RI98214D

DRAFT TECHNICAL MEMORANDUM REVISION 1

REMEDIAL ALTERNATIVES SCREENING ROYAL RIVER DISCHARGE ZONE

MCKIN SITE GRAY,

RESPONSE ACTION CONTRACT (RAG), REGION I

For U.S. Environmental Protection Agency

By Tetra Tech NUS, Inc.

EPA Contract No. 68-W6-0045 EPA Work Assignment No. 025-RICO-0136 TtNUS Project No. N7793

September 1998

TETRA TECH NUS, INC. RI98214D

DRAFT TECHNICAL MEMORANDUM REVISION 1

REMEDIAL ALTERNATIVES SCREENING ROYAL RIVER DISCHARGE ZONE

MCKIN SITE GRAY, MAINE

RESPONSE ACTION CONTRACT (RAC), REGION I

For U.S. Environmental Protection Agency

By Tetra Tech NUS, Inc.

EPA Contract No. 68-W6-0045 EPA Work Assignment No. 025-RICO-0136 TtNUS Project No. N7793

September 1998

Jarp^slForrelli, P.E. George 0. Gardner, P.E. Ppoject Manager Program Manager DRAFT

TABLE OF CONTENTS DRAFT TECHNICAL MEMORANDUM - REVISION 1 REMEDIAL INVESTIGATION/FEASIBILITY STUDY MCKIN SITE GRAY, MAINE

SECTION PAGE

1.0 INTRODUCTION 1-1

2.0 SITE DESCRIPTION AND HISTORY 2-1 2.1 Site Description 2-1 2.2 Site History 2-3

3.0 RRDZ FIELD INVESTIGATION 3-1 3.1 Groundwater Investigation 3-1 3.2 Ecological Assessment 3-4 3.3 Location/Topographic Survey 3-4

4.0 RRDZ CONCEPTUAL GROUNDWATER MODEL 4-1 4.1 System Boundaries 4-2 4.2 Hydrostratigraphic Units 4-2 4.3 Groundwater Flow 4-3 4.4 Aquifer Characteristics 4-3 4.5 Water Budget 4-6 4.6 TCE Flux to the Royal River 4-6

5.0 REMEDIAL ALTERNATIVES SCREENING 5-1 5.1 Screening Evaluation Criteria 5-3 5.2 Natural Attenuation 5-4 5.3 Groundwater Interception 5-7 5.4 Cover Boiling Springs/Sparge Royal River 5-1 2 5.5 Cover Boiling Springs/Groundwater Interception 5-17

6.0 ALTERNATIVE SCREENING SUMMARY 6-1 6.1 Alternative 1 - Natural Attenuation 6-1 6.2 Alternative 2 - Groundwater Interception 6-2 6.3 Alternative 3 - Cover Boiling Springs/Sparge Royal River 6-2 6.4 Alternative 4 - Cover Boiling Springs/Groundwater Interception 6-3

REFERENCES

RI98214D I McKin Site, ME DRAFT

TABLE OF CONTENTS (cont'd) DRAFT TECHNICAL MEMORANDUM - REVISION 1 REMEDIAL INVESTIGATION/FEASIBILITY STUDY MCKIN SITE GRAY, MAINE

FIGURES

NUMBER PAGE

2-1 Site Location 2-2 2-2 Royal River Discharge Zone Study Area 2-4 3-1 Field Investigation Data Locations 3-2 3-2 Wetland and Floodplain Boundaries 3-5 4-1 Potentiometric Surface of Shallow Confined Aquifer 4-4 4-2 Potentiometric Surface of Deep Confined Aquifer 4-5 5-1 Groundwater Interception Alternative Location 5-8 5-2 Groundwater Interception System Flow Diagram 5-10 5-3 Cover Boiling Springs/Sparge Royal River Alternative Location 5-15 5-4 Cover Boiling Springs/Ground water Extraction Alternative Location 5-19

APPENDICES

A DIRECT PUSH TECHNOLOGY (DPT) LOGS B FIELD SCREENING GAS CHROMATOGRAPH (GO RESULTS C BOREHOLE LOGS, WELL CONSTRUCTION DIAGRAMS, AND GRAIN SIZE ANALYSIS D ANALYTICAL LABORATORY RESULTS DATABASE E DATA POINT COORDINATES AND ELEVATIONS F GROUNDWATER INVESTIGATION AND AQUIFER TEST ANALYSIS G AQUIFER TEST CALCULATIONS H TCE LOADING AND CAPTURE ZONE CALCULATIONS I POTENTIAL SITES FOR REMEDIAL FACILITIES J REMEDIAL ALTERNATIVE CALCULATIONS K DETAILED COST ESTIMATES

RI98214D II McKin Site, ME DRAFT

1.0 INTRODUCTION

This Draft Remedial Alternative Screening Technical Memorandum Revision 1 was prepared by Tetra Tech NUS, Inc. (TtNUS), at the request of the U.S. Environmental Protection Agency (EPA) under Contract No. 68-W6-0045. This technical memorandum describes the remedial alternative screening process used for the Royal River Discharge Zone (RRDZ) at the McKin Site, Gray, Cumberland County, Maine, under Work Assignment No. 025-RICO-0136. The remedial alternative screening was performed in accordance with the Draft Final Work Plan dated June 1998.

The McKin Site is a former hazardous waste recycling facility located on Mayall Road in Gray, Maine. Soil and groundwater at the McKin Site are contaminated with solvents as a result of past petroleum and industrial chemical wastes collection, storage, disposal, and transfer practices. Remediation of the source area and groundwater adjacent to the McKin property was addressed by the McKin Site Trust based on a 1985 Record of Decision (ROD) and a 1988 Consent Decree. Contaminants released to the subsurface at the McKin property have been entrained in the groundwater flow of the underlying regional aquifer system, and have been carried to the regional aquifer discharge point at the Royal River (the RRDZ), approximately 4,000 feet east of the McKin property. Contaminated groundwater discharges at the RRDZ are concentrated within a river reach of approximately 300 to 500 feet. Trichloroethene (TCE) is the primary contaminant identified in groundwater and surface water. Near the RRDZ, TCE concentrations of approximately 1,000 /jg/L are typically detected in one monitoring well. Surface water TCE concentrations at Boiling Springs in the RRDZ have ranged from 290 to 470 fjg/L since 1995. TCE concentrations in the Royal River range from about 5 to 30 jj.g/L for 2000 feet downstream of the RRDZ depending on the water level of the river. TCE concentrations above the Maine standard of 2.7 ng/L have been detected as far downstream as the lower Yarmouth dam, 12 miles downstream.

This Draft Technical Memorandum Revision 1 presents the results of the recent RRDZ field investigation and the screening of previously identified candidate remedial alternatives,

RI98214D 1-1 McKin Site, ME DRAFT which were revised on the basis of the RRDZ field investigation results. The screening's purpose is to evaluate potential technologies according the screening criteria of effectiveness, implementability and cost and to evaluate which alternatives should be further evaluated in any site-wide feasibility study prepared for the McKin Site.

The Feasibility Study to be prepared for the McKin Site will be prepared to meet the primary objective of developing and evaluating remedial alternatives that will provide adequate protection of human health and the environment for all areas of the site. The site-specific remedial action objective (RAO) for the RRDZ Technical Memorandum is to reduce the concentration of TCE in the Royal River to a level below the Maine Ambient Water Quality Criteria (AWQC) Human Health Criteria for water and organisms of 2.7 |^g/L. The RAO for the site does not address restoring the RRDZ aquifer.

Major components of the alternatives are defined with respect to size and configuration of the representative process options; rates of flow or treatment; spatial requirements; distances for disposal; and required permits, imposed limitations, and other factors necessary to evaluate the alternatives. Two alternatives have been proposed as final candidate alternatives.

