2. Geologic and Edaphic Factors Influencing Susceptibility of Forest Soils to Environmental Change

Total Page:16

File Type:pdf, Size:1020Kb

2. Geologic and Edaphic Factors Influencing Susceptibility of Forest Soils to Environmental Change 2. Geologic and Edaphic Factors Influencing Susceptibility of Forest Soils to Environmental Change Scott W. Bailey There is great diversity in the structure and function of the northern forest across the 20-state portion of the United States considered in this book. The interplay of many factors accounts for the mosaic of ecological regimes across the region. In particular, climate, physiography, geology, and soils influence dominance and distribution of vegetation communities across the region. This chapter provides a review of the ecology of the northern forest, emphasizing the role of geology and soils. The chapter begins with descriptive material reviewing the physiog- raphy, bedrock geology, and soils of the various provinces that constitute the northern forest. The distribution of vegetation communities and the role of climate, while of prime importance in defining the ecology of the region, are given limited coverage here as these are discussed more thoroughly elsewhere in this volume (see Chapters 1 and 3). However, to the extent that climate and vegetation are important soil-forming factors (Jenny, 1941), their characteristics in each province are summarized here. As the historical vegetation, which developed prior to large-scale anthropogenic alterations of the landscape in the last 150 years, is more 28 S.W. Bailey germane to the distribution of soil types than current vegetation patterns, long-term climax vegetation or potential natural vegetation (Kuchler, 1964) is listed here. In the second portion of the chapter, particular attention is paid to the important resource of the soils, upon which our forests grow. Perhaps the single most important factor in determining the health and productivity of the forest, soils integrate many of the same influences that result in distribution of a variety of ecological types across the region. Distribution of major soil types is reviewed, highlighting the important differences in soil-forming factors and processes among soil taxonomic types. In particular, characteristics of each soil type that most affect forest nutrient cycling, and which might be most dynamic in a changing environment, are highlighted. Finally, efforts to predict distribution of soils susceptible to nutrient depletion are reviewed. Nutrient depletion is perhaps the aspect of environmental change that is most associated with soil processes and is the subject of much recent study. Opportunities for advancement of the methods used to evaluate this phenomenon are suggested. Ecological Regions The United States Department of Agriculture (USDA) Forest Service has adopted a hierarchical classification system for mapping ecological regions at multiple scales (McNab and Avers, 1994). At the highest level of classification, the domain, are broad climatic regions, such as Polar, Humid Temperate, Humid Tropical, and Dry. The entire northern forest region lies within the Humid Temperate Domain. At the second level of classification, four divisions occur in the northern forest. The Warm Continental, Hot Continental, Subtropical, and Prairie Divisions delineate broad differences in climate, primarily temperature and precipitation. Two divisions in this region are in mountainous terrain, characterized by altitudinal zonation of vegetation; the letter "M" designates these units (see Fig. 2.1 in the color insert). Broad distinctions within the northern forest region are best illustrated at the third level of the classification system, the province. The following is a breakdown of the study region at this level of detail, highlighting factors responsible for the distinction of ecological units at this scale. Laurentian Mixed Forest Province The Laurentian Mixed Forest occurs on flat to moderately hilly areas in the northern part of the region (see Fig. 2.1 in color insert). This province, which constitutes 22% of the region (Table 2.1), is characterized by 2. Geologic and Edaphic Factors 29 Table 2.1. Area of Ecological Provinces in the Northern Forest Region Svmbol Province Area (ha) Area (%) Laurentian Mixed Forest 37,656,021 New England-Adirondack 10,938,240 Mixed-Coniferous Forest-Alpine Meadow Eastern Broadleaf Forest (Oceanic) Central Appalachian Broadleaf-Coniferous Forest-Meadow Eastern Broadleaf Forest (Continental) Southeastern Mixed Forest Outer Coastal Plain Mixed Forest Lower Mississippi Riverine Forest Prairie Parkland (Temperate) Total northern hardwood forests (American beech [Fagus grandifolia Ehrh.], yellow birch [Betula alleglzaniensis Britton], sugar maple [Acer saccha- rum L.]). Lesser forest types include spruce (Picea spp.)