Neurodegeneration with Brain Iron Accumulation

Total Page:16

File Type:pdf, Size:1020Kb

Neurodegeneration with Brain Iron Accumulation Neurodegeneration with Brain Iron Accumulation Authors: Allison M. Gregory1, M.S. and Susan J. Hayflick1, M.D. Creation date: September 2004 Scientific Editor: Professor Alexis Brice 1Molecular and Medical Genetics, Pediatrics and Neurology, Oregon Health & Science University, L103a, 3181 SW Sam Jackson Park Rd., Portland, Oregon, United States. mailto:[email protected] Abstract Key-words Disease Name/Synonyms Definition/Diagnostic criteria Differential Diagnosis Etiology Diagnostic Methods Epidemiology Clinical Description Genetic Counseling Research opportunities for families Antenatal Diagnosis Management/Treatment Unresolved questions References Abstract Neurodegeneration with brain iron accumulation (NBIA, formerly Hallervorden-Spatz syndrome) encompasses a group of rare neurodegenerative disorders transmitted in an autosomal recessive fashion. An estimated prevalence of 1-3/1,000,000 has been suggested based on observed cases in a population. Since the recent discovery of the major genetic defect causing NBIA, this heterogeneous group of disorders can now be differentiated by clinical, radiographic, and molecular features. The hallmark features of NBIA include progressive extrapyramidal dysfunction (dystonia, rigidity, choreoathetosis) and iron accumulation in the brain, primarily in the basal ganglia. Brain MRI is standard in the diagnostic evaluation of all forms of NBIA. Approximately half of the patients given a clinical diagnosis of NBIA are found to have identifiable mutations in the PANK2 gene, which causes pantothenate kinase-associated neurodegeneration, or PKAN. At this time most treatments for NBIA are palliative. Research is currently underway to identify additional NBIA genes and improve treatment possibilities by characterizing the underlying causes of these disorders. Key-words Dystonia, basal ganglia, pantothenate kinase-associated neurodegeneration, PKAN, Hallervorden-Spatz syndrome, neurodegeneration with brain iron accumulation, NBIA Disease Name/Synonyms NBIA encompasses a group of progressive • Neurodegeneration with brain iron extrapyramidal disorders characterized by accumulation (NBIA) radiographic evidence of iron accumulation in • Hallervorden-Spatz syndrome the brain, usually in the basal ganglia (Hayflick et • Pantothenate kinase-associated al., 2003). The term NBIA is already in use in neurodegeneration (PKAN) the medical literature (Arawaka et al., 1998; Bruscoli et al., 1998; Galvin et al., 2000; Gregory AM and Hayflick SJ. Neurodegeneration with Brain Iron Accumulation. Orphanet Encyclopedia. September 2004. http://www.orpha.net/data/patho/GB/uk-NBIA.pdf 1 Neumann et al., 2000; Swaiman 2001; Zhou et gene, Hayflick et al (Hayflick et al., 2003) al., 2001) and is sufficiently broad to cover the delineated two clinical forms of PKAN, the spectrum of disorders previously called classic form and an atypical form, based on age Hallervorden-Spatz syndrome and additional at onset and rate of disease progression. The disorders of high brain iron, including diagnostic criteria continue to evolve to reflect neuroferritinopathy and aceruloplasminemia. the distinctions between PKAN and other forms The major form of NBIA is pantothenate kinase- of NBIA. associated neurodegeneration, or PKAN, caused by mutations in the PANK2 gene (Zhou et al., Hallmark features of PKAN 2001). Extrapyramidal dysfunction, including one or The original eponym for this group of disorders more of the following: acknowledges the work of neuropathologists • Dystonia Julius Hallervorden and Hugo Spatz • Rigidity (Hallervorden et al., 1922). The new term NBIA • Choreoathetosis is now favored in light of the unethical activities of Hallervorden and Spatz before and during