RI98214D 1-2 McKin Site, ME DRAFT

2.0 SITE DESCRIPTION AND HISTORY

The following section presents a brief summary of the site description and history

2.1 Site Description

The McKm Superfund Site is located in Gray, Maine, approximately 15 miles north of Portland, Maine. The McKm property comprises an area of approximately 7 acres located on the west side of Mayall Road The site includes those areas presently and potentially impacted by groundwater contamination from the McKm property, and is bounded roughly as follows (see Figure 2-1):

• On th esouth by Yarmouth Road from Depot Road to Mayall Road and a line from the southern terminus of Mayall Road running east to the Royal River • On th eeast by Royal River • On th enorth by Collyer Brook • On th ewest by a line from the intersection of Collyer Brook with Merrill Road and closing at the intersection of Depot Road and Yarmouth Road

Based on observed contaminant distribution, the site also extends north of Collyer Brook at its confluence with the Royal River, and east just beyond the Royal River at the river bend due east of the McKm property. In total, the site consists of approximately 660 acres of commercial, residential, agricultural, and undeveloped properties

The topography west of the McKm property is relatively flat. The topography of the property has been modified by past excavations, with the on-site fenced enclosure surrounded by steep upward slopes to the west, south, and north. The property is accessible from Mayall Road

East of Mayall Road, the land slopes downward to the flood plain of the Royal River The land surface is dissected by a number of small, unnamed streams, and associated gullies.

R198214D 2-1 McKrn Site, ME DRAFT

H H H 1 V 1 1 KILOMETER T QUADRANGLE LOCATION

SITE LOCATION FIGURE 2-1 REMEDIAL ALTERNATIVES SCREENING ­ TECHNICAL MEMORANDUM McKIN SITE ­ GRAY, MAINE TETRA TECH NUS, INC. DRAWN BY R G DEWSNAP REV CHECKED BY J B H OLDEN DATE AUGUST 27 1998 55 Jonspin Road Wilmington, MA 01887 SCALE APPROX 1" = 2000' NAME DWG\MCKIN\TECHMEM\LOCUS DWG (978)658-7899

2-2 McKin Site, ME RI98214D DRAFT

The resulting topography is frequently very steep, and access can be difficult.

The RRDZ is the area of the site where the TCE groundwater plume discharges to the Royal River, approximately 4,000 feet west of the McKin property on Mayall Road and 1,500 feet south of Depot Road (see Figure 2-2). The Royal River generally flows south through the study area. At the southern end of the RRDZ, it turns east for approximately 1,200 feet, flowing under the Maine Central Railroad bridge before turning south again.

The Royal River empties into , in the Town of Yarmouth, Maine. The river flows a distance of 25 miles and has a total drainage area of 142 square miles. The drainage area of the Royal River upstream of the study area is approximately 70 square miles.

The elevation of the Royal River in the RRDZ is approximately 200 feet lower than the McKin property. Within the study area the river channel is approximately 45 to 60 feet across. The river banks are steep and have a moderate to dense saplings and shrubs cover, with trunks and branches outstretched over the river. The canopy over the river is frequently open. The flood plain in the RRDZ is a relatively level terrace, 70 to 100 feet wide, behind the steep banks of the river channel. Flooding in the area appears to occur during the winter and early spring months as a result of heavy rainfall on snow-covered or frozen ground. Flooding in the summer months is most often associated with prolonged heavy rainfall or tropical storms. Wetland areas are located in the Royal River flood plain, typically situated in eroded channels and depressions on the flood plain terrace draining to the river. Topography rises steeply west of the flood plain and terrain consists of a series of irregular, steeply-sloped hills, as much as 50 feet higher than the flood plain.

2.2 Site History

The McKin facility was constructed in 1972 on property previously used as a sand and gravel pit. From 1972 to 1977, the facility was used as a collection and transfer station for waste oil and industrial process waste. The facility handled between 100,000 and 200,000 gallons of waste annually.

RI98214D 2-3 McKin Site, ME DRAFT

t McKin PROPERTY I 3,800 FEET WEST

TREE LINE

ELEVATION

ROYAL RIVER DISCHARGE ZONE BOUNDARY

( '~

FIGURE 2-2 GRAPmc SCALE REMEDIAL ALTERNAllVES ~EENING - lEOINICAL MEMORANDUM O' 200' 400' 1. ALL LOCATIONS TO BE CONSIDERED APPROXIMATE. McKIN SITE GRAY, MAINE Ift! TETRA TECH NUS, INC. INCH = 200 FEET 2. PLAN ~ TO BE USED FOR DESIGN. ORA\tttl BY: 0. W. MACDOUGALL REV.: 0 3. BASE PLAN BY OEST ASSOCIATES, INC. CHECKED BY: D. CONAN DATE: AUGUST 27, 1998 55 Jonspin Road Wilmington, MA 01887 (978)658-7899 SCALE: 1· = 200' FILE NO.: DWG MCKIN TECHMEM\7793CM01.DWG

Rl98214D 2-4 McKin Site, ME DRAFT

Volatile organic compounds (VOCs) from the facility contaminated local residential wells through migrating groundwater. In 1985,a remedial investigation/feasibility study was performed and a Record of Decision (ROD) was signed by EPA. The remedy presented in the ROD included: 1) aerating soil on site; 2) disposing of approximately 16 drums off site; 3) performing soil tests in the petroleum-contaminated areas; 4) constructing a groundwater extraction, treatment, and surface water discharge system and operating this system for 5 years to achieve a groundwater performance standard of 92 ppb 1,1,1-trichloroethane and 28 ppb trichloroethene; 5) re-evaluating the groundwater performance standard if the standards are not met within 5 years; 6) initiating an off-site groundwater and surface water monitoring program; and 7) performing site removal and closure activities.

In 1986-87, a group of potentially responsible parties undertook a remedial action to excavate and treat on-site VOC-contaminated soil to minimize continued migration of VOCs to groundwater. Approximately 1 2,000 cubic yards of soil containing solvents and petroleum were excavated and treated by thermal desorption. Following analytical verification of the thermal desorption, the soil was backfilled.

In 1990, an Explanation of Significant Differences was approved by EPA that changed the method of discharging the treated groundwater from a surface water discharge to groundwater reinjection. Additionally, EPA and the Maine Department of Environmental Protection (Maine DEP) agreed in 1990 to a phased approach to groundwater remediation beginning with a limited four extraction well system near the Site. During the summer of 1990, the potentially responsible parties (PRPs) designed and constructed a groundwater interception and treatment system that operated from 1991 to 1995. The EPA and the Maine DEP approved a temporary shutdown of the system in 1995 so that the parties could evaluate the effectiveness of the system and alternatives for the site's cleanup. This evaluation included assessing the feasibility and cost of groundwater restoration, containment, mitigation, and institutional controls.

RI98214D 2-5 McKin Site, ME DRAFT

EPA, Maine DEP, the PRPs, and representatives of the Town of Gray, the Gray Water District, interested residents, local environmental groups and the McKin Site Citizens Advisory Group ("SAG"), referred to herein as the McKin Mediation Committee, are currently engaged in a mediation effort to resolve the future activities for the site and surrounding community. The RRDZ Technical Memorandum will develop alternatives to address impacts to the Royal River.

RI98214D 2-6 McKin Site, ME DRAFT

3.0 RRDZ FIELD INVESTIGATION

The principal RRDZ field investigation activities included a groundwater investigation, an ecological assessment (including a wetland delineation), and a location/topographic survey. These activities are briefly described below.

3.1 Groundwater Investigation

The groundwater investigation included a TCE plume profiling study, monitoring well and test well installation, and aquifer testing. A detailed description of the groundwater investigation and results are presented in Appendix F. Groundwater investigation activities are summarized below.

From March 26 through April 3, 1998, direct-push technology (DPT) methods for groundwater quality sampling were used to profile the contaminant plume on the upgradient edge of the Royal River flood plain. The primary goal of the survey was to delineate contaminant distribution in a plane at the toe of the slope that defines the Royal River flood plain. Additional borings were advanced to profile vertical contaminant distribution at the edge of the Royal River along the projected centerline of the plume, screen groundwater quality at Boiling Springs, and establish a vertical profile to compare with other profiles.

