The Long Non-Coding RNA GHSROS Reprograms Prostate Cancer Cell Lines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Genetics of Nontraditional Glycemic Biomarkers of Type 2 Diabetes
THE GENETICS OF NONTRADITIONAL GLYCEMIC BIOMARKERS OF TYPE 2 DIABETES by Stephanie J. Loomis, MPH A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland May, 2018 © 2018 Stephanie J. Loomis All rights reserved Abstract Type 2 diabetes is a major public health problem that affects over 10% of the US adult population. It is associated with substantially increased risks of mortality and serious clinical outcomes such as heart disease, stroke, kidney disease and retinopathy. Diabetes is defined by hyperglycemia, or elevated glucose concentrations in the blood, which are commonly measured by fasting glucose and hemoglobin A1c (HbA1c), but these have limitations. As a result, nontraditional glycemic biomarkers, fructosamine, glycated albumin and 1,5-anhydroglucitol (1,5-AG) are gaining interest. While it is established that genetics play a role in type 2 diabetes, fasting glucose, and HbA1c, the genetics of fructosamine, glycated albumin, and 1,5-AG have not been well explored. This dissertation sought to determine the amount of variation in each biomarker due to genetics through heritability estimation, and to determine the specific genetic variants associated with each biomarker though genome wide association study (GWAS) analysis, multivariate phenotype analysis, and exome sequencing analysis. Heritability estimates showed a substantial portion of fructosamine, glycated albumin and 1,5-AG variation was due to genetics, which is likely comprised of both common and rare variants. GWAS identified common variants associated with fructosamine and glycated albumin including a known diabetes variant and a likely nonglycemic variant. Exome sequencing did not identify variants associated with fructosamine and glycated albumin, but multivariate phenotype analysis identified a potentially interesting region in a gene that alters bilirubin levels that may affect fructosamine in a nonglycemic manner. -
Iron Transport Proteins: Gateways of Cellular and Systemic Iron Homeostasis
Iron transport proteins: Gateways of cellular and systemic iron homeostasis Mitchell D. Knutson, PhD University of Florida Essential Vocabulary Fe Heme Membrane Transport DMT1 FLVCR Ferroportin HRG1 Mitoferrin Nramp1 ZIP14 Serum Transport Transferrin Transferrin receptor 1 Cytosolic Transport PCBP1, PCBP2 Timeline of identification in mammalian iron transport Year Protein Original Publications 1947 Transferrin Laurell and Ingelman, Acta Chem Scand 1959 Transferrin receptor 1 Jandl et al., J Clin Invest 1997 DMT1 Gunshin et al., Nature; Fleming et al. Nature Genet. 1999 Nramp1 Barton et al., J Leukocyt Biol 2000 Ferroportin Donovan et al., Nature; McKie et al., Cell; Abboud et al. J. Biol Chem 2004 FLVCR Quigley et al., Cell 2006 Mitoferrin Shaw et al., Nature 2006 ZIP14 Liuzzi et al., Proc Natl Acad Sci USA 2008 PCBP1, PCBP2 Shi et al., Science 2013 HRG1 White et al., Cell Metab DMT1 (SLC11A2) • Divalent metal-ion transporter-1 • Former names: Nramp2, DCT1 Fleming et al. Nat Genet, 1997; Gunshin et al., Nature 1997 • Mediates uptake of Fe2+, Mn2+, Cd2+ • H+ coupled transporter (cotransporter, symporter) • Main roles: • intestinal iron absorption Illing et al. JBC, 2012 • iron assimilation by erythroid cells DMT1 (SLC11A2) Yanatori et al. BMC Cell Biology 2010 • 4 different isoforms: 557 – 590 a.a. (hDMT1) Hubert & Hentze, PNAS, 2002 • Function similarly in iron transport • Differ in tissue/subcellular distribution and regulation • Regulated by iron: transcriptionally (via HIF2α) post-transcriptionally (via IRE) IRE = Iron-Responsive Element Enterocyte Lumen DMT1 Fe2+ Fe2+ Portal blood Enterocyte Lumen DMT1 Fe2+ Fe2+ Fe2+ Fe2+ Ferroportin Portal blood Ferroportin (SLC40A1) • Only known mammalian iron exporter Donovan et al., Nature 2000; McKie et al., Cell 2000; Abboud et al. -
Ferroportin Mutation in Autosomal Dominant Hemochromatosis: Loss of Function, Gain in Understanding