-fir (Ahies spp.) in Maine and Minnesota, Appalachian oak (Quevcus spp.) forests in southern New York and adjacent Pennsylvania, and aspen (Populus spp.)-birch (Betula spp.) and mixed pine (Pinus spp.) forests in the upper Midwest. Mean annual precipitation ranges from 530 mm in northern Minnesota to 1270 mm in coastal Maine and portions of the Allegheny Plateau of Pennsylvania and New York. The frost-free growing season is relatively short, ranging from 100 to 160 days. The age, structure, and composition of bedrock, as well as its influence on forests, is quite varied within the Laurentian Mixed Forest. In Maine, bedrock ranges from deformed but unmetamorphosed sedimentary rocks in the northeast to high-grade metasedimentary rocks in the southwest. Variable contributions of plutonic rocks, mostly granitic, as well as volcanic rocks also occur throughout Maine. The northern New York and Vermont portion is underlain by an assortment of unmetamorphosed sedimentary rocks, including carbonates, shale, and sandstone, their metamorphosed equivalents of marble, schist, and quartzite, as well as gneiss and amphibolite. The influence of Appalachian deformation, metamorphism and igneous activity is less prevalent in the Allegheny Plateau of southern New York and adjacent Pennsylvania. Here, bedrock is slightly deformed sandstone, siltstone, and shale, with lesser amounts of limestone, conglomerate, and coal. Slightly deformed sandstone, limestone, and dolomite characterize the Michigan portion of the forest. In western sections of the province, highly deformed and metamorphosed rocks, associated with the Canadian Shield, dominate, including felsic to mafic plutonic and volcanic rocks, their metamorphic equivalents gneiss and amphibolite, as well as quartzites, and banded iron formation. 30 S.W. Bailey Direct influence of bedrock on forest processes such as nutrient- and water-cycling, is minimal in portions of the Laurentian Mixed Forest where thick surficial deposits blanket the bedrock surface. However, in areas of shallow surficial deposits, bedrock influence may be great, depending on topography, bedrock composition, and degree of water flow through bedrock pores or fractures. In the only unglaciated portion of this province, in southwestern New York and adjacent Pennsylvania, bedrock influences the texture and mineralogy of surficial deposits ultimately derived from saprolite. Indirect influence of the bedrock is important in all glaciated areas, as primary mineralogy, and to a certain extent texture, of surficial deposits is dependent on the bedrock origin of the sediments. Surficial deposits in this province are nearly all of glacial origin, deposited during the final retreat of the continental glacier at the close of the Wisconsinan Stage, approximately 10,000 to 15,000 years ago. Minor areas of glacial deposits from earlier stages, up to 550,000 years old, are found in southern portions of the province adjacent to the limit of the Wisconsinan advance. Glacial deposits result from a variety of deposi- tional modes, resulting in a variety of configurations and textures. Unsorted, unstratified ground moraine, or till, is the most common glacial deposit in this region. The till tends to be relatively thin (meters to tens of meters thick) in eastern portions, while it is up to hundreds of meters thick in some portions of the upper Midwest. Stratified drift, including outwash plains, kames, and eskers of lesser areal extent are common in most regions, while large sandy outwash deposits dominate some parts of Michigan. Lacustrine deposits, ranging from clays to stratified silts and sands, are common in some low-lying portions, for example, east of Lake Champlain in Vermont and in northern Minnesota. Marine clays are found in east central Maine and the Saint Lawrence Valley. These were deposited when sea level was higher, due to land subsidence under the weight of the continental glaciers. Recent surficial deposits include alluvium in river valleys and organic accumulations common in wetland basins throughout the region. These range greatly in size and frequency, with large peat deposits common in extreme eastern Maine and especially in northern Minnesota. The only unglaciated portion of the Laurentian Mixed Forest occurs in southwestern New York and adjacent portions of Pennsylvania. This area is underlain by residuum in the most stable landscape positions, primarily gently sloping plateau tops. Colluvium dominates steeper slopes, whereas alluvium is found in lower slope positions. The Laurentian Mixed Forest and its mountain analog, the New England-Adirondack Province, are the only forest provinces in the study region with a predominance of Spodosols (Fig. 2.2 in color insert; Table 2.2). In this province, these are found in a large variety of parent materials and landscape positions. Several other soil orders dominate certain parent materials or more limited portions of the landscape.
