Hamiltonian Group Actions and Equivariant Cohomology Springerbriefs in Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Hamiltonian Group Actions and Equivariant Cohomology Springerbriefs in Mathematics SPRINGER BRIEFS IN MATHEMATICS Shubham Dwivedi Jonathan Herman Lisa C. Jeffrey Theo van den Hurk Hamiltonian Group Actions and Equivariant Cohomology SpringerBriefs in Mathematics Series Editors Palle Jorgensen, Iowa, USA Roderick Melnik, Waterloo, Canada Lothar Reichel, Kent, USA George Yin, Detroit, USA Nicola Bellomo, Torino, Italy Michele Benzi, Pisa, Italy Tatsien Li, Shanghai, China Otmar Scherzer, Linz, Austria Benjamin Steinberg, New York, USA Yuri Tschinkel, New York, USA Ping Zhang, Kalamazoo, USA [email protected] SpringerBriefs in Mathematics showcases expositions in all areas of mathematics and applied mathematics. Manuscripts presenting new results or a single new result in a classical field, new field, or an emerging topic, applications, or bridges between new results and already published works, are encouraged. The series is intended for mathematicians and applied mathematicians. More information about this series at http://www.springer.com/series/10030 [email protected] Shubham Dwivedi • Jonathan Herman • Lisa C. Jeffrey • Theo van den Hurk Hamiltonian Group Actions and Equivariant Cohomology 123 [email protected] Shubham Dwivedi Jonathan Herman Department of Pure Mathematics Department of Mathematical and University of Waterloo Computational Sciences Waterloo, ON, Canada University of Toronto at Mississauga Mississauga, ON, Canada Lisa C. Jeffrey Theo van den Hurk Department of Mathematics Department of Mathematics University of Toronto University of Toronto Toronto, ON, Canada Toronto, ON, Canada ISSN 2191-8198 ISSN 2191-8201 (electronic) SpringerBriefs in Mathematics ISBN 978-3-030-27226-5 ISBN 978-3-030-27227-2 (eBook) https://doi.org/10.1007/978-3-030-27227-2 Mathematics Subject Classification (2010): 57R17 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland [email protected] Preface This monograph could serve as the textbook for a graduate course on symplectic geometry. It has been used for this purpose in graduate courses taught in the Mathematics Department at the University of Toronto. This book evolved from the lecture notes for the graduate course on symplectic geometry taught in fall 2016. Three of the coauthors (Shubham Dwivedi, Jonathan Herman and Theo van den Hurk) were students in this course. Alternatively, it could be used for independent study. A course on differential topology is an essential prerequisite for this course (at the level of the texts by Boothby [1] or Lee [2]). Some of the later material will be more accessible to readers who have had a basic course on algebraic topology, at the level of the book by Hatcher [3]. For some of the later chapters (such as the chapter on geometric quantization and the chapter on flat connections on 2-manifolds), it would be helpful to have some background on representation theory (such as the book by Bröcker and tom Dieck [4]) and complex geometry (such as the first chapter of the book by Griffiths and Harris [5]). The layout of this monograph is as follows. The first chapter introduces sym- plectic vector spaces, followed by symplectic manifolds. The second chapter treats Hamiltonian group actions. The Darboux theorem comes in Chap. 3. Chapter 4 treats moment maps. Orbits of the coadjoint action are introduced in Chap. 5. Chapter 6 treats symplectic quotients. The convexity theorem (Chap. 7) and toric manifolds (Chap. 8) come next. Equivariant cohomology is introduced in Chap. 9. The Duistermaat–Heckman theorem follows in Chap. 10, geometric quantiza- tion in Chap. 11 and flat connections on 2-manifolds in Chap. 12. Finally, the appendix provides the background material on Lie groups. v [email protected] vi Preface Exercises related to the material presented here may be found at Chaps. 1–5 http://www.math.toronto.edu/*jeffrey/mat1312/exerc1.pdf Chaps. 6–8, 11 http://www.math.toronto.edu/*jeffrey/mat1312/exerc2rev.pdf Chaps. 