Fifteen DPT well points were installed across the RRDZ as part of the plume delineation (see Figure 3-1). DPT logs are provided in Appendix A. As the DPT well points were advanced samples, were collected at 10-foot intervals. Approximately 190 samples, including QC samples, were collected from the well drive points, the Royal River, Boiling Springs, and a surface seep within the study area. The samples were analyzed for TCE using a field gas chromatograph (GC). Field screening results are provided in Appendix B. The field screening results were confirmed by also analyzing 10 percent of the samples through the EPA Contract Laboratory Program (CLP). Analytical laboratory results are provided in Appendix D. The maximum TCE concentration observed in the CLP

RI98214D 3-1 McKin Site, ME DRAFT

-:...------~ ------LEGEND ------_-­ DP1 -80 © DIRECT PUSH TECHNOLOGY CDPT) \./ELL POINTS ------MW-01~ RRD2 FS MONITORING \./ELL LOCATION TW-01 e RRD2 FS TEST \./ELL LOCATION

' '"' . "-·- ~ . PZ-0.3 IZl PIEZOMETER LOCATION -~-~--- MW-103A-$ PREVIOUSLY INSTALLED MONITORING \./ELLS RROS Cl SURFACE \./ATER SAMPLE LOCATION ·--_.._,_,_... _.._. CRR03, RR04, AND RR09 NOT USED) ~~'f'-'-··~~---·~--,~---· -·-·-·-·-·-·- • EDGE OF RI VER CHANNEL

... ~~~~~""~, ~~ .. ~-~~ ~--:...._'--=----~ PtR ELIN E ------,\Q j --~-:.:::~-~~~~ --~-- IGKTOF·-WAY' fl~ - ...... ___- ~ ~~-~~l . / ,;J' c·h~TC"DI 11\1\C" 1 \ I 11 ~------=::- ~~ · --~~ Cl~~"llk~~ ( ~______, oP-i. .:.:-sne--- ~~, ~ - ~~-- ·-­

~-,,__ ...... ~~---~----~...... -.-..-.. ----

'5 / ·-----·

-$MW-103A \

------

..... -·.;...; ...... _ ·-....._ ...... ---­ ·....;,: ......

/) j1 t \ "' '".'' \\ ' \ .M,\\\\ FIELD INVESTIGATION DATA LOCATIONS / '[\\\ FIGURE 3-1 GRAPHIC SCALE REMEDIAL ALlERNATIVES ~EENING - TEDINICAL MEMORANDUM \\...... _,__ ._-·-<1.__ _ 0' 100' 200' 1. ALL LOCA Tl ONS TO BE CONSIDERED APPROX I MATE. McKIN SITE - GRAY. MAINE Iitl '.TETRA TECH NUS, INC. 2. PLAN ~ TO BE USED FOR DESIGN. ' ' " 1 INCH = 100 FEET DRAWN BY: D. W. MACDOUGALL REV.: 0 t\RRd:l - CONAN DATE: 3. BASE PLAN BY OEST ASSOCIATES, INC. CHECKED BY: D. AUGUST 27, 1998 55 Jonspin Rood Wilmington, MA 01887 ·, SCALE: FILE NO.: DWG\MCKIN\TECHMEM\77ll3CM02.DWG (978)658-7899

3-2 Rl98214D McKin Site, ME DRAFT

groundwater profiling samples was 1800 |ig/L at DP1-160, at a depth of 35 to 40 feet below ground surface (bgs) (DP1 -160-3540). Using the field screening results the TCE mass flux through the plume was estimated at 1 .73 kg/day. Calculations are presented in Appendix H. A 350 (ig/L TCE concentration was detected in the Boiling Springs sample (BSS-04) in the CLP analysis. TCE and vinyl chloride concentrations in a surface seep sample (RR06) were 93 ^g/L and 36

Three 2-inch diameter monitoring wells and a single 4-inch diameter test well (see Figure 3-1) were installed to conduct an aquifer pumping test and to evaluate aquifer stratigraphy. One of the monitoring well borings was advanced to bedrock to confirm the thickness of the overburden aquifer and to evaluate aquifer stratigraphy. Split-spoon soil samples were collected at selected intervals for detailed stratigraphic information. Borehole logs, well construction diagrams, and grain size analysis results are provided in Appendix C.

Aquifer testing included short-term constant-rate pumping tests in MW-1 and MW-2, and a 72-hour constant-rate test in TW-1. An aquifer test analysis is presented in Appendix F. Based on daily stage measurements provided by Sevee and Maher Engineers, the Royal River flow rate during the aquifer test ranged from 64 to 75 cfs. All tests were conducted by pumping groundwater from the test well or monitoring well at a controlled rate, treating the water by carbon adsorption, and discharging the treated water to the Royal River. The addition of water did not result in any observable increase in flow or hydraulic head in the river. Samples of the TW-1 discharge, the Royal River, and the granulated carbon system effluent were collected for CLP analysis. Analytical laboratory results are provided in Appendix D. A concentration of 590 |j.g/L TCE was observed in the TW-1 discharge at the end of the 72-hour aquifer test and no significant change in the Royal River TCE concentration was observed in six samples collected at RR01, about 700 feet downstream from the RRDZ, throughout the test. A 6 |o.g/L TCE concentration was observed in the samples collected at RR01 at the start and end of the aquifer test, with a range of 5 to 8

RI98214D 3-3 McKin Site, ME DRAFT

TCE. No TCE detections were observed in the aquifer test activated carbon system effluent.

Because 36 ng/L of vinyl chloride was detected in a surface seep sample at RR06 during groundwater profiling (RR06-02), a second surface seep sample at RR06 and two additional Royal River samples at RR05 (RR05-31) and RR07 (RR07-31) were collected on June 25, 1998. The estimated vinyl chloride level in the seep sample was 2 |o.g/L; vinyl chloride was not detected in the Royal River water samples.

3.2 Ecological Assessment

An ecological investigation was performed on May 20 and 21, 1998 to provide a baseline assessment of the ecological resources present in the RRDZ. Field activities included a wetland delineation and a flora and fauna survey. The wetland delineation used the three parameter approach (based on vegetation, soils, and hydrology) developed in the Army Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory, 1987). The results of the ecological investigation surveys were presented in a Draft Ecological Assessment (TtNUS 1998), which includes a map of the wetlands and floodplain boundaries, a characterization of the plant communities and habitats, and lists of flora and fauna observed in the study area. Based on available information, no known occurrences of federal or state-listed threatened or endangered species have been recorded in the study area. The wetlands and floodplain boundaries are depicted on Figure 3-2.

3.3 Location/Topographic Survey

Location of all surface water sampling stations, DPT wells points, the test well, monitoring wells, piezometers, and thirteen existing wells near the study area were surveyed by a Maine-registered subcontract surveyor. Wetland boundaries, topography, surface features, and Royal River cross sections at five locations in the study area were surveyed. Elevations and coordinates for the data points are provided in Appendix E.

RI98214D 3-4 McKin Site, ME DRAFT

TREE LINE N BOUNDARY ---­ 100­YEAR FLDODPLAI

llETLAND AREAS

·----...._·~...... ·-. TECH NU S MON !TOR I NG \/ELLTETRA LOCATIDN EDGE OF \IA TER

.-i-.. ''\. ' .I' ·,,. J::.,,r ' \ \ ·-·­-?'.\ ' . :..__ '· '-·,·...... ' \ \

-...... _ \ ·. -...... _ ... ___ ...... ______

FLOODPLAI .----=:--:-:~-AAiRRIEE1A~~s AND TECHNICAL MEMORANOuM TETRA 2 N I INC GRAPmc SCALE BOUND~IES~~==;:;~~Fl~G~U~R~E3~ ~-=~us I S TO BE CONSI DERED APPROXIMATE. ~1 s SCREENING MA 01887 ALL LOCATION FOR DESIGN. o· 200' 400' WETLAND · BE USED MCK . TECH N ' . PLAN tflll TO ASSOCIATES. INC. 3.2. BASE PLAN BY DEST NAll'IE MAIN£ Wllm;ogtoo. 1 INCH 200 FEET REMEDIAL ALTER Sil£ - GRAY, 0 1998 55 '°""';" Rood (978)658-7899 IN REV... AUGUST • 27 ,. = 200'

Rl98214D 3-5 McKin Site,· ME DRAFT

4.0 RRDZ CONCEPTUAL GROUNDWATER MODEL

This section provides a conceptual groundwater flow model for the RRDZ based on the RRDZ investigation and previous McKin Site investigations. A summary of the study area geologic characteristics, a description of data from previous investigations, and a summary of conclusions reached from a review of the existing data are provided in the Draft Final Work Plan for the Royal River Discharge Zone FS (B&RE June 1998).

At the McKin Site, contaminants were released to the subsurface and entrained in the groundwater flow of the underlying regional aquifer system. As a result of precipitation- driven groundwater flow, contaminated groundwater has been carried to the regional aquifer discharge area at the Royal River.

