two, even though four sites lead to four degrees of freedom in the continuum in agreement with the Goldstone theorem upon expanding around the Neel state. The expansion around - _. the N&e1 state thus describes the spin-spin interaction portion of the t - J mode. For the problem with nonzero doping, it is simplest to discuss the case of extremely small doping where the experimentally observed Ndel state is still a good description of the ground state and its symmetries. The mean-field descrip- tion of the small number of vacancies with spin-waves has attracted considerable attention.‘4t25 Like the two spin-wave modes, the single hole.ground states will identify the relevant number of degrees of freedom. Lattice calculations as well as other mean-field descriptions show that there are four minima in the Brillouin zone locatedI at z = (&n/2, f7r/2). Th ese four states should appear in any mean-field theory. Let us introduce two fermion operators Cl , Cl which live on each plaquette. From these two degrees of freedom, we can construct a Dirac Spinor, $J = (CT , CJ). The number of low-energy hole states corresponds to two such Dirac fermions but none of our results on soliton-hole physics will be affected if we just concentrate on one species of holes. Interactions of the spin-waves with the fermion degrees of 4 free&-m should flip down spins to up spins in the plaquette and this corresponds to the hopping of a hole from the up sublattice to the down sublattice. In order f to write the mean-field theory for the Dirac fermion coupled to the spin-waves, we -1 follow closely the symmetries of the spin-wave theory which like the Hamiltonian for the vacancies comes from the t - J model. In the limit of an extremely small number of holes, we expect the mean-field Lagrangian to have the same symme- tries as the system without any holes. The surprising symmetry of the N&e1 state is of course the Lorentz symmetry, a pseudorelativity with the speed of light be- ing the spin-wave velocity. At large doping, the NCel state is no longer the valid ground state and no symmetry arguments are valid in this regime, but luckily the - low-density regime may determine the nature of the spin-disordered state. The other symmetry of the nonlinear sigma model is the internal symmetry related to 2 -+ GZ where G is an element of SU(2). By restricting our attention to just the one Dirac fermion, we can consistently treat it as a singlet under this internal symmetry. Had we used the two “flavors” of fermions on each plaquette, other -. rich possibilities exist. l3 After considering various II, - 2 interactions, the simplest Lagrangian that preserves all the symmetries and contains the lowest number of derivatives and includes the spin-flips is given by -‘ -- L = j(D,Z)+(DV) + r&Z+2 - 1) + &“(ia, -id, + m)ti 9 (2) where we consider holes of any general coupling g and mass m (ti = 1, c = 1). The 1c, is a complex two-spinor and the yp is a 2 x 2 spin matrix that will be defined below. The coupling g begins as S but receives the usual renormalization. This Lagrangian for holes at low density has a rigorous formulation for the one-dimensional spin 5 chair?* Neither the sign of the mass nor charge nor the relativistic version of the - fermion Lagrangian is crucial to the behavior around solitons. We consider this c.- coupling for its generality, and the cases of same-sign fermions and nonrelativistic --I fermions are subcases of what follows. Having discussed the interactions of holes with spin-waves, we next examine the soliton sector of the theory. The solutions, however, come with arbitrary size and thus are not true minima of the energy functional. This property, in the absence of additional physics like holes, makes solitons unstable against quantum or l/S corrections to the nonlinear a-model. This problem in the presence of fermions is examined in Sec. III. III. SOLITONS AND SIZE INSTABILITY Solitons of the O(3) nonlinear sigma model in the CP’ language can be brought in cylindrical coordinates to the formI* (l+J&,2 ezPGw z sol = , (3) ( (1+&/2 ) where r ’ = (r/X)lNl, with X being the size and N the winding number.