Onset World War II (Shevell 1992). • Classic form usually presents in first decade of life; Definition/Diagnostic criteria • Atypical form presents more commonly The category of NBIA consists of disorders in in the second or third decade of life. which there is progressive extrapyramidal disease with brain iron accumulation, usually in Loss of ambulation the basal ganglia. The subgroups of NBIA • Classic form: often occurring within 10- include PKAN, HARP syndrome, 15 years of onset aceruloplasminemia, neuroferritinopathy, and, by • Atypical form: often occurring within 15- exclusion, NBIA of unknown cause. This review 40 years of onset will mainly focus on PKAN, which accounts for the majority of NBIA cases. 'Eye of the tiger' sign on T2-weighted magnetic resonance imaging (1.5 Tesla or greater). To PKAN date this has been observed in all patients with Suspicion of PKAN often arises when one or two PANK2 mutations (Hayflick et al., characteristic radiographic MRI changes are 2003) (Figure 1). demonstrated in a patient with suggestive clinical features. Following the discovery of the PANK2 Figure 1. Brain MRI of the globus pallidi: Left image shows the 'eye of the tiger' change characteristic of PKAN, whereas the image on the right shows only globus pallidus hypointensities, consistent with iron deposition and supporting a diagnosis of NBIA. Gregory AM and Hayflick SJ. Neurodegeneration with Brain Iron Accumulation. Orphanet Encyclopedia. September 2004. http://www.orpha.net/data/patho/GB/uk-NBIA.pdf 2 Corroborative features major component of this pigment (Hallervorden • Corticospinal tract involvement 1924). In PKAN, the accumulation of iron is o Spasticity specific to the globus pallidus and substantia o Extensor toe signs nigra. These areas contain approximately three times the normal amount of iron. Systemic iron • Retinal degeneration or optic atrophy. In metabolism is normal (Kornyey 1964; Volkl et al., early-onset, rapidly progressive (classic) 1972; Dooling et al., 1974; Vakili et al., 1977) PKAN, two-thirds of affected individuals and a global increase in brain iron is not seen demonstrate pigmentary retinopathy (Spatz 1922). In regions of iron accumulation, (Hayflick et al., 2003), a much higher spheroid bodies are also seen (Koeppen et al., fraction than was previously reported 2001). Axonal spheroids are thought to (Roth et al., 1971; Newell et al., 1979; represent swollen axons, possibly secondary to Luckenbach et al., 1983). Although this defects in axonal transport. They are not limited feature occurs early in disease, to those portions of brain in which iron retinopathy is not often recognized until accumulates. a full diagnostic evaluation, including electroretinogram (ERG) and visual field Differential Diagnosis testing, is performed. PKAN can be distinguished from the other cases • Red blood cell acanthocytosis. Red of NBIA by the changes on brain MRI. In most blood cell (RBC) acanthocytes have patients with non-PKAN NBIA, the globus been reported in a subset of individuals pallidus is uniformly hypodense on T2-weighted with PKAN (Roth et al., 1971; Swisher et images (see Figure 1). This change indicates al., 1972; Luckenbach et al., 1983; high iron content; however, it is distinct from the Higgins et al., 1992; Tripathi et al., 'eye of the tiger' sign and is not seen in 1992). Confirmation of erythrocyte association with PANK2 mutations. Iron morphology by scanning electron deposition in the red nucleus and dentate microscopy may be helpful if available. nucleus in conjunction with cerebellar atrophy • Low or absent plasma pre-beta are common in the non-PKAN NBIA group. lipoprotein fraction (see HARP Seizures are also more prominent in these syndrome). individuals but rarely occur in PKAN. Sea blue • Family history consistent with autosomal histiocytes in bone marrow, historically a feature