Contamination has been documented in shallow bedrock groundwater over much of the site, and, near the source area, bedrock contaminant flow, based on historical residential bedrock well data, is significant. Within the RRDZ study area, there is approximately 90 feet of overburden between the Royal River and the bedrock surface, and there can be no discharge from bedrock to the Royal River without passing through the overburden. Therefore, groundwater flow through fractured bedrock is ignored in this study This conceptual model also presumes the following:

• Th earea of bedrock aquifer contaminant discharge is within the documented area of overburden aquifer contamination, and does not occur (via discrete fracture or fracture network flow) at a discontinuous point or an area not yet identified; and,

• Th ebulk of the river contamination enters the stream flow within the area identified by the USGS in 1997, focused remedial measures in this area will reduce downstream contaminant loads, i.e., there are no unidentified downstream contaminant sources or discharge points.

RI98214D 4-1 McKin Site, ME DRAFT

4.1 System Boundaries

The Royal River is presumed to form the downgradient boundary of the regional aquifer system. In this area, upward hydraulic gradients are present where groundwater flow from both the east and west sides of the river converges. The actual boundary is a conceptual surface where the two lateral flows meet, roughly defined by the river position. There will also be some mixing of contaminants across this boundary due to diffusive and dispersive fluxes.

4.2 Hydrostratigraphic Units

The primary hydrostratigraphic unit in the RRDZ study area is the buried glacial outwash sand and gravels. The fine-grained sediments of the Presumpscot Formation at the top and the Sebago Granite at the base outline the physical boundary of the sand and gravel aquifer. The aquifer is confined because the groundwater level in wells completed in the sand and gravel aquifer is above the base of the confining bed (Presumpscot Formation). The aquifer showed a confined response during the 72-hour drawdown test of TW-1, which was pumped at approximately 31 gpm.

Most of the groundwater contamination is in the RRDZ study area, within the buried sand and gravel aquifer.

The low-permeability deposits of the Presumpscot contain lenses of fine sand and silt that are believed to be interconnected with the sand and gravel aquifer, allowing contaminants to migrate to surface water seeps and Boiling Springs along the west bank of the Royal River flood plain. Furthermore, where the Royal River has incised its channel, and/or the lower surface of the Presumpscot rises in elevation, the connection between the river and the aquifer may be enhanced. Under such circumstances, the "window" in the riverbed could become a preferential discharge point for the regional aquifer, including the contaminated groundwater.

RI98214D 4-2 McKin Site, ME DRAFT

4.3 Groundwater Flow

The direction of groundwater flow was determined in both the shallow portion and deep portion of the sand and gravel aquifer by triangulating between two different sets of wells, based on water elevations measured on May 1 3, 1 998.

Two drive points and one well (MW-3, DP1-320, DP2-150) in the shallow portion of the aquifer, were completed with well screens positioned between approximately 40 and 65 ft mean sea level (msl). The calculations indicated groundwater flow in the shallow sand and gravel aquifer was in a southeast direction and the hydraulic gradient was 0.015 (see Figure 4-1).

Three drive points (DP1-400, DP1-560, DP2-282) in the deeper portion of the aquifer, were completed with well screens positioned between approximately 15 and 35 ft msl. The calculations indicated groundwater flow in the deep sand and gravel aquifer was in a south-southeast direction and the hydraulic gradient was 0.004 (see Figure 4-2).

Therefore, groundwater in the upper portion of the confined aquifer has a steeper gradient and a stronger flow component to the east relative to the lower portion. In addition, based on a comparison of Figures 4-1 and 4-2, there is an upward vertical hydraulic gradient.

4.4 Aquifer Characteristics

The RRDZ investigation determined the transmissivity ranged from 25,810 ft2/day to 29,900 ft2/day and storativity ranged from 2 x 10-4 to 9 x 10-3 in the RRDZ. The hydraulic conductivity at the RRDZ is calculated to be 300 ft/day. In comparison, previous estimates of the hydraulic conductivity of the sand and gravel aquifer were between 10 and 50 ft/day (SME and EER, December 1989). The lower hydraulic conductivity values were determined in a different portion of the site beyond the RRDZ.

The hydraulic conductivity of the Presumpscot Formation was not evaluated. The hydraulic conductivity of the Presumpscot Formation is estimated to be between 0.028

RI98214D 4-3 McKin Site, ME DRAFT

LEGEND \1W-, 03A. $- PREVIOUSLY INSTALLED MON ITDR I NG WELLS v1w-c~0- RRD2 FS MONITORING WELL LOCATION TW-01 e RRD2 FS TEST WELL LDC AT ION PZ-03 !XI PIEZDMETER LOCATION -·­ ·-·-- ···-··-'"--._.. JP 1 -80 .:§1 DIRECT PUSH TECHNOLOGY CDPn WELL POINTS -~--~_:.~-:- ----~~~.,. RR08 ~ SURFACE WATER SAMPLE LOCATION ...... -:-::..._---:, ..... CRR03, RR04, AND RR09 NOT USED) 'ITT)-~:::____ ' ._. ·~· '·

-·~ .. s ~ PDTENTIOMETRIC CONTOUR OF SHALLOW PORTION OF CONFINED .. ,_ ... -~- - -1-92.0 SAND AND GRAVEL AQUIFER ON MAY 13, 1998. ELEVATION -~-~---- -~ t IN FEET RELATIVE TD MEAN SEA LEVEL. ARROWS PO I NT IN -----"-----·------~ DIRECT\DN OF GRDU~~~FLDW. DASHED WHERE INFERRED.

\ \ ..f.: ·--;-:~-~---"""- ~'-'---~~-~~-----~~---h~.:::~"''>~- __ PIPELINE ------,.""' .f-'.. . :~~~~-~ ~u .. 1.GHf. OF W'AY .. ( 1 -­ - ~--...-...... ' I .,_ Md -rr­ ! ~- -~:~ -~ :~~~~ , Ct_r~R~/ " "·-­ . ~-..-...... ~v--,,...... __

----­

·;--...... ,_~:----·-·--·-·-·-·-·- .. -..._, __ DF-2 =--:o 6 -_ DP2-150 (90.32)

.. ~ \

$-MW-103A

..... _.,..~--:-~~---~' :..... ,,, - ...... / ...... _...._ ...... ---­ --~~~~------.,. °""'· , - ______. ., -., ... ~.;.- - I· -.,-.,,-...,-.---.-.-­ ..... ------­ ------~,...., j f - ...... ______. ;.~ ...... ,:. .J -,.,.-._ ...... -.....: ...... _. ii' ~~R02 ...... I; -~' l ' ...... ·--. I t '""'.!. \ ( ~ ·~·- - \. \:. ~\ ·..:::-~ \ \\ \ -~ ""' \ .,, ~- ~ \\ P01EN110METRIC SURFACE - SHALLOW CONANED AQUIFER . -. \ \'.. FIGURE 4-1 - . \ \ \\ GRAPfflC SCALE REMEDIAL ALTERNATIVES ~ING - TEOiNICAL MEMORANDUM ' \'·- .. _ .. ··­ o· 100' 200' !. ALL LOCATIONS TO BE CONSIDERED APPROXIMATE. \ ' !'.... McKIN SITE - GRAY, MAINE 11trTETRA TECH NUS, INC. \ '2. - 2. PLAN t:illl TO BE USED FDR DESIGN. 1 INCH = 100 FEET DRAWN BY: D. W. MACDOUGALL REV.: ~\RR61. 0 3. BASE PLAN BY OEST ASSOCIATES. INC. CHECKED BY: C. RACE DATE: AUGUST 27, 1998 55 Jonspin Road Wilmington, MA 01887 ' SCALE: ,. = 100' FILE NO.: DWG\MCKIN\TECHMEM\FlG_-4-1.0WG (978)658-7899

Rl982140 4-4 McKin Site, ME DRAFT

------t"'"~

'·. ~. ·~--~~.:::_~--"-·"'(-'~--

__···~A~

\

----. ----­------­ ·-. ··::::­ ., ··-­ ·-~

'·~. ....- . ------­ - ~--='~:- ----­ .------­ LIMIT OF ------'----._~- SPRINGS . $MW-103A

··_., .

...... - ......