9, 10, 12 http://www.math.toronto.edu/*jeffrey/mat1312/exerc3rev.pdf The authors thank Yucong Jiang and Caleb Jonker for carefully reading and commenting on several chapters of the manuscript. Waterloo, Canada Shubham Dwivedi Mississauga, Canada Jonathan Herman Toronto, Canada Lisa C. Jeffrey Toronto, Canada Theo van den Hurk References 1. W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry. Pure and Applied Mathematics, vol. 120 (Academic Press, New York, 1986) 2. J. Lee, Introduction to Smooth Manifolds. GTM (Springer, New York, 2006) 3. A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2001) 4. T. Bröcker, T. tom Dieck, Representations of Compact Lie Groups. GTM (Springer, New York, 1985) 5. P. Griffiths, J. Harris, Principles of Algebraic Geometry (Wiley, New Jersey, 1994) [email protected] Contents 1 Symplectic Vector Spaces ................................ 1 1.1 Properties of Symplectic Vector Spaces .................. 1 1.2 Review of Results From Differential Topology ............. 4 1.3 Symplectic Manifolds ............................... 5 1.4 Examples ........................................ 6 References ............................................ 7 2 Hamiltonian Group Actions .............................. 9 2.1 Hamilton’s Equations ............................... 9 2.2 Hamiltonian Flow of a Function ....................... 10 2.3 Poisson Bracket ................................... 11 2.4 Uniqueness ....................................... 14 References ............................................ 15 3 The Darboux–Weinstein Theorem.......................... 17 References ............................................ 20 4 Elementary Properties of Moment Maps..................... 21 4.1 Introduction ...................................... 21 4.2 Examples of Moment Maps ........................... 22 4.3 The Normal Form Theorem ........................... 25 References ............................................ 26 5 The Symplectic Structure on Coadjoint Orbits ................ 27 Reference ............................................. 29 6 Symplectic Reduction ................................... 31 6.1 Introduction ...................................... 31 6.2 Symplectic Quotients ............................... 34 6.3 Reduction at Coadjoint Orbits and the Shifting Trick ........ 37 vii [email protected] viii Contents 6.4 Reduction in Stages ................................ 41 6.5 Symplectic Cutting ................................. 45 References ............................................ 46 7 Convexity ............................................ 47 7.1 Introduction ...................................... 47 7.2 Digression on Morse Theory .......................... 49 7.3 Almost Periodic Hamiltonians ......................... 51 7.4 Proof of the Convexity Theorem ....................... 54 7.5 Applications and Examples ........................... 57 References ............................................ 60 8 Toric Manifolds ....................................... 61 8.1 Introduction ...................................... 61 8.2 Integrable Systems ................................. 65 8.3 Primitive Polytopes ................................. 66 8.4 Delzant Correspondence ............................. 68 References ............................................ 70 9 Equivariant Cohomology ................................ 71 9.1 Introduction ...................................... 71 9.2 Homotopy Quotients ................................ 71 9.3 The Cartan Model .................................. 73 9.4 Characteristic Classes of Bundles over BUð1Þ and BT ....... 76 9.5 Characteristic Classes in Terms of the Cartan Model......... 78 9.6 Equivariant First Chern Class of a Prequantum Line Bundle ... 79 9.7 Euler Classes and Equivariant Euler Classes ............... 80 9.8 Localization Formula for Torus Actions .................. 81 9.9 Equivariant Characteristic Classes ...................... 84 9.10 The Localization Theorem in Equivariant Cohomology ....... 86 References ............................................ 88 10 The Duistermaat–Heckman Theorem ....................... 89 10.1 Introduction .....................................