Ferroportin mutation in autosomal dominant hemochromatosis: loss of function, gain in understanding Robert E. Fleming, William S. Sly J Clin Invest. 2001;108(4):521-522. https://doi.org/10.1172/JCI13739. Commentary Normal iron homeostasis requires close matching of dietary iron absorption with body iron needs (1). Hereditary hemochromatosis (HH), a common abnormality of iron metabolism, is characterized by excess absorption of dietary iron despite elevated stores, and secondary damage to the liver, pancreas, and other organs (2). Classic HH is caused by mutation of the HFE gene and is inherited as an autosomal recessive trait. However, a substantial percentage of individuals with hemochromatosis, especially in non–Northern European populations, have no mutations in HFE (3). Many such cases differ from classic HH in the relative distribution of iron between the plasma, hepatocytes, and reticuloendothelial (RE) cells (4). Pietrangelo et al. recently reported a pedigree with atypical hemochromatosis inherited as an autosomal dominant trait (5). In this issue of the JCI, Montosi et al. report the surprising finding that the gene mutated in these patients (SLC11A3) encodes the iron export protein ferroportin1 (also known as IREG1, or MTP1) (6). They conclude that the identified mutation (A77D) probably results in loss of ferroportin1 function, suggesting that the affected individuals are haploinsufficient for this gene product. In a nearly simultaneous report, Njajou et al. (7) describe a similar pedigree with autosomal dominant hemochromatosis and a different missense mutation (N144H) in the same gene. Njajou et al., however, conclude that the iron overload phenotype was likely […] Find the latest version: https://jci.me/13739/pdf Ferroportin mutation in autosomal Commentary dominant hemochromatosis: loss See related article, pages 619–623. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
SUPPLEMENTARY DATA Principal Investigators and Acknowledgment
SUPPLEMENTARY DATA Principal Investigators and Acknowledgment Hispanic Community Health Study/Study of Latinos (HSHC/SOL) Robert Kaplan, Sylvia Wassertheil-Smoller (Bronx); Martha L. Daviglus, Aida L. Giachello (Chicago); Neil Schneiderman, David Lee, Leopoldo Raij, John Ryan (Miami); Greg Talavera, John Elder, Matthew Allison, Michael Criqui (San Deigo). The authors thank the staff and participants of HCHS/SOL for their important contributions. A complete list of staff and investigators has been provided by Sorlie P., et al. in Ann Epidemiol. 2010 ;20:642-649 and is also available on the study website http://www.cscc.unc.edu/hchs/. The baseline examination of the Hispanic Community Health Study/Study of Latinos was carried out as a collaborative study supported by contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North Carolina (N01-HC65233), University of Miami (N01-HC65234), Albert Einstein College of Medicine (N01-HC65235), Northwestern University (N01-HC65236), and San Diego State University (N01-HC65237). The following Institutes/Centers/Offices contributed to the HCHS/SOL first funding period through a transfer of funds to the NHLBI: National Institute on Minority Health and Health Disparities, the National Institute of Deafness and Other Communications Disorders, the National Institute of Dental and Craniofacial Research, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Neurological Disorders and Stroke, and the NIH Office of Dietary Supplements. The Genetic Analysis Center at the University of Washington was supported by NHLBI and NIDCR contracts (HHSN268201300005C AM03 and MOD03). Genotyping efforts were supported by NHLBI HSN 26220/20054C, NCATS CTSI grant UL1TR000123, and NIDDK Diabetes Research Center (DRC) grant DK063491. -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. -
(COPD) and Lung Cancer by Means of Cell Specific