recessive inheritance (may include of Hallervorden-Spatz syndrome, do not occur in consanguinity). PKAN, but may be observed in other forms of NBIA. NBIA Exclusionary features A distinct sub-group of individuals with non- PKAN NBIA have early developmental delay • Abnormalities of copper metabolism or with moderate-to-severe mental retardation other evidence of Wilson disease diagnosed in early childhood. They may have • Evidence of neuronal ceroid spasticity and often are diagnosed with cerebral lipofuscinosis by electron microscopy, palsy. Their disease is static until late childhood enzymatic assay or the presence of a or, more commonly, adolescence or early DNA mutation in any of the six genes adulthood. With no clear inciting event, these associated with this condition. individuals experience a sudden and rapid • Family history of Huntington disease or deterioration usually marked by prominent other dominantly inherited movement dystonia. At this later stage, brain MRI changes disorder associated with NBIA may be seen. The gene • Caudate atrophy causing this form of NBIA has not yet been • ß-hexosaminidase A deficiency or GM1- identified. galactosidase deficiency Patients with aceruloplasminemia have additional iron accumulation in the visceral NBIA Pathological Diagnosis organs and develop diabetes relatively early in Before the availability of MRI, NBIA was a post- disease progression. They have retinal mortem diagnosis. The neuropathologic degeneration with characteristic yellow opacities literature is limited by the heterogeneity of in the retinal pigment epithelium. conditions grouped under this diagnosis(Halliday Neuroferritinopathy typically presents with 1995). Hallervorden-Spatz syndrome was initially involuntary movements in the fourth to fifth characterized by the appearance of rust-brown decade of life and does not exhibit the marked pigmentation in the globus pallidus and the dysarthria observed in PKAN. reticular zone of the substantia
Recommended publications
  • Parkinson's Disease and Metal Storage Disorders
    brain sciences Review Parkinson’s Disease and Metal Storage Disorders: A Systematic Review Edward Botsford 1,* , Jayan George 2,3 and Ellen E. Buckley 4,5 1 University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK 2 General Surgical Department, Sheffield Teaching Hospitals NHS Foundation Trust, Herries Road, Sheffield S5 7AU, UK; [email protected] 3 University of Sheffield, Western Bank, S10 2TN Sheffield, UK 4 Sheffield Institute for Translational Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield S10 2HQ, UK; e.e.buckley@sheffield.ac.uk 5 INSIGNEO Institute for in silico Medicine, University of Sheffield, Pam Liversidge Building, Sheffield S1 3JD, UK * Correspondence: ebotsford1@sheffield.ac.uk; Tel.: +44-(0)114-222-2272 Received: 9 October 2018; Accepted: 30 October 2018; Published: 31 October 2018 Abstract: Metal storage disorders (MSDs) are a set of rare inherited conditions with variable clinical pictures including neurological dysfunction. The objective of this study was, through a systematic review, to identify the prevalence of Parkinsonism in patients with MSDs in order to uncover novel pathways implemented in Parkinson’s disease. Human studies describing patients of any age with an MSD diagnosis were analysed. Foreign language publications as well as animal and cellular studies were excluded. Searches were conducted through PubMed and Ovid between April and September 2018. A total of 53 publications were identified including 43 case reports, nine cross-sectional studies, and one cohort study. The publication year ranged from 1981 to 2018. The most frequently identified MSDs were Pantothenate kinase-associated neurodegeneration (PKAN) with 11 papers describing Parkinsonism, Hereditary hemochromatosis (HH) (7 papers), and Wilson’s disease (6 papers).