Recommended publications
  • Representation Theory and Quantum Mechanics Tutorial a Little Lie Theory
    Representation theory and quantum mechanics tutorial A little Lie theory Justin Campbell July 6, 2017 1 Groups 1.1 The colloquial usage of the words \symmetry" and \symmetrical" is imprecise: we say, for example, that a regular pentagon is symmetrical, but what does that mean? In the mathematical parlance, a symmetry (or more technically automorphism) of the pentagon is a (distance- and angle-preserving) transformation which leaves it unchanged. It has ten such symmetries: 2π 4π 6π 8π rotations through 0, 5 , 5 , 5 , and 5 radians, as well as reflection over any of the five lines passing through a vertex and the center of the pentagon. These ten symmetries form a set D5, called the dihedral group of order 10. Any two elements of D5 can be composed to obtain a third. This operation of composition has some important formal properties, summarized as follows. Definition 1.1.1. A group is a set G together with an operation G × G ! G; denoted by (x; y) 7! xy, satisfying: (i) there exists e 2 G, called the identity, such that ex = xe = g for all x 2 G, (ii) any x 2 G has an inverse x−1 2 G satisfying xx−1 = x−1x = e, (iii) for any x; y; z 2 G the associativity law (xy)z = x(yz) holds. To any mathematical (geometric, algebraic, etc.) object one can attach its automorphism group consisting of structure-preserving invertible maps from the object to itself. For example, the automorphism group of a regular pentagon is the dihedral group D5.
    [Show full text]
  • Homotopy Theory and Circle Actions on Symplectic Manifolds
    HOMOTOPY AND GEOMETRY BANACH CENTER PUBLICATIONS, VOLUME 45 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1998 HOMOTOPY THEORY AND CIRCLE ACTIONS ON SYMPLECTIC MANIFOLDS JOHNOPREA Department of Mathematics, Cleveland State University Cleveland, Ohio 44115, U.S.A. E-mail: [email protected] Introduction. Traditionally, soft techniques of algebraic topology have found much use in the world of hard geometry. In recent years, in particular, the subject of symplectic topology (see [McS]) has arisen from important and interesting connections between sym- plectic geometry and algebraic topology. In this paper, we will consider one application of homotopical methods to symplectic geometry. Namely, we shall discuss some aspects of the homotopy theory of circle actions on symplectic manifolds. Because this paper is meant to be accessible to both geometers and topologists, we shall try to review relevant ideas in homotopy theory and symplectic geometry as we go along. We also present some new results (e.g. see Theorem 2.12 and x5) which extend the methods reviewed earlier. This paper then serves two roles: as an exposition and survey of the homotopical ap- proach to symplectic circle actions and as a first step to extending the approach beyond the symplectic world. 1. Review of symplectic geometry. A manifold M 2n is symplectic if it possesses a nondegenerate 2-form ! which is closed (i.e. d! = 0). The nondegeneracy condition is equivalent to saying that !n is a true volume form (i.e. nonzero at each point) on M. Furthermore, the nondegeneracy of ! sets up an isomorphism between 1-forms and vector fields on M by assigning to a vector field X the 1-form iX ! = !(X; −).
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • Characterized Subgroups of the Circle Group
    Characterized subgroups of the circle group Characterized subgroups of the circle group Anna Giordano Bruno (University of Udine) 31st Summer Conference on Topology and its Applications Leicester - August 2nd, 2016 (Topological Methods in Algebra and Analysis) Characterized subgroups of the circle group Introduction p-torsion and torsion subgroup Introduction Let G be an abelian group and p a prime. The p-torsion subgroup of G is n tp(G) = fx 2 G : p x = 0 for some n 2 Ng: The torsion subgroup of G is t(G) = fx 2 G : nx = 0 for some n 2 N+g: The circle group is T = R=Z written additively (T; +); for r 2 R, we denoter ¯ = r + Z 2 T. We consider on T the quotient topology of the topology of R and µ is the (unique) Haar measure on T. 1 tp(T) = Z(p ). t(T) = Q=Z. Characterized subgroups of the circle group Introduction Topologically p-torsion and topologically torsion subgroup Let now G be a topological abelian group. [Bracconier 1948, Vilenkin 1945, Robertson 1967, Armacost 1981]: The topologically p-torsion subgroup of G is n tp(G) = fx 2 G : p x ! 0g: The topologically torsion subgroup of G is G! = fx 2 G : n!x ! 0g: Clearly, tp(G) ⊆ tp(G) and t(G) ⊆ G!. [Armacost 1981]: 1 tp(T) = tp(T) = Z(p ); e¯ 2 T!, bute ¯ 62 t(T) = Q=Z. Problem: describe T!. Characterized subgroups of the circle group Introduction Topologically p-torsion and topologically torsion subgroup [Borel 1991; Dikranjan-Prodanov-Stoyanov 1990; D-Di Santo 2004]: + For every x 2 [0; 1) there exists a unique (cn)n 2 NN such that 1 X cn x = ; (n + 1)! n=1 cn < n + 1 for every n 2 N+ and cn < n for infinitely many n 2 N+.
