Author Index

Total Page:16

File Type:pdf, Size:1020Kb

Author Index Cambridge University Press 978-0-521-19840-0 — Active OB Stars (IAU S272) Edited by Coralie Neiner , Gregg Wade , Georges Meynet , Geraldine Peters Index More Information Author Index Aerts C. – 503, 549 Carlos Su´arez J. – 507, 509 Ahmad N. – 274 Carraro G. – 296 Aidelman Y. – 276 Castro N. – 292, 310, 549 Alecian E. – 118, 186, 208, 354 Cerutti B. – 581 Alves F. – 414, 501 Che X. – 44 Ames A. – 278 Chen W.-P. – 366, 404 de Andrade L. B. P. – 507, 509 Chen´eA.-N. – 445, 497, 501 Annuk K. – 380 Chentsov E. L. – 400 de Ara´ujo F. X. – 420 Chesneau O. – 342, 406, 408, 410 Aragona C. – 290 Cidale L. S. – 83, 103, 172, 184, 276, Araya I. – 83 392, 620 Arias M. L. – 276, 392, 620 Clark J. S. – 296 Arnold W. – 414, 501 Cochard F. – 280, 282, 284 Austin M. J. – 600 Cohen D. H. – 118, 194, 348, 608 Corcoran M. F. – 414, 501, 604, 608, Baade D. – 1, 130, 242, 300, 430, 543, 630 616 Correia Viegas N. G. – 414, 501 Bagnulo S. – 182 Crowther P. A. – 296, 497 Bandyopadhyay R. M. – 606 Cruzado A. – 386 Barb´aR. – 511 Cur´eM. – 83, 184, 196 Barr´ıa D. – 527 Barrera L. – 543 Damineli A. – 604 Barsukova E. A. – 602 David-Uraz A. – 499 Bastian N. – 296 De Becker M. – 626, 638 de Batz B. – 284 De Cat P. – 433 Beatriz Sabogal – 288 Decressin T. – 227 Beletsky Y. – 296 Degroote P. – 433 Belkacem K. – 457 Del Sordo F. – 32 Bendjoya P. – 382 Delaa O. – 103 Bergmann T. – 414, 501 Desnoux V. – 280 Bersukova E. – 610 Dessart L. – 342 Bieging J. – 632 Deupree R. – 93 Bjorkman J. E. – 384, 388, 396, 418 Domiciano de Souza A. – 103, 382, 420 Bjorkman K. S. – 388, 412, 418 Dougherty S. M. – 414, 501 Blomme R. – 616, 638 Drake N. A. – 198 Bohlender D. – 118, 176, 204, 517 Draper Z. H. – 388 Bomans D. J. – 265 Driebe T. – 408, 410 Bonanos A. Z. – 254, 298, 515 Drissen L. – 208 Borges Fernandes M. – 406, 410, 420 Dubus G. – 402, 581 Bouret J.-C. – 87, 118, 172 Duez V. – 118, 178 Boyajian T. S. – 290 Dufton P. L. – 85, 296 Braithwaite J. – 32, 178 Dunstall P. – 85, 296 Brandenburg A. – 32 Dupret M.-A. – 457, 503 Brandi E. – 523 Broos P. S. – 608 Edwards M. L. – 606 Brott I. – 85, 296 Eggleton P. P. – 274 Buil C. – 280 Eikenberry S. S. – 606 Burenkov A. N. – 602 Ekstr¨omS. – 62, 300, 640 Emilio M. – 507 Cantiello M. – 32, 296 Engelbrecht C. A. – 286 Carciofi A. C. – 325, 384, 388, 396, Espinosa Lara F. – 535 412, 418, 430 Evans C. J. – 85, 233, 254, 296, 474 652 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19840-0 — Active OB Stars (IAU S272) Edited by Coralie Neiner , Gregg Wade , Georges Meynet , Geraldine Peters Index More Information Author Index 653 Eversberg T. – 414, 501 Harrington D. M. – 513 Hashimoto O. – 618 Fabregat J. – 300, 430, 451, 492, 505 Haubois X. – 388, 396 Fabrika S. N. – 198, 200 Hayasaki K. – 628 Fahed R. – 414, 501 Henrichs H. F. – 118, 180, 192 Fauchez T. – 521 Hern´andez-Cervantes L. – 99 Fehon G. – 608 Herrero A. – 292, 296, 310, 549 Feldmeier A. – 614 Herv´eA. – 87 Fenech D. – 306 Hill N. R. – 118, 194 Fernando A. – 414, 501 Hillier D. J. – 511 Ferrer O. – 523 Honda S. – 618 Floquet M. – 284 Howarth I. D. – 220, 296 Fourtune-Ravard C. – 180 Huang W. – 89 Fox A. – 616 Hubert A.