    [Show full text]
  • Clinical Rating Scale for Pantothenate Kinase-Associated Neurodegeneration: a Pilot Study
    RESEARCH ARTICLE Clinical Rating Scale for Pantothenate Kinase-Associated Neurodegeneration: A Pilot Study Alejandra Darling, MD,1 Cristina Tello, PhD,2 Marı´a Josep Martı´, MD, PhD,3 Cristina Garrido, MD,4 Sergio Aguilera-Albesa, MD, PhD,5 Miguel Tomas Vila, MD,6 Itziar Gaston, MD,7 Marcos Madruga, MD,8 Luis Gonzalez Gutierrez, MD,9 Julio Ramos Lizana, MD,10 Montserrat Pujol, MD,11 Tania Gavilan Iglesias, MD,12 Kylee Tustin,13 Jean Pierre Lin, MD, PhD,13 Giovanna Zorzi, MD, PhD,14 Nardo Nardocci, MD, PhD,14 Loreto Martorell, PhD,15 Gustavo Lorenzo Sanz, MD,16 Fuencisla Gutierrez, MD,17 Pedro J. Garcı´a, MD,18 Lidia Vela, MD,19 Carlos Hernandez Lahoz, MD,20 Juan Darı´o Ortigoza Escobar, MD,1 Laura Martı´ Sanchez, 1 Fradique Moreira, MD ,21 Miguel Coelho, MD,22 Leonor Correia Guedes,23 Ana Castro Caldas, MD,24 Joaquim Ferreira, MD,22,23 Paula Pires, MD,24 Cristina Costa, MD,25 Paulo Rego, MD,26 Marina Magalhaes,~ MD,27 Marı´a Stamelou, MD,28,29 Daniel Cuadras Palleja, MD,30 Carmen Rodrı´guez-Blazquez, PhD,31 Pablo Martı´nez-Martı´n, MD, PhD,31 Vincenzo Lupo, PhD,2 Leonidas Stefanis, MD,28 Roser Pons, MD,32 Carmen Espinos, PhD,2 Teresa Temudo, MD, PhD,4 and Belen Perez Duenas,~ MD, PhD1,33* 1Unit of Pediatric Movement Disorders, Hospital Sant Joan de Deu, Barcelona, Spain 2Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigacion Prı´ncipe Felipe, Valencia, Spain 3Neurology Department, Hospital Clı´nic de Barcelona, Institut d’Investigacions Biomediques IDIBAPS.
    [Show full text]
  • Management of Postpolio Syndrome
    Review Management of postpolio syndrome Henrik Gonzalez, Tomas Olsson, Kristian Borg Lancet Neurol 2010; 9: 634–42 Postpolio syndrome is characterised by the exacerbation of existing or new health problems, most often muscle weakness See Refl ection and Reaction and fatigability, general fatigue, and pain, after a period of stability subsequent to acute polio infection. Diagnosis is page 561 based on the presence of a lower motor neuron disorder that is supported by neurophysiological fi ndings, with exclusion Division of Rehabilitation of other disorders as causes of the new symptoms. The muscle-related eff ects of postpolio syndrome are possibly Medicine, Department of associated with an ongoing process of denervation and reinnervation, reaching a point at which denervation is no Clinical Sciences, Danderyd Hospital (H Gonzalez MD, longer compensated for by reinnervation. The cause of this denervation is unknown, but an infl ammatory process is K Borg MD) and Department of possible. Rehabilitation in patients with postpolio syndrome should take a multiprofessional and multidisciplinary Clinical Neurosciences, Centre approach, with an emphasis on physiotherapy, including enhanced or individually modifi ed physical activity, and muscle for Molecular Medicine training. Patients with postpolio syndrome should be advised to avoid both inactivity and overuse of weak muscles. (T Olsson MD), Karolinska Institute, Stockholm, Sweden Evaluation of the need for orthoses and assistive devices is often required. Correspondence to: Henrik Gonzalez, Division of Introduction summary of the pathophysiology and clinical Rehabilitation Medicine, 12–20 million people worldwide have sequelae of characteristics of postpolio syndrome, outline diagnostic Department of Clinical Sciences, poliomyelitis, according to Post-Polio Health and treatment options, and suggest future research Karolinska Institute, Danderyd Hospital, S-182 88 Stockholm, International.