·/H I:' _,_,_ . I --~-

I I POTENTIOMETRIC SURFACE - DEEP CONFINED AQUIFER FIGURE 4-2 GRAPmc SCALE REMEDIAL AllERNA11\'ES SCREENING - lEOiNICAL MEMORANDUM \ ·.__ ~· ___ .,__ o· 100· 200' !. ALL LOCATIONS TO BE CONSIDERED APPROXIMATE. TETRA TECH NUS, INC. \ ' McKIN SITE - GRAY, MAINE !"Ill \ ~ '·. 2. PLAN ~ TD BE USED FDR DES.IGN. 1 INCH = 100 FEET DRAWN BY: D. W. MACDOUGALL REV.: 0 ~~RO-:J ­ 3. BASE PLAN BY DEST ASSOCIATES. INC. CHECKED BY: C. RACE DATE: AUGUST 27, 1998 55 Jonspin Road Wilmington, MA 01887 ' SCALE: 1· = 100· FILE NO.: DWG\MCKIN\TECHMEM\FlG_4-2.DWG (978)658-7899

McKin Site, ME Rl98214D 4-5 DRAFT and 2.8 ft/day on the upper, fractured portion, and between 0.000028 and 0.028 ft/day in the lower, unweathered portion (SME and EER, December 1989).

4.5 Water Budget

Based on the RRDZ investigation, approximately 480 gpm of contaminated groundwater discharge to the river from the site. The calculations are presented in Appendix H. It was previously estimated that between 180 to 270 gpm of contaminated groundwater was discharged to the river system from the site with approximately one-third discharging to Collyer Brook, and the remaining two-thirds discharging to the Royal River (SME, 1989). Boiling Springs reportedly discharges 5 gpm to the Royal River (GEI 1996).

4.6 TCE Flux to the Royal River

Since the plume profiling data points were concentrated in the high TCE concentration section of the plume and did not extend across the entire plume width, the total groundwater plume TCE mass flux through the RRDZ groundwater system cannot be quantified with the available data. However, the flux through the most concentrated section of the plume (TCE concentrations of 300 mg/L or greater) can be estimated. Using the hydraulic conductivity, gradients, and the cross-sectional area for the section the TCE plume greater than 300 mg/L, the TCE mass flux through the RRDZ is calculated to be at least 1.73 kg/day (calculations are presented in Appendix H). This is a under estimation of the total TCE flux as the calculation does not include the portion of the plume at concentrations less than 300 mg/L TCE. In comparison, the TCE mass flux to the river from groundwater determined by the McKin Mediation Technical Subcommittee is 1.5 kg/day, based on Royal River data reported by SME, prior to the RRDZ study. The difference between the two estimates is significant. The unaccounted for mass is assumed to discharge to the Royal River both upstream and potentially downstream of SW-1.

RI98214D 4-6 McKin Site, ME DRAFT

5.0 REMEDIAL ALTERNATIVES SCREENING

The following alternatives were defined in the mediation/negotiation process between EPA and the PRPs (together with the no action alternative):

1. Natural Attenuation 2. Groundwater Interception 3. Cover Boiling Springs, Sparge Royal River 4a. Cover Boiling Springs, In-Situ Biodegradation 4b. Cover Boiling Springs and Retrofit to Groundwater Interception (if In-Situ Biodegradation (4a)) is unsuccessful

In-situ biodegradation was subsequently eliminated as an alternative during discussions with the McKin Mediation Technical Subcommittee. The list of candidate alternatives was revised as follows:

1. Natural Attenuation 2. Groundwater Interception 3. Cover Boiling Springs, Sparge Royal River 4. Cover Boiling Springs, Groundwater Interception

The RAOs for the RRDZ FS are to protect human health and the environment by decreasing the average concentration of TCE in the Royal River to less than the Maine AWQC of 2.7 //g/L for human health, and by reducing concentrations in Boiling Springs to levels where direct human exposure poses no risk (I.e. below 5 fjg/L). As agreed to by the McKin Mediation Committee Technical Subcommittee, the effectiveness of mitigation alternatives will be based on the an ambient concentration of 2.7 jjg/L at the harmonic mean Royal River flow of 48 cubic feet per second (cfs), as calculated from the harmonic mean flow at the USGS Yarmouth Station using an area correction (S&M 1997). The calculated 7Q10 for the McKin Site is 1 2.8 cfs.

RI98214D 5-1 McKin Site, ME DRAFT

The Technical Subcommittee agreed to the use of a TCE mass flux to the Royal River of 1.5 kg/day (S&M 1997). Based on the harmonic mean river flow of 48 cfs, a maximum allowable flux of 0.32 kg/day would result in a river concentration of 2.7 |j,g/L of TCE. By subtracting the allowable mass flux (0.32 kg/day) from the estimated maximum mass flux of 1.5 kg/day, 1.1 8 kg of TCE per day must be removed to achieve the AWQC.

For planning and cost estimation purposes, the McKin Technical Subcommittee agreed that concentrations in the Royal River are expected to meet regulatory criteria by the end of the year 2011 and that groundwater at the site could be expected above drinking water standards at least until the year 2047. It is noted that the TCE flux as calculated by this study is greater than the estimated flux used by the McKin Mediation Technical Subcommittee and may therefore represent a longer time frame. However, detailed trend analysis was beyond the scope of this technical memorandum, so the 15 year time frame agreed upon by the subcommittee will be used to evaluate and cost alternatives in this screening phase.

To minimize impacts on the river, it is anticipated that focused interception of the groundwater plume near the river will be a primary component of remediation. Proposed groundwater interception pumping rates have been calculated based on an allowable mean river concentration of TCE of 2.7 |j.g/L (AWQC), and TCE flux estimates entering the Royal River. Groundwater extraction rates are based on the concentration of 590 |o.g/L TCE observed in the TW-1 discharge at the end of the 72 hour aquifer test and the requirement of removing 1.18 kg/day TCE to achieve compliance with the AWQC. In analyzing groundwater interception technologies, the effectiveness in reducing river concentrations will be evaluated and the need for supplemental measures e.g., limited river sparging will be evaluated. Final mitigation or restoration alternatives will be selected based on the effectiveness of primary interception, and the impacts of secondary technologies.

Site logistics warrant a discussion of possible locations for siting the remediation (treatment) facilities. An evaluation of five potential sites is provided in Appendix I.

RI98214D 5-2 McKin Site, ME DRAFT

5.1 Screening Evaluation Criteria

In accordance with § 300.430(e)(7) of the NCP, remedial alternatives shall be developed and screened based on the short- and long-term aspects of the following three criteria:

(i) Effectiveness - This criterion focuses on the degree to which an alternative reduces toxicity, mobility, or volume through treatment, minimizes residual risks and affords long­ term protection, complies with applicable or relevant and appropriate requirements (ARABS), minimizes short-term impacts, and how quickly it achieves protection.

The qualitative ratings for effectiveness were defined as follows:

High: The alternative is likely to achieve the RAO of lowering the TCE concentration in the Royal River below 2.7 (ig/l throughout of the year.

Moderate: The alternative is likely to achieve the RAO of lowering the TCE concentration in the Royal River below 2.7 jag/I intermittently throughout the year.

Low: The alternative is not likely to achieve the RAO of lowering the TCE concentration in the Royal River below 2.7 ng/l at any time throughout the year.

(ii) Implementability - This criterion focuses on the technical feasibility and availability of the technologies each alternative would employ and the administrative feasibility of implementing the alternative.

The qualitative ratings for implementability were defined as follows:

RI98214D 5-3 McKm Site, ME DRAFT

High: The alternative can easily be installed at the site, uses readily available technology, and results in minimal impact on the Royal River and adjacent floodplain and uplands.

Moderate: The alternative is difficult to install, or uses difficult to obtain technology, or results in significant impact on the Royal River and adjacent floodplain and uplands.

Low: The alternative is difficult to install, and uses difficult to obtain technology, and results in significant impact on the Royal River and adjacent floodplain and uplands.

(iii) Cost - Cost includes construction, and operation and maintenance costs.

Qualitative ratings of cost are based on a direct comparison of each alternative to the costs of the other remedial options, i.e. the lowest cost alternative would be rated low. Detailed cost estimates are provided in Appendix K. The following sections present a discussion on each remedial option and its associated evaluation.

5.2 Natural Attenuation

Natural attenuation would rely on naturally occurring processes to reduce the TCE concentration in the plume without human intervention. Natural attenuation includes a variety of physical, chemical, or biological processes. Under favorable conditions, these processes act to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater. These in-situ processes include biodegradation; dispersion; dilution; sorption; volatilization; and chemical or biological stabilization, transformation, or destruction of contaminants (USEPA 1997).