-M. – 242, 547 Fox-Machado L. – 505 Hubrig S. – 196, 222, 224 Fr´emat Y. – 103, 300, 547, 616 Hummel C. A. – 539 Frasca A. – 422 Hunger T. – 414, 501 Frescura F. A. M. – 286 H´enault-Brunet V. – 296 Friedjung M. – 422 Fromang S. – 402 Ichikawa K. – 618 FuchsJ.T.–632 Ignace R. – 206 Fullerton A. W. – 136, 182, 302 Igoshev A. P. – 198 Ilyin I. – 196, 224 Gagn´eM. – 118, 194, 593, 608 Imada A. – 618 Gamen R. – 511 Izzard R. G. – 531 Garc´ıa L. – 523 Garc´ıa-Varela A. – 288, 308 Janot Pacheco E. – 507, 509, 593 Garcia E. – 290 Jansen K. – 486 Garcia M. – 292, 310 Jeffers S. V. – 202 Georgiev L. – 511 Jendreieck A. – 507, 509 Georgy C. – 62, 640 Johns-Krull C. M. – 202 Gieles M. – 296 Jones C. E. – 95, 394, 398 Gies D. R. – 38, 89, 290, 378, 390, 424, 525, 634 Kambe E. – 618 Girard J. – 616 Kanaan S. – 406 Godart M. – 457, 503 Kapyla P. – 32 Goranskij V. P. – 602, 610 Kaufer A. – 342 Gordon K. – 254 Kawachi A. – 628 Gorlova N. – 519 Keller C. U. – 202 Gosset E. – 521 Kholtygin A. F. – 198, 200 Gouveia Carreira L. F. – 414, 501 Kinoshita D. – 404 Gr¨afener G. – 296 Klochkova V. G. – 400, 602 Graczyk D. – 527 Knapen J. H. – 414, 501 Granada A. – 62, 83, 184, 392, 640 Kochukhov O. – 118, 124, 166, 202 Gray R. O. – 412 Koehlinger F. – 254 de Greve J.-P. – 486 Koenigsberger G. – 511, 513 Groh J. H. – 56, 408, 410, 519, 604 Kolenberg K. – 192 Grundstrom E. D. – 290, 525, 634 Korˇc´akov´a D. – 218, 533 Grunhut J. H. – 118, 180, 186, 188, de Koter A. – 292, 296 190, 204, 210, 212, 220 Koubsk´yP. – 218 Guinan E. – 212 Koumpia E. – 515 Guti´errez-Soto J. – 433, 451, 505, 547 Ko�laczkowski Z. – 527, 541 Kroll P. – 602 Halonen R. J. – 394 Krtiˇcka J. – 91, 517, 614 Hamaguchi K. – 414 KTP.–294 Hamann W.-R. – 614 Kub´at J. – 214, 614 Hanes D. A. – 186, 212 Kuˇcerov´aB. – 533 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19840-0 — Active OB Stars (IAU S272) Edited by Coralie Neiner , Gregg Wade , Georges Meynet , Geraldine Peters Index More Information 654 Author Index L¨uftinger T. – 517 Merand A. – 616 Lajus E. F. – 497 Metlova N. V. – 602 Lamberts A. – 402 Meynet G. – 62, 79, 91, 640 Langer N. – 32, 296, 531 Michalska G. – 527, 529 Lanza A. F. – 451 Mikles V. J. – 606 Le Bouquin J.-B. – 430, 616 Mikul´aˇsek Z. – 517 Leadbeater R. – 414, 501 Millour F. – 406, 408, 410 Lee C.