    [Show full text]
  • A Pilot Trial of Deferiprone for Neurodegeneration with Brain Iron Accumulation
    BRIEF REPORTS A pilot trial of deferiprone for neurodegeneration with brain iron accumulation Giovanni Abbruzzese, 1 Giovanni Cossu, 2 Manuela Balocco, 3 Roberta Marchese, 1 Daniela Murgia, 2 Maurizio Melis, 2 Renzo Galanello, 4 Susanna Barella, 4 Gildo Matta, 5 Uberto Ruffinengo, 6 Ubaldo Bonuccelli, 7 and Gian Luca Forni, 3 1Department of Neurosciences, University of Genoa; 2Neurology Department, “G. Brotzu” General Hospital, Cagliari; 3Centro della Microcitemia e Anemie Congenite-Haematology, Galliera Hospital, Genoa; 4Ospedale Regionale Microcitemia, University of Cagliari, Cagliari; 5Radiology Department “G. Brotzu” General Hospital, Cagliari; 6Neuroradiology Unit, Galliera Hospital, Genoa; 7Neuroscience Department, University of Pisa, Italy ABSTRACT Deferiprone was shown to reverse iron deposition in associated neurodegeneration). These results underline the Friedreich's ataxia. This multi-center, unblinded, single-arm safety and tolerability of deferiprone, and suggest that pilot study evaluated safety and efficacy of deferiprone for chelating treatment might be effective in improving neuro - reducing cerebral iron accumulation in neurodegeneration logical manifestations associated with iron accumulation. with brain iron accumulation. Four patients with genetical - (Clinicaltrials.gov Identifier: NTC00907283) ly-confirmed pantothenate kinase-associated neurodegener - ation, and 2 with parkinsonism and focal dystonia, but Key words: deferiprone, iron overload, neurodegeneration inconclusive genetic tests, received 15 mg/kg deferiprone with brain iron accumulation. bid. Magnetic resonance imaging and neurological examina - tions were conducted at baseline, six and 12 months. Citation: Abbruzzese G, Cossu G, Balocco M, Marchese R, Chelation treatment caused no apparent hematologic or Murgia D, Melis M, Galanello R, Barella S, Matta G, neurological side effects. Magnetic resonance imaging Ruffinengo U, Bonuccelli U, and Forni GL.
    [Show full text]
  • Anatomical, Biological, and Surgical Features of Basal Gangliaanatomical, Biological, and Surgical Features of Basal Ganglia
    DOI: 10.5772/intechopen.68851 Provisional chapter Chapter 7 Anatomical, Biological, and Surgical Features of Basal Anatomical,Ganglia Biological, and Surgical Features of Basal Ganglia Nuket Gocmen Mas, Harun Muayad Said, NuketMurat GocmenTosun, Nilufer Mas, HarunYonguc, Muayad Yasemin Said, Soysal Muratand Hamit Tosun, Selim Nilufer Karabekir Yonguc, Yasemin Soysal and HamitAdditional Selim information Karabekir is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.68851 Abstract Basal ganglia refers to the deep gray matter masses on the deeply telencephalon and encompasses a group of nuclei and it influence the information in the extrapyramidal system. In human they are related with numerous significant functions controlled by the nervous system. Gross anatomically, it is comprised of different parts as the dorsal stria- tum that are consisted of the caudate nucleus and putamen and ventral striatum which includes the nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra, and subthalamic nucleus. Nucleus accumbens, is also associated with reward circuits and has two parts; the nucleus accumbens core and the nucleus accumbens shell. Neurological diseases are characterized through the obvious pathology of the basal ganglia, and there are important findings explaining striatal neurodegeneration on human brain. Some of these diseases are induced by bacterial and/or viral infections. Surgical interference can be one alternative for neuronal disease treatment like Parkinson’s Disease or Thiamine Responsive Basal Ganglia Disease or Wilson’s Disease, respectively in addition to the vas- cular or tumor surgery within this area. Extensive knowledge on the morphological basis of diseases of the basal ganglia along with motor, behavioral and cognitive symptoms can contribute significantly to the optimization of the diagnosis and later patient’s treatment.