Some natural attenuation processes may result in creating transformation products that are more toxic than the parent contaminant, e.g., degradation of TCE to vinyl chloride. Source

RI98214D 5-4 McKin Site, ME DRAFT control and performance monitoring are components of monitored natural attenuation remedies because of the uncertainty associated with these processes in meeting remedial objectives

A working group of the McKm Mediation Technical Subcommittee evaluated water quality and TCE concentration trends in wells throughout the site, and concluded that long-term water quality has been improving in most areas of the site, and that it is likely, though not assured, that this general trend will continue. For planning and cost estimating purposes, it was agreed that concentrations in the Royal River are expected to meet regulatory criteria by the end of the year 2011 and that groundwater at the site could be expected to remain above Maine exposure guidelines (MEGs) at least until the year 2047 (B&RE 1998).

In general, the level of site characterization necessary to support a comprehensive evaluation of natural attenuation is more detailed than that needed to support active remediation. Demonstrating the efficacy of natural attenuation requires analytical or numerical simulation of complex attenuation processes. Performance monitoring to evaluate remedy effectiveness is important due to the longer remediation time frames, potential for ongoing contaminant migration, and other uncertainties associated with using monitored natural attenuation.

Implementation of natural attenuation includes a comprehensive evaluation of historical analytical data, continued performance monitoring using existing wells, and inputting that data into a predictive model

Effectiveness of Natural Attenuation

The effectiveness of natural attenuation in meeting the RAO remedial objective is low. Natural attenuation has major limitations when evaluated as a potential remedial alternative for the RRDZ. This alternative results in the continued transfer of contamination from one medium to another, e.g., from groundwater to surface water, and will not achieve the remedial objective of lowering the TCE level in the river to below

RI98214D 5-5 McKm Site, ME DRAFT

2.7 ^.g/L in a reasonable time frame. It was concluded by the McKin Mediation Technical Subcommittee working group that it will take until the year 2011 or 13 years for TCE concentrations in the Royal River to meet the RAO. In addition, formation of transformation products more toxic than TCE is likely, as evidenced by the detection of vinyl chloride in a surface water sample collected from an intermittent seep in the RRDZ during the recent field investigation.

Implementability of Natural Attenuation

The implementability of natural attenuation for the McKin Site is high. This alternative is technically feasible because the monitoring technology required is available. Implementation of natural attenuation would have minimal impact on the RRDZ. The implementation of natural attenuation includes evaluating historical analytical data, developing a predictive model, and monitoring process performance. Historical data exist but the overburden/bedrock groundwater flow system interaction in the RRDZ is not well understood. Additional investigation would be required to develop an understanding of the interaction of these systems. Institutional controls and an ARAR waiver for the AWQC for the Royal River would be required since the river would not meet the AWQC for several miles.

Cost of Natural Attenuation

The capital costs for Natural Attenuation are estimated at $45,095. Operational cost, including periodic monitoring, and updating the computer model have been estimated at $616,799 over 15 years. The total cost to implement Natural Attenuation is low, estimated at $661,894.

Conclusion

Even though natural attenuation would not be difficult to implement, it would not be effective due to the unreasonable time frame, estimated at 15 years, associated with

RI98214D 5-6 McKin Site, ME DRAFT achieving the remedial objective and the increased toxicity resulting from TCE's transformation products.

Cost to implement Natural Attenuation is low.

5.3 Ground water Interception

This alternative is based on intercepting contaminated groundwater from the overburden aquifer within the Royal River floodplain such that enough TCE mass is prevented from discharging to the river to achieve the AWQC of 2.7 /t/g/L. This alternative would consist of groundwater extraction, treatment, and effluent reinjection.

Since TCE is relatively volatile, it would be removed from the contaminated groundwater via air stripping. Off-gases from the air-stripping process would be treated by vapor phase granular activated carbon. The TCE-ladened carbon would be treated as hazardous waste and shipped off-site to a regeneration facility. All or a portion of the treated groundwater effluent would be re-injected to the aquifer along the floodplain north of the extraction well array starting at Boiling Springs. Re-injection at the springs would suppress the upward (vertical) gradient there and minimize the flow of contaminated groundwater to the river from the springs. Any flow not reinjected would be disposed of by discharging directly to the Royal River. For purposes of alternative screening, it is assumed that all of the intercepted groundwater flow would be reinjected.

Based on the plume profile, capture zone, and recovery rates documented during the aquifer test, eight extraction wells spaced at 46 feet apart pumping at 60 gpm each would be required to remove the volume of contaminated groundwater necessary to lower TCE concentrations in the Royal River below the AWQC of 2.7 fjg/L. The estimated total rate to remove the required quantity of TCE is 480 gpm based on a groundwater TCE concentration of 590 /vg/L. Figure 5-1 depicts the extraction well configuration and the width of the associated capture zone. The wells would be located to intercept contaminated groundwater in the most contaminated band within the RRDZ. The existing

RI98214D 5-7 McKin Site, ME DRAFT

----:::·--' LEGEND ----. ______5' INTERVAL HIGHLIGHTED ------­ GROUND CONTOUR ------< CULVERT RAILROAD ------­ ACCESS ROAD -­ TREE LINE ---·>.-.,.._..-~~r-r-v--,~~,,..,r - --­ EDGE OF WATER TW-01 s EXTRACTION WELL -·' '--<~ :{ .MW-103A EXISTING MONITORING WELL __ .,...... ,,, ...... TETRA TECH MONITORING WELL < ... .,,,..t··­ ' ·-'-· ..... __._, "­..... '~-:'-_·--=2~_-~--" ._._,___... ""-"-"-~~_..,.__..,._~___... -__,.,,_,., EW-10 EXTRACTION WELL

~ ;­ IW-10 INJECTION WELL

WETLAND BOUNDARY

INl'"l.UENT PIPE .--~ ·" .

\ -

_,­

_,.-··"

GROUNDWATER INTERCEPTION ALTERNATIVE LOCATION FIGURE 5-1 GRAPHIC SCALE REMEDIAL ALTERNATIVES SCREENING - TECHNICAL MEMORANDUM O' 100' 200' 1. ALL LOCATIONS TO BE CONSIDERED APPROX I MATE. McKIN SITE - GRAY, MAINE TETRA TECH NUS, INC. 1 INCH = 100 FEET 2. PLAN llilI. TO BE USED FOR DES I GN. DRA'M-1 BY: D. W. MACDOUGALL REV.: 0 BASE PLAN BY OEST ASSOCIATES, INC. CHECKED BY: D. CONAN DATE: AUGUST 28, 1998 55 Jonspin Road Wilmington. MA 01887 (978)658- 7899 SCALE: ,. = 100' FILE NO.: OWG\MCKIN\ 7tCHME:M FIG_5-1_DWG

Rl98214D 5-8 McKin Site, ME DRAFT test well (TW-1) may be used as one of the extraction wells. Static groundwater concentrations range from 300 to 1,200 |o.g/l in the vicinity of the proposed extraction wells. A dynamic sample collected at the end of the 72-hour aquifer test contained 590 (j.g/1 TCE. The final number of extraction wells, placement, and pumping rate would be subject to revision during remedial design. Contaminated groundwater would be pumped from the extraction wells using submersible pumps. The contaminated groundwater would be pumped approximately 1,500 feet via 6-inch diameter double wall pipe to a treatment facility featuring air stripping. The double wall pipe would be installed at grade, include insulation, heat tracing, and a leak detection system.

The groundwater treatment building, housing the remediation equipment, would be located midway between the RRDZ and Depot Road. A discussion of potential treatment sites is provided in Appendix I. Locations of the proposed groundwater treatment building, extraction well, reinjection wells, access road, and piping are depicted on Figure 5-1.

The air stripper off-gas would be treated with vapor phase granular activated carbon (GAC) prior to discharge to the atmosphere. Treated groundwater would be piped back to Boiling Springs for reinjection via eight injection wells. A system flow diagram is included as Figure 5-2.

Sampling of the Royal River, groundwater treatment system influent, effluent, GAC influent and effluent will be conducted on a quarterly basis.