-D. – 366, 404 the MiMeS collaboration – 118, 180, Lefever K. – 503 182, 188, 190, 192, 204, 206, 210, Lennon D. J. – 254, 292, 296, 302 212, 220 Leutenegger M. A. – 348 de Mink S. E. – 296, 531 Liermann A. – 408, 410 Miroshnichenko A. S. – 260, 304, 384, Lobel A. – 519, 616 400, 412, 602 van Loon J. T. – 254, 296 Moffat A. F. J. – 414, 445, 497, 499, de Loore B. – 486 501, 608 Lopes de Oliveira R. – 428 Monnier J. D. – 44, 424 Lopez B. – 406 Montagnier G. – 616 Lovekin C. – 93 Montalban J. – 503 Lynch D. K. – 412 Montmerle T. – 208 Moon D.-S. – 606 Ma´ız Apell´aniz J. – 296 Moonsamy S. L. – 286 Mackay F. E. – 394 Morel T. – 97, 414, 501, 612 Macri L. – 298 Moreno E. – 513 Madura T. I. – 630 Morin D. – 176 Maeder A. – 62, 642 Moritani Y. – 618 Magalh˜aes A. M. – 420 Morrell N. – 511 Mahy L. – 521 Mourard D. – 103, 342 Makaganiuk V. – 202 Muratore M. F. – 523, 620 Malasan H. L. – 274 Muratorio G. – 422 Manset N. – 204, 212, 260 Marchiano P. E. – 523 Nagataki S. – 628 Marcolino W. L. F. – 180, 188, 190, Naito T. – 628 204, 206, 220 Najarro F. – 292, 296 Marilli E. – 422 Naz´eY. – 220, 608, 622, 624, 626 Markakis K. – 298 Neiner C. – 118, 212, 284, 451, 547 Markov´a H. – 517 Niccolini G. – 382 Markova N. – 296 Niemczura E. – 527, 529 Marques Dias F. – 414, 501 Nieva M.-F. – 26, 566 Marsden S. C. – 192 Nitschelm C. – 521 Marsh A. N. – 290 Noels A. – 457, 503 Martayan C. – 1, 103, 242, 300, 547, Nogami D. – 618 616 Martins F. – 220, 616 Okazaki A. T. – 396, 416, 430, 587, 618, Massa D. L. – 206, 254, 302 628, 630 Mast N. – 216 Oksala M. E. – 118, 124, 166, 204 Mathew B. – 294 Oktariani F. – 416 Mathis S. – 118, 160, 178 Oskinova L. M. – 608, 614 McGill M. – 95 Otero S. – 430 McSwain M. V. – 89, 290, 525, 545, Oudmaijer R. D. – 418 634 Owocki S. P. – 91, 118, 124, 342, 587, Meade M. R. – 388 628, 630 Meilland A. – 406, 408, 410 Meintjes P. J. – 636 P´erez-Rend´on B. – 99 Meixner M. – 254 Panagia N. – 254 Mennekens N. – 486 Patru F. – 616 Mennickent R. E. – 288, 294, 308, 392, Penny L. – 38 527, 541, 551 Pereyra A. – 420 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19840-0 — Active OB Stars (IAU S272) Edited by Coralie Neiner , Gregg Wade , Georges Meynet , Geraldine Peters Index More Information Author Index 655 Peters G. J. – 79, 101 Schanne L. – 414, 501 Petit V. – 106, 118, 182, 188, 206, Schnurr O. – 497 208, 212 Schoeller M. – 222, 224 Pietrzynski G. – 298 Schwarz K. – 632 Pineda-Le´onH. – 99 Sejnov´aK.ˇ – 218 Piskunov N. – 202 Selman F. – 616 Pittard J. M. – 414, 501 Semaan T. – 451, 547, 616 Plaggenborg B. – 192 Sewilo M. – 254 Pogodin M. A. – 222, 224 Shultz M. – 118, 180, 210, 212 Polcaro F. – 260 Sigut T. A. A. – 95, 394, 398, 426 Pollock A. M. T. – 414, 501 533 Silaj J. – 398 Polster J. – Sim´on-D´ıaz S. – 292, 296, 310, 433, Poretti E. – 451 503, 549 Potter A. – 73 SkodaP.–533ˇ Povich M. S. – 608 ˇ Prinja R.