    [Show full text]
  • Solutions to Exercises for Mathematics 205A
    SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A | Part 6 Fall 2008 APPENDICES Appendix A : Topological groups (Munkres, Supplementary exercises following $ 22; see also course notes, Appendix D) Problems from Munkres, x 30, pp. 194 − 195 Munkres, x 26, pp. 170{172: 12, 13 Munkres, x 30, pp. 194{195: 18 Munkres, x 31, pp. 199{200: 8 Munkres, x 33, pp. 212{214: 10 Solutions for these problems will not be given. Additional exercises Notation. Let F be the real or complex numbers. Within the matrix group GL(n; F) there are certain subgroups of particular importance. One such subgroup is the special linear group SL(n; F) of all matrices of determinant 1. 0. Prove that the group SL(2; C) has no nontrivial proper normal subgroups except for the subgroup { Ig. [Hint: If N is a normal subgroup, show first that if A 2 N then N contains all matrices that are similar to A. Therefore the proof reduces to considering normal subgroups containing a Jordan form matrix of one of the following two types: α 0 " 1 ; 0 α−1 0 " Here α is a complex number not equal to 0 or 1 and " = 1. The idea is to show that if N contains one of these Jordan forms then it contains all such forms, and this is done by computing sufficiently many matrix products. Trial and error is a good way to approach this aspect of the problem.] SOLUTION. We shall follow the steps indicated in the hint. If N is a normal subgroup of SL(2; C) and A 2 N then N contains all matrices that are similar to A.
    [Show full text]
  • The Classical Groups and Domains 1. the Disk, Upper Half-Plane, SL 2(R
    (June 8, 2018) The Classical Groups and Domains Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ The complex unit disk D = fz 2 C : jzj < 1g has four families of generalizations to bounded open subsets in Cn with groups acting transitively upon them. Such domains, defined more precisely below, are bounded symmetric domains. First, we recall some standard facts about the unit disk, the upper half-plane, the ambient complex projective line, and corresponding groups acting by linear fractional (M¨obius)transformations. Happily, many of the higher- dimensional bounded symmetric domains behave in a manner that is a simple extension of this simplest case. 1. The disk, upper half-plane, SL2(R), and U(1; 1) 2. Classical groups over C and over R 3. The four families of self-adjoint cones 4. The four families of classical domains 5. Harish-Chandra's and Borel's realization of domains 1. The disk, upper half-plane, SL2(R), and U(1; 1) The group a b GL ( ) = f : a; b; c; d 2 ; ad − bc 6= 0g 2 C c d C acts on the extended complex plane C [ 1 by linear fractional transformations a b az + b (z) = c d cz + d with the traditional natural convention about arithmetic with 1. But we can be more precise, in a form helpful for higher-dimensional cases: introduce homogeneous coordinates for the complex projective line P1, by defining P1 to be a set of cosets u 1 = f : not both u; v are 0g= × = 2 − f0g = × P v C C C where C× acts by scalar multiplication.