    [Show full text]
  • Episodic Visual Snow Associated with Migraine Attacks
    Letters RESEARCH LETTER Discussion | Three patients report episodes of VS exclusively at the beginning or during migraine attacks. The description was Episodic Visual Snow Associated identical and matched the definition of VS in VSS except for With Migraine Attacks not being continuous.1,2 In the syndrome-defining study,1 only Visual snow syndrome (VSS) is a debilitating disorder charac- patients with continuous VS were included, impeding the iden- terized by continuous visual snow (VS), ie, tiny flickering dots tification of an episodic form. Based on the present case se- in the entire visual field resembling the view of a badly tuned ries, we propose to distinguish between VSS, a debilitating dis- analog television (Figure), plus additional visual symptoms, order characterized by continuous VS and additional visual such as photophobia and palinopsia. There is a high comor- symptoms persisting over years, and eVS, an uncommon self- 1 bidity with migraine and migraine aura. To our knowledge, limiting symptom during migraine attacks. this is the first report of patients with an episodic form of VS The relationship between migraine and VSS is still (eVS), strictly co-occurring with migraine attacks. unresolved.3 Although the severity of VS in VSS does not fluc- tuate in parallel to the migraine cycle,1 the strict co-occurrence Methods | Between January 2016 and December 2017, we saw of eVS and migraine reported here epitomizes a close proxim- 3 patients with eVS and 1934 patients with migraine at our ter- ity.This is in agreement with the clinical picture of migraine being tiary outpatient headache center.
    [Show full text]
  • Exacerbation of Motor Neuron Disease by Chronic Stimulation of Innate Immunity in a Mouse Model of Amyotrophic Lateral Sclerosis
    1340 • The Journal of Neuroscience, February 11, 2004 • 24(6):1340–1349 Neurobiology of Disease Exacerbation of Motor Neuron Disease by Chronic Stimulation of Innate Immunity in a Mouse Model of Amyotrophic Lateral Sclerosis Minh Dang Nguyen,1 Thierry D’Aigle,2 Genevie`ve Gowing,1,2 Jean-Pierre Julien,1,2 and Serge Rivest2 1McGill University Health Center, Centre for Research in Neurosciences, McGill University, The Montreal General Hospital Research Institute, Montre´al, Que´bec H3G 1A4, Canada, and 2Laboratory of Molecular Endocrinology, Laval University Medical Center Research Center and Department of Anatomy and Physiology, Laval University, Sainte-Foy, Que´bec G1V 4G2, Canada Innate immunity is a specific and organized immunological program engaged by peripheral organs and the CNS to maintain homeostasis after stress and injury. In neurodegenerative disorders, its putative deregulation, featured by inflammation and activation of glial cells resulting from inherited mutations or viral/bacterial infections, likely contributes to neuronal death. However, it remains unclear to what extent environmental factors and innate immunity cooperate to modulate the interactions between the neuronal and non-neuronal elements in the perturbed CNS. In the present study, we addressed the effects of acute and chronic administration of lipopolysaccharide (LPS), a Gram-negative bacterial wall component, in a genetic model of neurodegeneration. Transgenic mice expressing a mutant form of the superoxide dismutase 1 (SOD1 G37R) linked to familial amyotrophic lateral sclerosis were challenged intraperitoneally with a single nontoxic or repeated injections of LPS (1 mg/kg). At different ages, SOD1 G37R mice responded normally to acute endotoxemia. Remark- ably, only a chronic challenge with LPS in presymptomatic 6-month-old SOD1 G37R mice exacerbated disease progression by 3 weeks and motor axon degeneration.