Recommended publications
  • Arxiv:1612.03165V3 [Astro-Ph.HE] 12 Sep 2017 – 2 –
    The second catalog of flaring gamma-ray sources from the Fermi All-sky Variability Analysis S. Abdollahi1, M. Ackermann2, M. Ajello3;4, A. Albert5, L. Baldini6, J. Ballet7, G. Barbiellini8;9, D. Bastieri10;11, J. Becerra Gonzalez12;13, R. Bellazzini14, E. Bissaldi15, R. D. Blandford16, E. D. Bloom16, R. Bonino17;18, E. Bottacini16, J. Bregeon19, P. Bruel20, R. Buehler2;21, S. Buson12;22, R. A. Cameron16, M. Caragiulo23;15, P. A. Caraveo24, E. Cavazzuti25, C. Cecchi26;27, A. Chekhtman28, C. C. Cheung29, G. Chiaro11, S. Ciprini25;26, J. Conrad30;31;32, D. Costantin11, F. Costanza15, S. Cutini25;26, F. D'Ammando33;34, F. de Palma15;35, A. Desai3, R. Desiante17;36, S. W. Digel16, N. Di Lalla6, M. Di Mauro16, L. Di Venere23;15, B. Donaggio10, P. S. Drell16, C. Favuzzi23;15, S. J. Fegan20, E. C. Ferrara12, W. B. Focke16, A. Franckowiak2, Y. Fukazawa1, S. Funk37, P. Fusco23;15, F. Gargano15, D. Gasparrini25;26, N. Giglietto23;15, M. Giomi2;59, F. Giordano23;15, M. Giroletti33, T. Glanzman16, D. Green13;12, I. A. Grenier7, J. E. Grove29, L. Guillemot38;39, S. Guiriec12;22, E. Hays12, D. Horan20, T. Jogler40, G. J´ohannesson41, A. S. Johnson16, D. Kocevski12;42, M. Kuss14, G. La Mura11, S. Larsson43;31, L. Latronico17, J. Li44, F. Longo8;9, F. Loparco23;15, M. N. Lovellette29, P. Lubrano26, J. D. Magill13, S. Maldera17, A. Manfreda6, M. Mayer2, M. N. Mazziotta15, P. F. Michelson16, W. Mitthumsiri45, T. Mizuno46, M. E. Monzani16, A. Morselli47, I. V. Moskalenko16, M. Negro17;18, E. Nuss19, T. Ohsugi46, N. Omodei16, M. Orienti33, E.
    [Show full text]
  • Extinction Law Survey Based on Near IR Photometry of OB Stars W. Wegner
    ACTA ASTRONOMICA Vol. 43 (1993) pp. 209±234 Extinction Law Survey Based on Near IR Photometry of OB Stars by W. Wegner Pedagogical University, Institute of Mathematics, Chodkiewicza 30, 85-064 Bydgoszcz, Poland Received June 21, 1993 ABSTRACT The paper presents an extensive survey of interstellar extinction curves derived from the near IR photometric measurements of early type stars belonging to our Galaxy. This survey is more extensive and deeper than any other one, based on spectral data. The IR magnitudes of about 500 O and B type (B V ) stars with E 0 05 were selected from literature. The IR color excesses are determined with the aid of "arti®cial standards". The results indicate that the extinction law changes from place to place. The mean galactic extinction curve in the near IR is very similar in different directions and = changes very little from the value R 3 10 0 05 obtained in this paper. Key words: extinction ± Infrared: stars 1. Introduction The interstellar extinction is commonly believed to be caused by grains of interstellar dust. Their physical and geometrical properties are thus responsible for the wavelength dependence of the interstellar extinction (the extinction law or curve). Unfortunately, this curve is typically rather featureless (Savage and Mathis 1979) and thus the identi®cation of many, possibly different, grain parameters (chemical composition, sizes, shapes, crystalline structure etc.) is very dif®cult. Possible differences between extinction curves originating in different clouds may be very useful as probes of the physical conditions inside interstellar dark nebula. It is now rather well known that absorption spectra of single interstellar clouds (including extinction curves) differ very substantially (see e.g.,Kreøowski 1989 for review).