Recommended publications
  • Soils Section
    Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Diagnostic Horizons
    Exam III Wednesday, November 7th Study Guide Posted Tomorrow Review Session in Class on Monday the 4th Soil Taxonomy and Classification Diagnostic Horizons Epipedons Subsurface Mollic Albic Umbric Kandic Ochric Histic Argillic Melanic Spodic Plaggen Anthropic Oxic 1 Surface Horizons: Mollic- thick, dark colored, high %B.S., structure Umbric – same, but lower B.S. Ochric – pale, low O.M., thin Histic – High O.M., thick, wet, dark Sub-Surface Horizons: Argillic – illuvial accum. of clay (high activity) Kandic – accum. of clay (low activity) Spodic – Illuvial O.M. accumulation (Al and/or Fe) Oxic – highly weathered, kaolinite, Fe and Al oxides Albic – light colored, elluvial, low reactivity Elluviation and Illuviation Elluviation (E horizon) Organic matter Clays A A E E Bh horizon Bt horizon Bh Bt Spodic horizon Argillic horizon 2 Soil Taxonomy Diagnostic Epipedons Diagnostic Subsurface horizons Moisture Regimes Temperature Regimes Age Texture Depth Soil Taxonomy Soil forming processes, presence or Order Absence of major diagnostic horizons 12 Similar genesis Suborder 63 Grasslands – thick, dark Great group 250 epipedons High %B.S. Sub group 1400 Family 8000 Series 19,000 Soil Orders Entisols Histosols Inceptisols Andisols Gelisols Alfisols Mollisols Ultisols Spodosols Aridisols Vertisols Oxisols 3 Soil Orders Entisol Ent- Recent Histosol Hist- Histic (organic) Inceptisol Incept- Inception Alfisol Alf- Nonsense Ultisol Ult- Ultimate Spodosol Spod- Spodos (wood ash) Mollisol Moll- Mollis (soft) Oxisol Ox- oxide Andisol And- Ando (black) Gelisol
    [Show full text]
  • Surficial Geologic Map of the Ahsahka Quadrangle, Clearwater County
    IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 7 MOSCOW-BOISE-POCATELLO OTHBERG, WEISZ, AND BRECKENRIDGE SURFICIAL GEOLOGIC MAP OF THE AHSAHKA QUADRANGLE, Disclaimer: This Digital Web Map is an informal report and may be revised and formally published at a later time. Its content and format CLEARWATER COUNTY, IDAHO may not conform to agency standards. Kurt L. Othberg, Daniel W. Weisz, and Roy M. Breckenridge 2002 embayments that now form the eastern edge of the Columbia River Plateau where the relatively flat region meets the mountains. Sediments of the Latah Qls Formation are interbedded with the basalt flows, and landslide deposits QTcr occur where major sedimentary interbeds are exposed along the valley sides. Qcg Pleistocene loess forms a thin discontinuous mantle on deeply weathered surfaces of the basalt plateau and mountain foothills. In the late Pleistocene, multiple Lake Missoula Floods inundated the Clearwater River valley, locally Qcb Qcb depositing silt, sand, and ice-rafted pebbles and cobbles in the lower elevations of the canyon. QTcr QTlsr The bedrock geology of this area is mapped by Lewis and others (2001) and shows details of the basement rocks and the Miocene basalt flows and Qcg sediments. The bedrock map’s cross sections are especially useful for QTlbr Qls interpreting subsurface conditions suitable for siting water wells and assessing Qls the extent and limits of ground water. Qac Qls QTlsr SURFICIAL DEPOSITS QTlbr QTlbr m Made ground (Holocene)—Large-scale artificial fills composed of excavated, transported, and emplaced construction materials of highly varying composition, but typically derived from local sources. Qam QTlsr Alluvium of mainstreams (Holocene)—Channel and flood-plain deposits of the Clearwater River that are actively being formed on a seasonal or annual Qls Qls basis.