    [Show full text]
  • On the Product in Negative Tate Cohomology for Finite Groups 2
    ON THE PRODUCT IN NEGATIVE TATE COHOMOLOGY FOR FINITE GROUPS HAGGAI TENE Abstract. Our aim in this paper is to give a geometric description of the cup product in negative degrees of Tate cohomology of a finite group with integral coefficients. By duality it corresponds to a product in the integral homology of BG: Hn(BG, Z) ⊗ Hm(BG, Z) → Hn+m+1(BG, Z) for n,m > 0. We describe this product as join of cycles, which explains the shift in dimensions. Our motivation came from the product defined by Kreck using stratifold homology. We then prove that for finite groups the cup product in negative Tate cohomology and the Kreck product coincide. The Kreck product also applies to the case where G is a compact Lie group (with an additional dimension shift). Introduction For a finite group G one defines Tate cohomology with coefficients in a Z[G] module M, denoted by H∗(G, M). This is a multiplicative theory: b Hn(G, M) ⊗ Hm(G, M ′) → Hn+m(G, M ⊗ M ′) b b b and the product is called cup product. For n > 0 there is a natural isomor- phism Hn(G, M) → Hn(G, M), and for n < −1 there is a natural isomorphism b Hn(G, M) → H (G, M). We restrict ourselves to coefficients in the triv- b −n−1 ial module Z. In this case, H∗(G, Z) is a graded ring. Also, in this case the b group cohomology and homology are actually the cohomology and homology of a topological space, namely BG, the classifying space of principal G bundles - n n arXiv:0911.3014v2 [math.AT] 27 Jul 2011 H (G, Z) =∼ H (BG, Z) and Hn(G, Z) =∼ Hn(BG, Z).
    [Show full text]
  • Introduction to Equivariant Cohomology Theory 11
    INTRODUCTION TO EQUIVARIANT COHOMOLOGY THEORY YOUNG-HOON KIEM 1. Definitions and Basic Properties 1.1. Lie group. Let G be a Lie group (i.e. a manifold equipped with di®erentiable group operations mult : G £ G ! G, inv : G ! G, id 2 G satisfying the usual group axioms). We shall be concerned only with linear groups (i.e. a subgroup of GL(n) = GL(n; C) for some n) such as the unitary group U(n), the special unitary group SU(n). A connected compact Lie group G is called a torus if it is abelian. Explicitly, they are products U(1)n of the circle group U(1) = feiθ j θ 2 Rg = S1. Since a complex linear (reductive) group is homotopy equivalent1 to its maximal compact subgroup, it su±ces to consider only compact groups. For instance, the equivariant cohomology for SL(n) (GL(n), C¤, resp.) is the same as the equivariant cohomology for SU(n) (U(n), S1, resp.). 1.2. Classifying space. Suppose a compact Lie group G acts on a topological space X continuously. We say the group action is free if the stabilizer group Gx = fg 2 G j gx = xg of every point x 2 X is the trivial subgroup. A topological space X is called contractible if there is a homotopy equivalence with a point (i.e. 9h : X £ [0; 1] ! X such that h(x; 0) = x0, h(x; 1) = x for x 2 X). Theorem 1. For each compact Lie group G, there exists a contractible topological space EG on which G acts freely.