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • TESTING MODELS of LOW-EXCITATION PHOTODISSOCIATION REGIONS with FAR-INFRARED OBSERVATIONS of REFLECTION NEBULAE Rolaine C
    The Astrophysical Journal, 578:885–896, 2002 October 20 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. TESTING MODELS OF LOW-EXCITATION PHOTODISSOCIATION REGIONS WITH FAR-INFRARED OBSERVATIONS OF REFLECTION NEBULAE Rolaine C. Young Owl Department of Physics and Astronomy, University of California at Los Angeles, Mail Code 156205, Los Angeles, CA 90095-1562 Margaret M. Meixner1 and David Fong Department of Astronomy, University of Illinois, Urbana, IL 61801; [email protected], [email protected] Michael R. Haas NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000; [email protected] Alexander L. Rudolph1 Department of Physics, Harvey Mudd College, 301 East 12th Street, Claremont, CA 91711; [email protected] and A. G. G. M. Tielens Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, Netherlands; [email protected] Received 2001 August 2; accepted 2002 June 24 ABSTRACT This paper presents Kuiper Airborne Observatory observations of the photodissociation regions (PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O i]63 and 145 lm, [C ii] 158 lm, and [Si ii]35lm and the adjacent far-infrared continuum to these lines. Our analysis of these far-infrared observations provides estimates of the physical conditions in each reflection nebula. In our sample of reflection nebulae, the stellar effective temperatures are 10,000–30,000 K, the gas densities are 4 Â 102 2 Â 104 cmÀ3, the gas temperatures are 200–690 K, and the incident far-ultraviolet intensities are 300–8100 times the ambient interstellar radiation field strength (1:2 Â 10À4 ergs cmÀ2 sÀ1 srÀ1).
    [Show full text]
  • The Effect of the Apsidal Motion on the Light Curve of the Close Binary HD 93205 (O3V+O8V)?
    A&A 397, 921–925 (2003) Astronomy DOI: 10.1051/0004-6361:20021438 & c ESO 2003 Astrophysics The effect of the apsidal motion on the light curve of the close binary HD 93205 (O3V+O8V)? A. M. van Genderen?? Leiden Observatory, Postbus 9513, 2300 RA Leiden, The Netherlands Received 25 June 2002/Accepted 28 August 2002 Abstract. The 1982–1985 photometry (VBLUW system) of the O3V+O8V close binary HD 93205 has been rediscussed be- cause of new insights into its true nature and orbital changes. By comparing this data set with the one obtained by Antokhina et al. (2000) in 1993, and using the same ephemeris to construct the light curve in the phase diagram, the effect of the apsidal motion became obvious: a phase shift between the two light curves and a small change of the shape. A phase-locked light variationintheL passband (containing the higher Balmer lines) is clearly present in the 1982–1985 data set and is presumably due to absorption if the O8 star is seen through cooler inter-binary gas, e.g. the bow-shock between the two colliding winds. Key words. stars: variables: general – stars: binaries: close – stars: early-type – stars: individual: HD 93205 1. Introduction Sect. 2). So far only the observations in the V band relative to the comparison star were published (Papers I, IX). The phase HD 93205 (O3V+O8V) is the earliest known system for which diagrams of the 1982–1985 and 1993 data sets, the latter from an RV is known, of which the first was presented by Conti & Antokhina et al.
    [Show full text]
  • Apparent and Absolute Magnitudes of Stars: a Simple Formula
    Available online at www.worldscientificnews.com WSN 96 (2018) 120-133 EISSN 2392-2192 Apparent and Absolute Magnitudes of Stars: A Simple Formula Dulli Chandra Agrawal Department of Farm Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi - 221005, India E-mail address: [email protected] ABSTRACT An empirical formula for estimating the apparent and absolute magnitudes of stars in terms of the parameters radius, distance and temperature is proposed for the first time for the benefit of the students. This reproduces successfully not only the magnitudes of solo stars having spherical shape and uniform photosphere temperature but the corresponding Hertzsprung-Russell plot demonstrates the main sequence, giants, super-giants and white dwarf classification also. Keywords: Stars, apparent magnitude, absolute magnitude, empirical formula, Hertzsprung-Russell diagram 1. INTRODUCTION The visible brightness of a star is expressed in terms of its apparent magnitude [1] as well as absolute magnitude [2]; the absolute magnitude is in fact the apparent magnitude while it is observed from a distance of . The apparent magnitude of a celestial object having flux in the visible band is expressed as [1, 3, 4] ( ) (1) ( Received 14 March 2018; Accepted 31 March 2018; Date of Publication 01 April 2018 ) World Scientific News 96 (2018) 120-133 Here is the reference luminous flux per unit area in the same band such as that of star Vega having apparent magnitude almost zero. Here the flux is the magnitude of starlight the Earth intercepts in a direction normal to the incidence over an area of one square meter. The condition that the Earth intercepts in the direction normal to the incidence is normally fulfilled for stars which are far away from the Earth.