    [Show full text]
  • Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
    Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere.
    [Show full text]
  • Mass Movement in Two Selected Areas of Western Washington County, Vania
    Mass Movement in Two Selected Areas of Western Washington County, vania GEOLOGICAL SURVEY PROFESSIONAL PAPER 1170-B MASS MOVEMENT IN TWO SELECTED AREAS OF WESTERN WASHINGTON COUNTY, PENNSYLVANIA Recent earthflows along concave-convex east- to north-facing slopes west of Prosperity, Pa. Mass Movement in Two Selected Areas of Western Washington County, Pennsylvania By JOHN S. POMEROY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1170-B Landsliding and its relation to geology and an analysis of various interpretive elements in a region of the Allegheny Plateau subject to landslides UNITED STATES GOVERNMENT PRINTING OFFICE, W AS H INGTON : 1 982 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Pomeroy, John S 1929- Mass movement in two selected areas of western Washington County, Pennsylvania. (Shorter contributions to general geology) (Geological Survey professional paper ; 1170-B) Bibliography: p. Supt. of Docs, no.: I 19.16:1170-B 1. Mass-wasting-Pennsylvania-Washington Co. I. Title. II. Series: United States. Geological Survey. Shorter contributions to general geology. III. Series: United States. Geological Survey. Professional paper ; 1170-B. QE599.U5P65 551.3 80-607835 AACR1 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ______________________________ Bl Short Creek area __________________________ BIO Introduction
    [Show full text]
  • Surficial Geologic Map of the Dent Quadrangle, Clearwater County, Idaho
    IDAHO GEOLOGICAL SURVEY DIGITAL WEB MAP 6 MOSCOW-BOISE-POCATELLO OTHBERG, WEISZ, AND BRECKENRIDGE Disclaimer: This Digital Web Map is an informal report and may be revised and formally published at a later time. Its content and format may not conform to agency standards. SURFICIAL GEOLOGIC MAP OF THE DENT QUADRANGLE, CLEARWATER COUNTY, IDAHO Kurt L. Othberg, Daniel W. Weisz, and Roy M. Breckenridge 2002 DESCRIPTION OF MAP UNITS Qcg Qcg Qls INTRODUCTION Qls Qcb Qcb The surficial geologic map of the Dent quadrangle identifies earth materials Qcg on the surface and in the shallow subsurface. It is intended for those interested in the area's natural resources, urban and rural growth, and private and DWORSHAK public land development. The information relates to assessing diverse Qcb conditions and activities, such as slope stability, construction design, sewage drainage, solid waste disposal, and ground-water use and recharge. Qls The geology was intensively investigated during a one-year period. Natural ELE VAT and artificial exposures of the geology were examined and selectively 16 IO RESERVOIRQcg 00 N collected. In addition to field investigations, aerial photographs were studied Qls to aid in identifying boundaries between map units through photogeologic mapping of landforms. In most areas map-unit boundaries (contacts) are approximate and were drawn by outlining well-defined landforms. It is rare that contacts between two units can be seen in the field without excavation Qls Qcg operations which are beyond the purpose and scope of this map. The contacts are inferred where landforms are poorly defined and where lithologic Qcg characteristics grade from one map unit into another.