Effectiveness of Groundwater Interception

The effectiveness of groundwater interception is high. Groundwater interception is a proven, tested technology with treatment design support available from various vendors. The groundwater extraction system should capture a sufficient quantity of TCE contaminated groundwater to decrease levels in the Royal River below the AWQC, approximately 80 percent of the TCE mass flux. An analysis of the TCE plume profiling and aquifer testing shows groundwater interception to be an effective technology for the

RI98214D 5-9 McKin Site, ME _y­ Off-GAS CARBON AIR STRIPPING UNIT

CONTROL PANEL AIR BLOWER

REPRESSURIZAllON PUMP

(11 I ..... SURFACE WAlER DISOiARGE ~::>....------OR GRCJUNOWA1ER tt.£C110N 0 91 GPM EFFLUENT ~ GPM INA.UENT

LOW LEVEL PROBE

SUBMERSB..E PUMP

LEQEtl)

0 FLOW MElER l> - -- - Off-GAS A.OW CHECKED BY: 0. CONAN DATE: AUGUST 28, 1998 55 Jonspin Rood Wilmington, MA 01887 ,, (978)658-7899 -; SCALE: NOT TO SCALE FILE NO.: OWG\l.ICl

RRDZ. Based on continuous operation over a 15 year period, an estimated 3.8 billion gallons will be extracted and treated. Over 7,000 kg of TCE will be collected through carbon filtration of the air stripper's off-gases.

In addition, the extraction of contaminated groundwater and reinjection of treated groundwater should decrease the TCE concentration in Boiling Springs and intermittent seeps in the floodplain below 5.0 |J.g/L.

Implementability of Groundwater Interception

Although groundwater interception incorporates conventional technology, the RRDZ's location and topography make its implementability moderate. The technology and construction techniques for re-injection wells are readily available and no special materials or equipment would be required. However, the site location and topography pose some construction problems. Implementing the technology would have some adverse impacts to the floodplain as a result of drilling and construction activities.

Electrical power and/or piping would have to be installed approximately 1,900 feet from Depot Road to the RRDZ, depending on final siting of the remedial equipment.

Operation and maintenance considerations would include cleaning and replacing well pumps, monitoring both groundwater and GAC effluent, monitoring TCE concentrations in the Royal River, maintaining the extraction and reinjection wells and periodic cleaning of the stripping trays. Concentrations from individual extraction wells would be monitored and flowrates adjusted according to TCE concentrations. This would allow for optimization of the system and minimize the quantity of groundwater extracted while maintaining the required TCE removal. Operation of the extraction system would cease when the flux of TCE to the Royal River is less than 0.3 kg/day.

RI98214D 5-11 McKin Site, ME DRAFT

Cost of Groundwater Interception

The capital costs for groundwater interception are estimated at $2,332,129 excluding land acquisition costs. Operational costs, including periodic monitoring, recycling GAC, periodic maintenance, and reporting, have been estimated over 15 years at $2,129,484. The total cost to implement groundwater interception is high, estimated at $4,461,61 3.

Variation in the specific assumptions associated with the groundwater interception, as well as various aspects of groundwater interception and reinjection, could potentially increase cost of the groundwater interception alternative. These include 1) lower TCE levels in the extracted groundwater; 2) higher iron/manganese levels in the extracted groundwater; 3) greater well redevelopment frequency; 4) different treatment plant and access route locations; 5) higher electric power service cost; 6) longer length of operation; and 7) unanticipated discoveries.

Conclusion

Groundwater interception and reinjection of the treated groundwater should be effective in lowering the TCE concentration in the Royal River below the AWQC of 2.7 jjg/L and reducing TCE concentration in Boiling Springs below 5 A/g/L

Cost to implement Groundwater interception is high.

5.4 Cover Boiling Springs/Sparge Royal River

This alternative would mitigate the impacts of contaminated groundwater discharge by sealing Boiling Springs and sparging the Royal River. The alternative includes filling of the cavity eroded by the spring and air sparging directly within the Royal River.

Boiling Springs is a spring in the floodplain located in the west bank of the Royal River within the plume discharge to the Royal River and reportedly flows at approximately 5 gpm

RI98214D 5-12 McKin Site, ME DRAFT

(GEI 1996). The artesian activity has eroded a 4-foot deep cavity, with a volume of approximately 95 cubic yards. Boiling Springs and other smaller intermittent seeps or springs also observed in the RRDZ are expressions of groundwater discharging to the river. Boiling Springs has been identified as a continuing source of TCE contamination in the Royal River. The objective of sealing (covering) the springs is to prevent contact with TCE-contaminated groundwater discharging from the spring. Sealing the spring would involve injecting a fast-setting grout into the subsurface around the spring. This action would effectively reduce the transmissivity of the surficial aquifer in its vicinity and prevent contaminated groundwater from discharging to the spring cavity. After grouting, the cavity formed by the spring would be filled with crushed stone and covered with topsoil. Covering the spring eliminates the potential hazard of contact with the contaminated groundwater that may circumvent the grout seal.

The sparging component uses the principle of volatilizing the TCE from the dissolved state directly from the river. Sparging would be operated on a seasonal basis and would be dismantled winter and spring months to prevent damage from freezing and spring flooding.

The sparging component consists of sparging air through a section of the Royal River, approximately 800 feet downstream of Boiling Springs where the river is deepest (measured at approximately 6 feet during the RRDZ field investigation) (see Figure 5-3). Screened pipe (or pipe tapped with diffusers) would be installed across the width of the river along a 100 foot length in the vicinity of the railroad river crossing. TCE and other volatiles would be removed from the river and transferred to the atmosphere. Several blowers would be needed to supply the required air flow rate of 26,000 cfm to the screened pipe. The air flowrate requirement is based on a mean harmonic river flow of 48 cfs, an average river depth of 4 feet, and a TCE flux into the Royal River of 1.5 kg/day from which 80 percent must be removed to achieve the AWQC. Injecting 26,000 cfm within a short section of the river may cause a damming effect which may lead to flooding, diversion of river flow, and by-pass or short circuiting of flow .

RI98214D 5-13 McKin Site, ME DRAFT

To minimize the adverse effects of sparging a maximum air flowrate to water volume ratio of 150 cfm (air) to 1,000 ft3 (water) should not be exceeded. Based on a 60-ft wide, 4-ft deep river channel, sparging activities would have to extend approximately 700 ft to accommodate the required 26,000 cfm of air. The proposed sparging system includes six laterals which run parallel to the river flow. Therefore, extending the sparging system to 700 ft would involve installing approximately 4,200 ft of screened pipe. It is very likely a portion of the river would have to be dredged to maintain an average depth of 4 ft over a 700-ft run. A river sparging system of this size would be impracticable, considering the pipe would have to be removed from the river in late fall, and re-installed in late spring.

Effectiveness of Cover Boiling Springs/Sparge Royal River

The effectiveness of this alternative is low. Sealing Boiling Springs would not remove or treat the flow of contaminated groundwater to the Royal River because contaminated groundwater would continue to discharge on either side of the spring. TCE concentrations would remain above 2.7 /ug/L in an 800-feet-long section of the river from Boiling Springs to the proposed river sparging air diffuser piping. Sealing the spring would prevent contact with the contaminated groundwater discharging at Boiling Springs, however other intermittent springs in the area would continue discharging contaminated groundwater to the surface. Although the river sparging may be effective in achieving the RAO of lowering TCE concentrations in the Royal River below 2.7 fjg/L in summer and fall, TCE concentrations in the river would exceed 2.7 /jg/L about 6 months of the year (winter and spring). During low flow conditions sparging effectiveness would be reduced due to the decreased depth over the diffusers piping. Furthermore as TCE is transferred from the river to the atmosphere it does not meet the program goal of Title 40, Part 300.430 of reducing the volume, toxicity or mobility of waste through treatment.

Implementability of Cover Boiling Springs/Sparge Royal River

The implementability of this alternative is moderate due to the difficulty of construction. Covering the spring would involve basic drilling and earthmoving activities. Mobilization of

RI98214D 5-14 McKin Site, ME DRAFT

PIPELINE ' $ a RIGHT OF WAY - , C~~TERLINE ~~-=----~-..;;-­ f - \ ~--­ l --~ ' ~----~'~~·

~ ,-._;

' \ ------~ '\ I \ / \, / ----­

-----­ - -, ""-.