UNDERSTANDING SHARED PATHOGENESIS BETWEEN CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) AND LUNG CANCER BY MEANS OF CELL SPECIFIC GENOMICS CLARA EMILY GREEN A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY The Institute of Inflammation and Ageing College of Medical and Dental Sciences University of Birmingham February 2018 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Introduction COPD (Chronic Obstructive Pulmonary Disease) and lung cancer are related conditions associated with inflammation. Relatively little focus has been given to the endothelium, through which inflammatory cells transmigrate to reach the lung. We sought to determine if coding and non-coding alterations in pulmonary endothelium exist in COPD and lung cancer. Methods Patients with and without COPD undergoing thoracic surgery were recruited. Pulmonary Endothelial Cells were isolated from lung and tumour and extracted RNA (ribonucleic acid) used for miRNA (micro-RNA) and mRNA (messenger RNA) microarrays. Ingenuity pathway analysis (IPA) was also carried out. Results 2071 genes and 43 miRNAs were significantly upregulated in COPD. 4 targets were validated by quantitative polymerase chain reaction, of which miR-181b-3p was chosen for functional validation. -
Molecular Determinants of Guanylate Cyclase Activating Protein
www.nature.com/scientificreports OPEN Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in Received: 1 August 2017 Accepted: 26 January 2018 photoreceptor cells of the retina Published: xx xx xxxx Santiago López-Begines 1,2, Anna Plana-Bonamaisó2 & Ana Méndez 1,2 Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding afnity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufcient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and signifcant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology. Retinal guanylate cyclases (RetGCs) and guanylate cyclase activating proteins (GCAPs) play a central role in pho- toreceptor cells of the retina. -
The Soluble Form of HFE Protein Regulates Hephaestin Mrna Expression in the Duodenum Through an Endocytosis-Dependent Mechanism
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1842 (2014) 2298–2305 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis The soluble form of HFE protein regulates hephaestin mRNA expression in the duodenum through an endocytosis-dependent mechanism Bruno Silva a, Joana Ferreira a,VeraSantosa, Cilénia Baldaia b, Fátima Serejo b, Paula Faustino a,⁎ a Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal b Departamento de Gastroenterologia e Hepatologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal article info abstract Article history: Dietary iron absorption regulation is one of the key steps for the maintenance of the body iron homeostasis. Received 6 December 2013 HFE gene expression undergoes a complex post-transcriptional alternative splicing mechanism through which Received in revised form 25 June 2014 two alternative transcripts are originated and translated to a soluble HFE protein isoform (sHFE). The first pur- Accepted 15 July 2014 pose of this study was to determine if sHFE transcript levels respond to different iron conditions in duodenal Available online 27 July 2014 and macrophage cell models. In addition, we aimed to determine the functional effect of the sHFE protein on Keywords: the expression of iron metabolism-related genes in a duodenal cell model as well as, in vivo, in duodenum biopsy Alternative splicing samples. Iron metabolism Levels of sHFE transcripts were measured in HuTu-80, Caco-2, HT-29 and activated THP1 cells, after holo-Tf Enterocyte stimulus, and in total RNA from duodenum biopsies of functional dyspepsia patients. -
Genetical and Clinical Studies in Wilson's Disease
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 246 Genetical and Clinical Studies in Wilson's Disease ERIK WALDENSTRÖM ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 UPPSALA ISBN 978-91-554-6845-3 2007 urn:nbn:se:uu:diva-7779 ! "! #$ #% &'() * ! * * +! ! ,- * . /0 "! 1 !0 2 3 0 #%0 4 5 6 2 7 0 0 #$0 $ 0 0 869: &%;<&(<))<$;)<=0 2 > * * "+%9 * 0 8 ! 1 ! ! * 0 2 # 61! * 1 ! 2 > ? ! ? 1 ! ? * ? 0 1 * * ; 0 - ! * ! 1 ,5=#% 5#&="/ 1 ! #$ : * 61! < ! ? 0 - 5=#% 5#&=" 1 * 0 - ! * 5=#% * 2 > 61 * ( (( 0 - 1 ! ! ! ! * ** "+%90 "! > ! ! 1 ! @ 6 * + ,@6+/ 5 ! +! ! 6 ,5+6/0 1 1 5+6 1 ! 1 ! 1 "+%9 1 ! 0 $(5 +" ! A * "+%9 ! A 1 1 ! ! ! * 1 1 ! ! A ! ! A 0 "! 1 ! ! ! 1 0 "! ! $(5 +" ! 2 > 0 8 ! * =$= * 1 61 ! @ * < 1 1!! ! 0 5 ! ! * 1< * 2 > 0 : ? ! ! < ! ! ! ! " # $ $ %! ! &!$ $ '()*+) $ B 2 3 #% 866: ($)(<$#$ 869: &%;<&(<))<$;)<= ' ''' <%%%& ,! 'CC 00C D E ' ''' <%%%&/ To my family At vide, hvad man ikke véd, er dog en slags alvidenhed Piet Hein List of publications This thesis is based on the following papers, which will be referred