    [Show full text]
  • Soil Properties Database of Spanish Soils. Volumen
    65°^ e 0 6,2.1 Centro de Investigaciones Energeticas, Medioambientales y Tecnoldgicas Miner A, is /X Base de Dates de Propiedades Edafoldgicas de los Suelos Espanoles. VolumenXI. CASTHIA-LEON(b): Palentia, Valladolid y Avila C. Trueba RMillan T. Schmid received C. Lago JUL 121999 C. Roquero M. Magister OSTl MormesTecnicosCiemat 898 julio,1999 1. -a;:' ' > DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Informes T ecnicos Ciemat 898 julio, 1999 Base de Dates dePropiedades Edafologicas de los Suelos Espanoles. VohnnenXL CASHLLA-LEON(b): Palencia, Valladolid y Avila C. Trueba (*) R. Millan(*) T. Schmid (*) C. Lago (*) C. Roquero (**) M.Magister (**) (*) CIEMAT (**)UPM Departamento de Impacto Ambiental de la Energia Toda correspondenica en relation con este trabajo debe dirigirse al Servicio de Information y Documentation, Centro de Investigaciones Energeticas, Medioambientales y Tecnoldgicas, Ciudad Universitaria, 28040-MADRID, ESPANA. Las solicitudes de ejemplares deben dirigirse a este mismo Servicio. Los descriptores se ban seleccionado del Thesauro del DOE para describir las materias que contiene este informe con vistas a su recuperation. La catalogacidn se ha hecho utilizando el documento DOE/TIC-4602 (Rev. 1) Descriptive Cataloguing On-Line, y la clasificacion de acuerdo con el documento DOE/TIC.4584-R7 Subject Categories and Scope publicados por el Office of Scientific and Technical Information del Departamento de Energia de los Estdos Unidos. Se autoriza la reproduction de los resumenes analiticos que aparecen en esta publication. Deposito Legal: M -14226-1995 ISSN: 1135-9420 NIRO: 238-99-003-5 Editorial CIEMAT CLASIFICACION DOE Y DESCRIPTORES 540230 SOILS; SOIL CHEMISTRY; SOIL MECHANICS; RADIONUCLIDE MIGRATION; DATA BASE MANAGEMENT; DATA COMPILATION; SPAIN; “Base de Dates de Propiedades Edafologicas de los Suelos Espanoles.
    [Show full text]
  • Colluvial Deposit
    Encyclopedia of Planetary Landforms DOI 10.1007/978-1-4614-9213-9_55-1 # Springer Science+Business Media New York 2014 Colluvial Deposit Susan W. S. Millar* Department of Geography, Syracuse University, Syracuse, NY, USA Synonyms Colluvial depositional system; Colluvial mantle; Colluvial soil; Colluvium; Debris slope; Hillslope (or hillside) deposits; Scree (UK); Slope mantle; Slope-waste deposits; Talus (US) Definition A sedimentary deposit composed of surface mantle that has accumulated toward the base of a slope as a result of transport by gravity and non-channelized flow. Description The International Geomorphological Association recognizes colluvium as a hillslope deposit resulting from two general nonexclusive processes (Goudie 2004). Rainwash, sheetwash, or creep can generate sediment accumulations at the base of gentle slopes; or non-channelized flow can initiate sheet erosion and toe-slope sediment accumulation. The term “colluvium” is frequently applied broadly to include mass wasting deposits in a variety of topographic and climatic settings. For example, Blikra and Nemec (1998) describe colluvium as any “clastic slope-waste material, typically coarse grained and immature, deposited in the lower part and foot zone of a mountain slope or other topographic escarpment, and brought there chiefly by sediment-gravity processes.” Lang and Honscheidt (1999) describe colluvium as “slope wash and tillage sediments, resulting from soil erosion....” The composition of a colluvial deposit can therefore be coarse-grained, eroded bedrock, with an open-work structure and several meters thick (Blikra and Nemec 1998), to fine-grained soil, ranging from a few millimeters to meters in thickness (e.g., Lang and Hönscheidt 1999). Some deposits may exhibit distinct macro- and micro-fabric development, bedding structures, and evi- dence of distinct periods of accumulation (e.g., Bertran et al.
    [Show full text]
  • This File Was Created by Scanning the Printed Publication
    This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Editors SHARON E. CLARKE is a geographer and GIS analyst, Department of Forest Science, Oregon State University, Corvallis, OR 97331; and SANDRA A. BRYCE is a biogeographer, Dynamac Corporation, Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, Corvallis, OR 97333. This document is a product of cooperative research between the U.S. Department of Agriculture, Forest Service; the Forest Science De- partment, Oregon State University; and the U.S. Environmental Protection Agency. Cover Artwork Cover artwork was designed and produced by John Ivie. Abstract Clarke, Sharon E.; Bryce, Sandra A., eds. 1997. Hierarchical subdivisions of the Columbia Plateau and Blue Mountains ecoregions, Oregon and Washington. Gen. Tech. Rep. PNW-GTR-395. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 114 p. This document presents two spatial scales of a hierarchical, ecoregional framework and provides a connection to both larger and smaller scale ecological classifications. The two spatial scales are subregions (1:250,000) and landscape-level ecoregions (1:100,000), or Level IV and Level V ecoregions. Level IV ecoregions were developed by the Environmental Protection Agency because the resolution of national-scale ecoregions provided insufficient detail to meet the needs of state agencies for estab- lishing biocriteria, reference sites, and attainability goals for water-quality regulation. For this project, two ecoregions—the Columbia Plateau and the Blue Mountains— were subdivided into more detailed Level IV ecoregions.