Recommended publications
  • Effective Dirac Equations in Honeycomb Structures
    Effective Dirac equations in honeycomb structures Effective Dirac equations in honeycomb structures Young Researchers Seminar, CERMICS, Ecole des Ponts ParisTech William Borrelli CEREMADE, Universit´eParis Dauphine 11 April 2018 It is self-adjoint on L2(R2; C2) and the spectrum is given by σ(D0) = R; σ(D) = (−∞; −m] [ [m; +1) The domain of the operator and form domain are H1(R2; C2) and 1 2 2 H 2 (R ; C ), respectively. Remark The negative spectrum is associated with antiparticles, in relativistic theories. Effective Dirac equations in honeycomb structures Dirac in 2D The 2D Dirac operator The 2D Dirac operator is defined as D = D0 +mσ3 = −i(σ1@1 + σ2@2) + mσ3: (1) where σk are the Pauli matrices and m ≥ 0 is the mass of the particle. It acts on C2-valued spinors. The domain of the operator and form domain are H1(R2; C2) and 1 2 2 H 2 (R ; C ), respectively. Remark The negative spectrum is associated with antiparticles, in relativistic theories. Effective Dirac equations in honeycomb structures Dirac in 2D The 2D Dirac operator The 2D Dirac operator is defined as D = D0 +mσ3 = −i(σ1@1 + σ2@2) + mσ3: (1) where σk are the Pauli matrices and m ≥ 0 is the mass of the particle. It acts on C2-valued spinors. It is self-adjoint on L2(R2; C2) and the spectrum is given by σ(D0) = R; σ(D) = (−∞; −m] [ [m; +1) Effective Dirac equations in honeycomb structures Dirac in 2D The 2D Dirac operator The 2D Dirac operator is defined as D = D0 +mσ3 = −i(σ1@1 + σ2@2) + mσ3: (1) where σk are the Pauli matrices and m ≥ 0 is the mass of the particle.
    [Show full text]
  • Arxiv:2007.12543V4 [Hep-Th] 15 Mar 2021 Contents
    Jacobi sigma models F. Basconea;b Franco Pezzellaa Patrizia Vitalea;b aINFN - Sezione di Napoli, Complesso Universitario di Monte S. Angelo Edificio 6, via Cintia, 80126 Napoli, Italy bDipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo Edificio 6, via Cintia, 80126 Napoli, Italy E-mail: [email protected], [email protected], [email protected] Abstract: We introduce a two-dimensional sigma model associated with a Jacobi mani- fold. The model is a generalisation of a Poisson sigma model providing a topological open string theory. In the Hamiltonian approach first class constraints are derived, which gen- erate gauge invariance of the model under diffeomorphisms. The reduced phase space is finite-dimensional. By introducing a metric tensor on the target, a non-topological sigma model is obtained, yielding a Polyakov action with metric and B-field, whose target space is a Jacobi manifold. Keywords: Sigma Models, Topological Strings arXiv:2007.12543v4 [hep-th] 15 Mar 2021 Contents 1 Introduction1 2 Poisson sigma models3 3 Jacobi sigma models5 3.1 Jacobi brackets and Jacobi manifold5 3.1.1 Homogeneous Poisson structure on M × R from Jacobi structure7 3.2 Poisson sigma model on M × R 7 3.3 Action principle on the Jacobi manifold8 3.3.1 Hamiltonian description, constraints and gauge transformations9 4 Metric extension and Polyakov action 15 5 Jacobi sigma model on SU(2) 16 6 Conclusions and Outlook 18 1 Introduction Jacobi sigma models are here introduced as a natural generalisation of Poisson sigma mod- els.
    [Show full text]
  • Gauged Sigma Models and Magnetic Skyrmions Abstract Contents
    SciPost Phys. 7, 030 (2019) Gauged sigma models and magnetic Skyrmions Bernd J. Schroers Maxwell Institute for Mathematical Sciences and Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, UK [email protected] Abstract We define a gauged non-linear sigma model for a 2-sphere valued field and a SU(2) connection on an arbitrary Riemann surface whose energy functional reduces to that for critically coupled magnetic skyrmions in the plane, with arbitrary Dzyaloshinskii-Moriya interaction, for a suitably chosen gauge field. We use the interplay of unitary and holo- morphic structures to derive a general solution of the first order Bogomol’nyi equation of the model for any given connection. We illustrate this formula with examples, and also point out applications to the study of impurities. Copyright B. J. Schroers. Received 23-05-2019 This work is licensed under the Creative Commons Accepted 28-08-2019 Check for Attribution 4.0 International License. Published 10-09-2019 updates Published by the SciPost Foundation. doi:10.21468/SciPostPhys.7.3.030 Contents 1 Introduction1 2 Gauged sigma models on a Riemann surface3 2.1 Conventions3 2.2 Energy and variational equations4 2.3 The Bogomol’nyi equation5 2.4 Boundary terms6 3 Solving the Bogomol’nyi equation7 3.1 Holomorphic versus unitary structures7 3.2 Holomorphic structure of the gauged sigma model9 3.3 A general solution 11 4 Applications to magnetic skyrmions and impurities 12 4.1 Critically coupled magnetic skyrmions with any DM term 12 4.2 Axisymmetric DM interactions 13 4.3 Rank one DM interaction 15 4.4 Impurities as non-abelian gauge fields 16 5 Conclusion 17 References 18 1 SciPost Phys.