    [Show full text]
  • Treatment for Disease Modification in Chronic Neurodegeneration
    cells Review Perspective: Treatment for Disease Modification in Chronic Neurodegeneration Thomas Müller 1,* , Bernhard Klaus Mueller 1 and Peter Riederer 2,3 1 Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Gartenstr. 1, 13088 Berlin, Germany; [email protected] 2 Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; [email protected] 3 Department of Psychiatry, Southern Denmark University Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark * Correspondence: [email protected] Abstract: Symptomatic treatments are available for Parkinson’s disease and Alzheimer’s disease. An unmet need is cure or disease modification. This review discusses possible reasons for negative clinical study outcomes on disease modification following promising positive findings from experi- mental research. It scrutinizes current research paradigms for disease modification with antibodies against pathological protein enrichment, such as α-synuclein, amyloid or tau, based on post mortem findings. Instead a more uniform regenerative and reparative therapeutic approach for chronic neurodegenerative disease entities is proposed with stimulation of an endogenously existing repair system, which acts independent of specific disease mechanisms. The repulsive guidance molecule A pathway is involved in the regulation of peripheral and central neuronal restoration. Therapeutic antagonism of repulsive guidance molecule A reverses neurodegeneration according to experimental Citation: Müller, T.; Mueller, B.K.; outcomes in numerous disease models in rodents and monkeys. Antibodies against repulsive guid- Riederer, P. Perspective: Treatment for ance molecule A exist. First clinical studies in neurological conditions with an acute onset are under Disease Modification in Chronic Neurodegeneration. Cells 2021, 10, way.
    [Show full text]
  • Gut–Brain Axis and Neurodegeneration: State-Of-The-Art of Meta-Omics Sciences for Microbiota Characterization
    International Journal of Molecular Sciences Review Gut–Brain Axis and Neurodegeneration: State-of-the-Art of Meta-Omics Sciences for Microbiota Characterization Bruno Tilocca 1 , Luisa Pieroni 2 , Alessio Soggiu 3,4 , Domenico Britti 1 , Luigi Bonizzi 4, 1, , 5,6, Paola Roncada * y and Viviana Greco * 1 Department of Health Sciences, University “Magna Græcia” of Catanzaro, viale Europa, 88100 Catanzaro, Italy; [email protected] (B.T.); [email protected] (D.B.) 2 Proteomics and Metabonomics Unit, Fondazione Santa Lucia-IRCCS, via del Fosso di Fiorano, 64-00143 Rome, Italy; [email protected] 3 Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy; [email protected] 4 Department of Veterinary Medicine, University of Milano, Via dell’Università, 6- 26900 Lodi, Italy; [email protected] 5 Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy 6 Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy * Correspondence: [email protected] (P.R.); [email protected] (V.G.) Which represents the co-corresponding author. y Received: 14 May 2020; Accepted: 4 June 2020; Published: 5 June 2020 Abstract: Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes.
    [Show full text]
  • Capsaicin Prevents Degeneration of Dopamine Neurons by Inhibiting Glial Activation and Oxidative Stress in the MPTP Model of Parkinson’S Disease
    OPEN Experimental & Molecular Medicine (2017) 49, e298; doi:10.1038/emm.2016.159 & 2017 KSBMB. All rights reserved 2092-6413/17 www.nature.com/emm ORIGINAL ARTICLE Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease Young C Chung1,8, Jeong Y Baek2,8, Sang R Kim3,4, Hyuk W Ko1, Eugene Bok4, Won-Ho Shin5, So-Yoon Won6 and Byung K Jin2,7 The effects of capsaicin (CAP), a transient receptor potential vanilloid subtype 1 (TRPV1) agonist, were determined on nigrostriatal dopamine (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease (PD). The results showed that TRPV1 activation by CAP rescued nigrostriatal DA neurons, enhanced striatal DA functions and improved behavioral recovery in MPTP-treated mice. CAP neuroprotection was associated with reduced expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and reactive oxygen species/reactive nitrogen species from activated microglia-derived NADPH oxidase, inducible nitric oxide synthase or reactive astrocyte-derived myeloidperoxidase. These beneficial effects of CAP were reversed by treatment with the TRPV1 antagonists capsazepine and iodo-resiniferatoxin, indicating TRPV1 involvement. This study demonstrates that TRPV1 activation by CAP protects nigrostriatal DA neurons via inhibition of glial activation-mediated oxidative stress and neuroinflammation in the MPTP mouse model of PD. These results suggest that CAP and its analogs may be beneficial therapeutic agents for the treatment of PD and other neurodegenerative disorders that are associated with neuroinflammation and glial activation-derived oxidative damage.