    [Show full text]
  • A Photometric Study of Be Stars Located in the Seismology fields of COROT
    A&A 476, 927–933 (2007) Astronomy DOI: 10.1051/0004-6361:20078252 & c ESO 2007 Astrophysics A photometric study of Be stars located in the seismology fields of COROT J. Gutiérrez-Soto1,2,J.Fabregat1,2,J.Suso3, M. Lanzara3, R. Garrido4, A.-M. Hubert2, and M. Floquet2 1 Observatorio Astronómico, Universidad de Valencia, edificio Institutos de Investigación, polígono la Coma, 46980 Paterna, Valencia, Spain e-mail: [email protected] 2 GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; place Jules Janssen 92195 Meudon Cedex, France 3 GACE-ICMUV, edificio Institutos de Investigación, polígono la Coma, 46980 Paterna, Valencia, Spain 4 Instituto de Astrofísica de Andalucía (CSIC), calle Camino Bajo de Huétor, 24. 18008, Granada, Spain Received 10 July 2007 / Accepted 28 September 2007 ABSTRACT Context. In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims. The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods. Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results. We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars.
    [Show full text]
  • OBSERVERS with the VLT VLT/ISAAC and HST/WFPC2 Observations of NGC 3603
    OBSERVERS WITH THE VLT VLT/ISAAC and HST/WFPC2 Observations of NGC 3603 B. BRANDL1, W. BRANDNER2, E.K. GREBEL3 AND H. ZINNECKER 4* 1Cornell University, Ithaca; 2University of Hawaii, Honolulu; 3University of Washington at Seattle; 4Astrophysikalisches Institut Potsdam 1. Abstract spectral signatures of Wolf-Rayet (W-R) side (Churchwell et al. 1987; O’Dell et al. stars contribute more than 2000 M0 to 1993). FUV photons (13.6 eV > hν > 6 We have studied NGC 3603, the the cluster mass. Normally, W-R stars are eV) heat up the inside of the proplyd en- most massive visible HII region in the evolved supergiants that have long left velope and lead to the dissociation of mol- Galaxy, with VLT/ISAAC in the near-in- the main sequence and have ages of 3–5 ecules in the outer layers of the circum- frared (NIR) Js, H, and Ks-bands and Myr. In NGC 3603, however, the W-R stellar disk (Johnstone et al. 1998). The HST/WFPC2 at Hα and [N II] wave- stars also show hydrogen absorption resulting evaporation flow provides a lengths. In this Messenger article we lines in addition to the typical W-R fea- steady supply of neutral atoms to the ion- describe the data analysis and some tures. It is believed that these stars are isation front and leads to the development first results from both our complemen- still main-sequence, core hydrogen- of a cometary tail (McCullough et al. 1995; tary observations. burning stars that are so massive and so Störzer & Hollenbach 1999). Until re- Our HST/WFPC2 gave us an un- close to the Eddington limit that they are cently, only one other proplyd had been precedented high-resolution view of loosing their outer envelopes through fast found outside the Orion nebula.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • X-Ray Study of Stellar Winds with Suzaku
    X-ray Study of Stellar Winds with Suzaku Yoshiaki Hyodo Department of Physics, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan [email protected] This thesis was submitted to the Department of Physics, Graduate School of Science, Kyoto University on January 5 2009 in partial fulfillment of the requirements for the degree of Doctor of Philosophy in physics. Abstract Stellar winds from massive stars play an important role for dynamical and chemical evolution of galaxies. To evaluate their effects in a galaxy scale, both the total number and the properties of massive stars should be understood. Most massive stars have soft X-ray emission, while some have additional hard emission. Although it is indicated that the binarity is important, the condition for hard X-ray production has not yet been elucidated. Also, some massive star clusters exhibit diffuse (pc scale) X-ray emission, where stellar winds may be depositing energy to the interstellar space. However, previous studies were not able to clarify the origin of the diffuse emission. It is even unclear whether the emission is physically related to the star cluster or not. The X-ray Imaging Spectrometer (XIS) on board Suzaku has a good energy resolution, a low and stable background, and a large effective area, which are suited for narrow-band surveys and spectroscopy of both point-like and extended X-ray emission. Using the XIS, we performed a very deep survey in the direction of the central region of our Galaxy and pointing observations of three well-known star forming regions in our Galaxy (M 17, the Carina Nebula, and the Arches cluster).
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]