    [Show full text]
  • 2 Lecture 1: Spinors, Their Properties and Spinor Prodcuts
    2 Lecture 1: spinors, their properties and spinor prodcuts Consider a theory of a single massless Dirac fermion . The Lagrangian is = ¯ i@ˆ . (2.1) L ⇣ ⌘ The Dirac equation is i@ˆ =0, (2.2) which, in momentum space becomes pUˆ (p)=0, pVˆ (p)=0, (2.3) depending on whether we take positive-energy(particle) or negative-energy (anti-particle) solutions of the Dirac equation. Therefore, in the massless case no di↵erence appears in equations for paprticles and anti-particles. Finding one solution is therefore sufficient. The algebra is simplified if we take γ matrices in Weyl repreentation where µ µ 0 σ γ = µ . (2.4) " σ¯ 0 # and σµ =(1,~σ) andσ ¯µ =(1, ~ ). The Pauli matrices are − 01 0 i 10 σ = ,σ= − ,σ= . (2.5) 1 10 2 i 0 3 0 1 " # " # " − # The matrix γ5 is taken to be 10 γ5 = − . (2.6) " 01# We can use the matrix γ5 to construct projection operators on to upper and lower parts of the four-component spinors U and V . The projection operators are 1 γ 1+γ Pˆ = − 5 , Pˆ = 5 . (2.7) L 2 R 2 Let us write u (p) U(p)= L , (2.8) uR(p) ! where uL(p) and uR(p) are two-component spinors. Since µ 0 pµσ pˆ = µ , (2.9) " pµσ¯ 0(p) # andpU ˆ (p) = 0, the two-component spinors satisfy the following (Weyl) equations µ µ pµσ uR(p)=0,pµσ¯ uL(p)=0. (2.10) –3– Suppose that we have a left handed spinor uL(p) that satisfies the Weyl equation.
    [Show full text]
  • The Bound States of Dirac Equation with a Scalar Potential
    THE BOUND STATES OF DIRAC EQUATION WITH A SCALAR POTENTIAL BY VATSAL DWIVEDI THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Applied Mathematics in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Adviser: Professor Jared Bronski Abstract We study the bound states of the 1 + 1 dimensional Dirac equation with a scalar potential, which can also be interpreted as a position dependent \mass", analytically as well as numerically. We derive a Pr¨ufer-like representation for the Dirac equation, which can be used to derive a condition for the existence of bound states in terms of the fixed point of the nonlinear Pr¨uferequation for the angle variable. Another condition was derived by interpreting the Dirac equation as a Hamiltonian flow on R4 and a shooting argument for the induced flow on the space of Lagrangian planes of R4, following a similar calculation by Jones (Ergodic Theor Dyn Syst, 8 (1988) 119-138). The two conditions are shown to be equivalent, and used to compute the bound states analytically and numerically, as well as to derive a Calogero-like upper bound on the number of bound states. The analytic computations are also compared to the bound states computed using techniques from supersymmetric quantum mechanics. ii Acknowledgments In the eternity that is the grad school, this project has been what one might call an impulsive endeavor. In the 6 months from its inception to its conclusion, it has, without doubt, greatly benefited from quite a few individuals, as well as entities, around me, to whom I owe my sincere regards and gratitude.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • Free Lunch from T-Duality
    Free Lunch from T-Duality Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D{07743 Jena, Germany [email protected] We consider a simple method of generating solutions to Einstein gravity coupled to a dilaton and a 2-form gauge potential in n dimensions, starting from an arbitrary (n m)- − dimensional Ricci-flat metric with m commuting Killing vectors. It essentially consists of a particular combination of coordinate transformations and T-duality and is related to the so-called null Melvin twists and TsT transformations. Examples obtained in this way include two charged black strings in five dimensions and a finite action configuration in three dimensions derived from empty flat space. The latter leads us to amend the effective action by a specific boundary term required for it to admit solutions with positive action. An extension of our method involving an S-duality transformation that is applicable to four-dimensional seed metrics produces further nontrivial solutions in five dimensions. 1 Introduction One of the most attractive features of string theory is that it gives rise to gravity: the low-energy effective action for the background fields on a string world-sheet is diffeomor- phism invariant and includes the Einstein-Hilbert term of general relativity. This effective action is obtained by integrating renormalization group beta functions whose vanishing is required for Weyl invariance of the world-sheet sigma model and can be interpreted as a set of equations of motion for the background fields. Solutions to these equations determine spacetimes in which the string propagates.