    [Show full text]
  • Part Ii – Neurological Disorders
    Part ii – Neurological Disorders CHAPTER 14 MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE Dr William P. Howlett 2012 Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania BRIC 2012 University of Bergen PO Box 7800 NO-5020 Bergen Norway NEUROLOGY IN AFRICA William Howlett Illustrations: Ellinor Moldeklev Hoff, Department of Photos and Drawings, UiB Cover: Tor Vegard Tobiassen Layout: Christian Bakke, Division of Communication, University of Bergen E JØM RKE IL T M 2 Printed by Bodoni, Bergen, Norway 4 9 1 9 6 Trykksak Copyright © 2012 William Howlett NEUROLOGY IN AFRICA is freely available to download at Bergen Open Research Archive (https://bora.uib.no) www.uib.no/cih/en/resources/neurology-in-africa ISBN 978-82-7453-085-0 Notice/Disclaimer This publication is intended to give accurate information with regard to the subject matter covered. However medical knowledge is constantly changing and information may alter. It is the responsibility of the practitioner to determine the best treatment for the patient and readers are therefore obliged to check and verify information contained within the book. This recommendation is most important with regard to drugs used, their dose, route and duration of administration, indications and contraindications and side effects. The author and the publisher waive any and all liability for damages, injury or death to persons or property incurred, directly or indirectly by this publication. CONTENTS MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE 329 PARKINSON’S DISEASE (PD) � � � � � � � � � � �
    [Show full text]
  • Reliability of MRI in Detection and Differentiation of Acute Neonatal/Pediatric Encephalopathy Causes Among Neonatal/ Pediatric Intensive Care Unit Patients Tamir A
    Hassan and Mohey Egyptian Journal of Radiology and Nuclear Medicine Egyptian Journal of Radiology (2020) 51:62 https://doi.org/10.1186/s43055-020-00173-7 and Nuclear Medicine RESEARCH Open Access Reliability of MRI in detection and differentiation of acute neonatal/pediatric encephalopathy causes among neonatal/ pediatric intensive care unit patients Tamir A. Hassan* and Nesreen Mohey Abstract Background: Causes of encephalopathy in neonates/pediatrics include hypoxic-ischemic injury (which is the most frequent cause and is defined as any impairment to the brain caused by insufficient blood flow and oxygenation), trauma, metabolic disorders, and congenital and infectious diseases. The aim of this study is to evaluate the value of MRI in detection and possible differentiation of different non-traumatic, non-infectious causes of acute neonatal/ pediatric encephalopathy among NICU/PICU patients. Results: This retrospective study included 60 selected patients according to the study inclusion and exclusion criteria; all presented with positive MRI findings for non-traumatic, non-infectious acute brain injury. Females (32, 53.3%) were affected more than males (28, 46.7%) with a mean age of 1.1 ± 1.02 years; all presented with variable neurological symptoms and signs that necessitate neonatal intensive care unit/pediatric intensive care unit (NICU/ PICU) admission. The final diagnosis of the study group patients were hypoxic ischemia injury (HII) in 39 patients (65%), metachromatic leukodystrophy in 6 patients (10%), biotin-thiamine-responsive basal ganglia disease (BTBGD) and Leigh disease each in 4 patients (6.7%), periventricular leukomalacia (PVL) in 3 patients (5%), and mitochondrial encephalopathy with lactic acidosis and stroke-like episodes syndrome (MELAS) and non-ketotic hyperglycinemia (NKH) each in 2 patients (3.3%).
    [Show full text]