    [Show full text]
  • NREM 301 Day 9
    NREM 301 Day 9 • Quiz on Thursday! • Continue discussing sequences (focusing on central IA) • Discuss Soil Taxonomy and major soil orders • Lab Today – “Identifying Soil Bio- and Toposequences” – Individual Assignment – due Thurs. Oct. 2. Soil Definition for Soil • A Natural Body • Unconsolidated Mixture • Mineral & Organic Matter • Living & Dead • Developing in Place Over Time Dirt So - soils vary dramatically spatially & temporally Because of: Soil = f(Cli, p, r, o, t) Cli = climate P = parent material R = relief O = organisms T = time High elevation – cold Soil = f(Cli, p, r, o, t) Cli = Climate What Soil Differences Would 5,000 ft – warm, humid You Expect? Why? Granite Glacial Till Soil = f(Cli, p, r, o, t) P = Parent Material What Soil Differences Would You Expect? Why? Soil Parent Materials – the raw mineral material soils are developing in. Rocks and Minerals Deposited in oceans -marine sediment Deposited in lakes ----lacustrine sediment Deposited in streams -alluvium – floodplain, delta terrace, fan ice Deposited by ice ----glacial till --- moraines transport Deposited by water --outwash – alluvium, marine lacustrine Deposited by wind - eolian --- loess, eolian sand, Residual sediment volcanic ash parent material (bedrock weathered Deposited by gravity –colluvium – creep, landslides in place) types of examples of deposits landforms or deposits Modified from Brady and Weil. 2002. The nature and properties of soils. 13th edition. Prentice Hall. N or E facing S or W facing Soil = f(Cli, p, r, o, t) r = Relief/Topography What Soil
    [Show full text]
  • Adsorption and Availability of Phosphorus in Response to Humic Acid Rates in Soils Limed with Caco3 OR Mgco3 9
    Ciência e Agrotecnologia, 42(1):7-20, Jan/Feb. 2018 http://dx.doi.org/10.1590/1413-70542018421014518 Adsorption and availability of phosphorus in response to humic acid rates in soils limed with CaCO3 or MgCO3 Adsorção e disponibilidade de fósforo em resposta a doses de ácido húmico em solos corrigidos por CaCO3 ou MgCO3 Henrique José Guimarães Moreira Maluf1*, Carlos Alberto Silva1, Nilton Curi1, Lloyd Darrell Norton2, Sara Dantas Rosa1 1Universidade Federal de Lavras/UFLA, Departamento de Ciência do Solo/DCS, Lavras, MG, Brasil 2Purdue University, Department of Agricultural and Biological Engineering, West Lafayette, Indiana, USA *Corresponding author: [email protected] Received in May 18, 2017 and approved in July 24, 2017 ABSTRACT Humic acid (HA) may reduce adsorption and increase soil P availability, however, the magnitude of this effect is different when 2+Ca prevails over Mg2+ in limed soils. The objective of this study was to evaluate the effects of HA rates and carbonate sources on the adsorption, phosphate maximum buffering capacity (PMBC), and P availability in two contrasting soils. Oxisol and Entisol samples were firstly incubated with the -1 following HA rates: 0, 20, 50, 100, 200 and 400 mg kg , combined with CaCO3 or MgCO3, to evaluate P adsorption. In sequence, soil samples were newly incubated with P (400 mg kg-1) to evaluate P availability. The least P adsorption was found when 296 mg kg-1 of HA was added to Oxisol. Applying HA rates decreased maximum adsorption capacity, increased P binding energy to soil colloids and did not alter PMBC of Entisol.
    [Show full text]