    [Show full text]
  • Spin-1/2 Fermions in Quantum Field Theory
    Spin-1/2 fermions in quantum field theory µ First, recall that 4-vectors transform under Lorentz transformations, Λ ν, as p′ µ = Λµ pν, where Λ SO(3,1) satisfies Λµ g Λρ = g .∗ A Lorentz ν ∈ ν µρ λ νλ transformation corresponds to a rotation by θ about an axis nˆ [θ~ θnˆ] and ≡ a boost, ζ~ = vˆ tanh−1 ~v , where ~v is the corresponding velocity. Under the | | same Lorentz transformation, a generic field transforms as: ′ ′ Φ (x )= MR(Λ)Φ(x) , where M exp iθ~·J~ iζ~·K~ are N N representation matrices of R ≡ − − × 1 1 the Lorentz group. Defining J~+ (J~ + iK~ ) and J~− (J~ iK~ ), ≡ 2 ≡ 2 − i j ijk k i j [J± , J±]= iǫ J± , [J± , J∓] = 0 . Thus, the representations of the Lorentz algebra are characterized by (j1,j2), 1 1 where the ji are half-integers. (0, 0) is a scalar and (2, 2) is a four-vector. Of 1 1 interest to us here are the spinor representations (2, 0) and (0, 2). ∗ In our conventions, gµν = diag(1 , −1 , −1 , −1). (1, 0): M = exp i θ~·~σ 1ζ~·~σ , butalso (M −1)T = iσ2M(iσ2)−1 2 −2 − 2 (0, 1): [M −1]† = exp i θ~·~σ + 1ζ~·~σ , butalso M ∗ = iσ2[M −1]†(iσ2)−1 2 −2 2 since (iσ2)~σ(iσ2)−1 = ~σ∗ = ~σT − − Transformation laws of 2-component fields ′ β ξα = Mα ξβ , ′ α −1 T α β ξ = [(M ) ] β ξ , ′† α˙ −1 † α˙ † β˙ ξ = [(M ) ] β˙ ξ , ˙ ξ′† =[M ∗] βξ† .
    [Show full text]
  • Arxiv:1003.1912V2 [Hep-Ph] 30 Jun 2010 Fermion and Complex Vector Boson Dark Matter Are Also Disfavored, Except for Very Specific Choices of Quantum Numbers
    Preprint typeset in JHEP style - HYPER VERSION UMD-PP-10-004 RUNHETC-2010-07 A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter Prateek Agrawal Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 Zackaria Chacko Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 Can Kilic Department of Physics and Astronomy, Rutgers University, Piscataway NJ 08854 Rashmish K. Mishra Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 Abstract: We perform a model-independent classification of Weakly Interacting Massive Particle (WIMP) dark matter candidates that have the property that their scattering off nucleons is dominated by spin-dependent interactions. We study renormalizable theories where the scattering of dark matter is elastic and arises at tree-level. We show that if the WIMP-nucleon cross section is dominated by spin-dependent interactions the natural dark matter candidates are either Majorana fermions or real vector bosons, so that the dark matter particle is its own anti-particle. In such a scenario, scalar dark matter is disfavored. Dirac arXiv:1003.1912v2 [hep-ph] 30 Jun 2010 fermion and complex vector boson dark matter are also disfavored, except for very specific choices of quantum numbers. We further establish that any such theory must contain either new particles close to the weak scale with Standard Model quantum numbers, or alternatively, a Z0 gauge boson with mass at or below the TeV scale. In the region of parameter space that is of interest to current direct detection experiments, these particles naturally lie in a mass range that is kinematically accessible to the Large Hadron Collider (LHC).