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]
  • Equivariant Cohomology and the Cartan Model
    Equivariant cohomology g 7→ ag, in such a way that the action map and the Cartan model (1) a: G × M → M is continuous. An important special case of G-spaces Eckhard Meinrenken are principal G-bundles E → B, i.e. G-spaces locally University of Toronto isomorphic to products U × G. Definition . classifying bundle 1. Introduction 2.1 A for G is a princi- pal G-bundle EG → BG, with the following universal If a compact Lie group G acts on a manifold M, the property: For any principal G-bundle E → B, there is space M/G of orbits of the action is usually a singu- a map f : B → BG, unique up to homotopy, such that lar space. Nonetheless, it is often possible to develop E is isomorphic to the pull-back bundle f ∗EG. The a ’differential geometry’ of the orbit space in terms map f is known as a classifying map of the principal of appropriately defined equivariant objects on M. In bundle. this article, we will be mostly concerned with ’differen- To be precise, the base spaces of the principal bun- tial forms on M/G’. A first idea would be to work with dles considered here must satisfy some technical con- the complex of ’basic’ forms on M, but for many pur- dition. For a careful discussion, see Husemoller [18]. poses this complex turns out to be too small. A much Classifying bundles exist for all G (by a construction more useful complex of equivariant differential forms due to Milnor [22]), and are unique up to G-homotopy on M was introduced by H.
    [Show full text]
  • Smooth Actions of the Circle Group on Exotic Spheres
    Pacific Journal of Mathematics SMOOTH ACTIONS OF THE CIRCLE GROUP ON EXOTIC SPHERES V. J. JOSEPH Vol. 95, No. 2 October 1981 PACIFIC JOURNAL OF MATHEMATICS Vol. 95, No. 2, 1981 SMOOTH ACTIONS OF THE CIRCLE GROUP ON EXOTIC SPHERES VAPPALA J. JOSEPH Recent work of Schultz translates the question of which exotic spheres Sn admit semif ree circle actions with λ>dimen- sional fixed point set entirely to problems in homotopy theory provided the spheres bound spin manifolds. In this article we study circle actions on homotopy spheres not bounding spin manifolds and prove, in particular, that the spin boundary hypothesis can be dropped if (n—k) is not divisible by 128. It is also proved that any ordinary sphere can be realized as the fixed point set of such a circle action on a homotopy sphere which is not a spin boundary; some of these actions are not necessarily semi-free. This extends earlier results obtained by Bredon and Schultz. The Adams conjecture, its consequences regarding splittings of certain classifying spaces and standard results of simply-connected surgery are used to construct the actions. The computations involved relate to showing that certain surgery obstructions vanish. I* Introduction* Results due to Schultz give a purely homo- topy theoretic characterization of those homotopy (n + 2&)-spheres admitting smooth semi-free circle actions with ^-dimensional fixed point sets provided one limits attention to exotic spheres bounding spin manifolds. The method of proof is similar to that described in [14] for actions of prime order cyclic groups; a detailed account will appear in [21].
    [Show full text]
  • Fusion Systems in Algebra and Topology
    FUSION SYSTEMS IN ALGEBRA AND TOPOLOGY MICHAEL ASCHBACHER, RADHA KESSAR, AND BOB OLIVER Introduction Let G be a finite group, p a prime, and S a Sylow p-subgroup of G. Subsets of S are said to be fused in G if they are conjugate under some element of G. The term “fusion” seems to have been introduced by Brauer in the fifties, but the general notion has been of interest for over a century. For example in his text The Theory of Groups of Finite Order [Bu] (first published in 1897), Burnside proved that if S is abelian then the normalizer in G of S controls fusion in S. (A subgroup H of G is said to control fusion in S if any pair of tuples of elements of S which are conjugate in G are also conjugate under H.) Initially information about fusion was usually used in conjunction with transfer, as in the proof of the normal p-complement theorems of Burnside and Frobenius, which showed that, under suitable hypotheses on fusion, G possesses a normal p-complement: a normal subgroup of index |S| in G. But in the sixties and seventies more sophisticated results on fusion began to appear, such as Alperin’s Fusion Theorem [Al1], which showed that the family of normalizers of suitable subgroups of S control fusion in S, and Goldschmidt’s Fusion Theorem [Gd3], which determined the groups G possessing a nontrivial abelian subgroup A of S such that no element of A is fused into S r A. In the early nineties, Lluis Puig abstracted the properties of G-fusion in a Sylow subgroup S, in his notion of a Frobenius category on a finite p- group S, by discarding the group G and focusing instead on isomorphisms between subgroups of S.
    [Show full text]