    [Show full text]
  • Arxiv:1702.04624V3 [Cond-Mat.Str-El]
    Type-III and IV interacting Weyl points J. Nissinen1 and G.E. Volovik1, 2 1Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland 2Landau Institute for Theoretical Physics, acad. Semyonov av., 1a, 142432, Chernogolovka, Russia (Dated: July 7, 2017) 3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic µ Green’s functions parametrized by a 16 element matrix eα in an expansion around the Weyl point. µ The matrix eα can be naturally identified as an effective tetrad field for the fermions. The corre- spondence between the tetrad field and an effective quasi-relativistic metric gµν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types 00 of Weyl fermions, depending on the signs of the components g and g00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an 00 overtilted Weyl cone for g > 0 and respectively g00 > 0 or g00 < 0, we find additional “type-III” 00 and “type-IV” Weyl fermions with instabilities (complex frequencies) for g < 0 and g00 > 0 or g00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves. PACS numbers: I. INTRODUCTION Weyl fermions1 are massless fermions whose masslessness (gaplessness) is topologically protected2–5.
    [Show full text]
  • The Grassmannian Sigma Model in SU(2) Yang-Mills Theory
    The Grassmannian σ-model in SU(2) Yang-Mills Theory David Marsh Undergraduate Thesis Supervisor: Antti Niemi Department of Theoretical Physics Uppsala University Contents 1 Introduction 4 1.1 Introduction ............................ 4 2 Some Quantum Field Theory 7 2.1 Gauge Theories .......................... 7 2.1.1 Basic Yang-Mills Theory ................. 8 2.1.2 Faddeev, Popov and Ghosts ............... 10 2.1.3 Geometric Digression ................... 14 2.2 The nonlinear sigma models .................. 15 2.2.1 The Linear Sigma Model ................. 15 2.2.2 The Historical Example ................. 16 2.2.3 Geometric Treatment ................... 17 3 Basic properties of the Grassmannian 19 3.1 Standard Local Coordinates ................... 19 3.2 Plücker coordinates ........................ 21 3.3 The Grassmannian as a homogeneous space .......... 23 3.4 The complexied four-vector ................... 25 4 The Grassmannian σ Model in SU(2) Yang-Mills Theory 30 4.1 The SU(2) Yang-Mills Theory in spin-charge separated variables 30 4.1.1 Variables .......................... 30 4.1.2 The Physics of Spin-Charge Separation ......... 34 4.2 Appearance of the ostensible model ............... 36 4.3 The Grassmannian Sigma Model ................ 38 4.3.1 Gauge Formalism ..................... 38 4.3.2 Projector Formalism ................... 39 4.3.3 Induced Metric Formalism ................ 40 4.4 Embedding Equations ...................... 43 4.5 Hodge Star Decomposition .................... 48 2 4.6 Some Complex Dierential Geometry .............. 50 4.7 Quaternionic Decomposition ................... 54 4.7.1 Verication ........................ 56 5 The Interaction 58 5.1 The Interaction Terms ...................... 58 5.1.1 Limits ........................... 59 5.2 Holomorphic forms and Dolbeault Cohomology ........ 60 5.3 The Form of the interaction ..................
    [Show full text]
  • An Effective Theory of Dirac Dark Matter
    SLAC-PUB-13482 An Effective Theory of Dirac Dark Matter Roni Harnik1 and Graham D. Kribs2 1SITP, Physics Department, Stanford University, Stanford, CA 94305 and SLAC, Stanford University, Menlo Park, CA 94025 2Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (Dated: October 31, 2008) A stable Dirac fermion with four-fermion interactions to leptons suppressed by a scale Λ ∼ 1 TeV is shown to provide a viable candidate for dark matter. The thermal relic abundance matches cosmology, while nuclear recoil direct detection bounds are automatically avoided in the absence of (large) couplings to quarks. The annihilation cross section in the early Universe is the same as the annihilation in our galactic neighborhood. This allows Dirac fermion dark matter to naturally explain the positron ratio excess observed by PAMELA with a minimal boost factor, given present astrophysical uncertainties. We use the Galprop program for propagation of signal and background; we discuss in detail the uncertainties resulting from the propagation parameters and, more impor- tantly, the injected spectra. Fermi/GLAST has an opportunity to see a feature in the gamma-ray spectrum at the mass of the Dirac fermion. The excess observed by ATIC/PPB-BETS may also be explained with Dirac dark matter that is heavy. A supersymmetric model with a Dirac bino provides a viable UV model of the effective theory. The dominance of the leptonic operators, and thus the observation of an excess in positrons and not in anti-protons, is naturally explained by the large hypercharge and low mass of sleptons as compared with squarks.
    [Show full text]