/ BLOWER BUILDING .\ / _.sf'_AflJ;lblC-PWE ASSE"\BL Y

I -­ \

Ir(>=..... ,,._ ­ ---~ -'_//-· ,,.-:.~. / / \ -~­ _.y· ~------~~_:_7~A ._-~~.. ~~~:/~• ....:..::_-·-·­ ~ . :-~--..:. .> -

I - ...... ·--­ . -..:.'""'. --­ . ,_ ,_ \ ---~~~--~~~ ----­ ~--­ - ·1 ...... J l I r _, :__-,~ ~-:'-:------. \ ....--­ - \ I ·­ \ \ \ \ ..,, \ \\ I I \ I \\ ELEVATION

Rl98214D 5-15 McKin Site, ME DRAFT equipment and materials during the construction would adversely impact the floodplain temporarily. Adverse permanent impacts would result from sealing Boiling Springs and maintaining an access road. The technology required to implement river sparging is readily available. Air blowers, diffusers, and slotted pipe are off-the-shelf items. However, the scale of the air sparging system makes this alternative impracticable. Over 400 horsepower (Hp) is required to supply the 26,000 cfm. This flowrate may also disrupt the natural flow of the Royal River possibly presenting other problems such as flooding, and erosion due to redirection of river flow. Construction would be less complicated than the other alternatives since no drilling would be required and little to no excavation would be necessary. Electrical power and/or piping would have to be installed approximately 3,100 feet from Depot Road to the RRDZ, depending on the final siting of the remedial equipment.

Cost of Cover Boiling Springs/Sparge Royal River

The capital costs for Cover Boiling Springs/Sparge Royal River are estimated at $1,284,838 excluding land acquisition costs. Operational costs for covering Boiling Springs include visual inspection, addition of fill due to settlement, and periodic maintenance. Operational costs for sparging the river include disassembling and re-installing the screened pipe before and after winter months, periodic monitoring when the system is operating, periodic maintenance, and reporting. Combined operating costs have been estimated at $2,757,391 over 15 years. The total cost to implement Cover Boiling Springs/Sparge Royal River sparging is high, estimated at $4,042,229.

Variation in the specific assumptions associated with the river sparging, as well as various aspects of river sparging and sealing Boiling Springs, could potentially increase cost of the cover Boiling Springs/sparge Royal River alternative. These include 1) higher Royal River TCE levels; 2) degree of settling in the Boiling Springs cover/seal; 4) reemergence of Boiling Springs and or and formation of other springs; 5) different blower building and access route locations; 6) higher electric power service cost; 7) longer length of operation; and 8) unanticipated discoveries

RI98214D 5-16 McKm Site, ME DRAFT

Conclusion

Covering Boiling Springs eliminates the hazard of contacting the contaminated groundwater, but, does not prevent TCE from entering the Royal River. Covering boiling springs would have to be implemented in conjunction with another alternative. As a stand­ alone remedial option, it would not achieve the RAO.

The effectiveness of river sparging is limited as it would not be operational in winter and spring. During summer and fall operation, the volume of air required makes it impractical and could result in flooding and diverting the river. Effectiveness would be reduced at low flow conditions. Furthermore it would not meet the program goal of minimizing untreated waste.

Cost to implement, install, and operate Cover Boiling Springs/Sparge Royal River is high.

5.5 Cover Boiling Springs/Groundwater Interception

This alternative would mitigate the impacts of contaminated groundwater discharge by sealing Boiling Springs and intercepting contaminated groundwater. This alternative also includes intercepting the contaminated groundwater from the overburden aquifer within the floodplain of the Royal River, as described in Section 5.3, except that treated groundwater would be discharged to the Royal River. Since Boiling Springs would be sealed, groundwater injection would not be needed to suppress contaminated groundwater discharge to the spring.

Since TCE is relatively volatile, it would be removed from the contaminated groundwater via air stripping. Off-gases from the air-stripping process would be treated via vapor phase granular activated carbon. The TCE-ladened carbon would be treated as hazardous waste and shipped off-site to the carbon vendors regeneration facility

R198214D 5-17 McKin Site, ME DRAFT

Based on the plume profile, capture zone, and recovery rates documented during the pump test, eight extraction wells spread 46 feet apart, pumping at 60 gpm would be required to lower TCE concentrations in the Royal River below the AWQC of 2.7 //g/L. The estimated total rate to remove the required quantity of TCE is 480 gpm based on a groundwater TCE concentration of 590 ug/L. Figure 5-4 depicts the extraction well configuration and the width of the associated capture zone. The wells would be located to intercept contaminated groundwater in the most contaminated band within the RRDZ. The existing test well (TW-1) may be used as one of the extraction wells. Static groundwater concentrations range from 300 to 1,200 ug/l in the vicinity of the proposed extraction wells. A dynamic sample collected at the end of the 72-hour aquifer test contained 590 ug/l TCE. The final number of extraction wells, placement, and pumping rate would be subject to revision during remedial design. Contaminated groundwater would be pumped from the extraction wells using submersible pumps. The contaminated groundwater would be pumped approximately 1,500 feet via 6-inch diameter double wall pipe to a treatment facility featuring air stripping. The double wall pipe would be installed at grade, include insulation, heat tracing, and a leak detection system.

The treatment facility would be located midway between the RRDZ and Depot Road. A discussion of potential treatment sites is provided in Appendix I. Locations of the proposed groundwater treatment building, extraction well, access road, and piping are depicted on Figure 5-4. The air stripper off-gas would be treated with vapor phase GAC prior to discharge to the atmosphere. Treated groundwater would be piped to a diffuser in the Royal River for discharge. The diffuser would distribute the treated effluent minimizing impacts of the introduced flow to the riverbed. The discharge of 480 gpm, or about 1 cfs, should not noticeably alter the river flow with its harmonic mean flow of 48 cfs. Effluent disposal would meet discharge permit requirements. A system flow diagram is included as Figure 5-2.

Boiling Springs would be sealed (covered) as described in Section 5.4. The objective of sealing the spring is to prevent contact with TCE-contaminated groundwater discharging from the spring. Even though the groundwater interception component of this alternative

RI98214D 5-18 McKin Site, ME DRAFT

LEGEND ,vv_.-,

5' INTERVAL HIGHLIGHTED GROUND CONTOUR

------~ CULVERT RAILROAD

ACCESS ROAD

TREE LINE

EDGE OF WATER

TW-01 s EXTRACTION WELL EXISTING MONITORING WELL

~" TETRA TECH MONITORING WELL PIPE:Lf~ -- . EW-10 EXTRACTION WELL <. ... ·-" --R,o, w. ­ --<.·~:~-~~--.~r~-- WETLAND BOUNDARY ..., ./ .

\~

~---- EFFLUENT DIFFUSER

\ \ ' ' ' \ '· ' i

GROUNDWATER INTERCEPTION / COVER BOILING SPRINGS ALTERNATIVE FIGURE 5-4

GRAPHIC SCALE REMEDIAL ALTERNATIVES SCREENING - TECHNICAL MEMORANDUM o· 100' 200' ~ McKIN SITE - GRAY, MAINE l"'ft:.i TETRA TECH NUS, INC. 1. ALL LDCAT JONS TO BE CONSIDERED 1 INCH = 1DO FEET DRAWN BY: O.W. MACDOUGALL REV.: 0 MA 2. PLAN ~ TO BE USED FDR DESIGN. D. CONAN DATE: AUGUST 28. 1998 55 Jonspin Rood Wilmington, 01887 CHECKED BY: (978)658- 7899 FILE NO.: MCKIN TECHMEM FIG_S-4.0WG BASE PLAN BY DEST ASSOCIATES, !NC. SCALE: 1" = 100· owe

5-19 McKin Site, ME Rl98214D DRAFT will intercept and treat enough contaminated groundwater to effect a lowering of the TCE level in the river to below 2.7 (j.g/L, contaminated groundwater may continue to discharge outside the capture zone to the Boiling Springs area. Sealing the spring would involve injecting a fast-setting grout into the subsurface around the springs. This action would effectively reduce the transmissivity of the surficial aquifer in the vicinity of the springs. After grouting, the depression cut by the spring would be filled with crushed stone and covered with topsoil. Covering the spring eliminates the potential hazard of contact with the contaminated groundwater.

Effectiveness of Cover Boiling Springs/Groundwater Interception

The effectiveness of groundwater interception is high. Groundwater interception is a proven, tested technology with design support available from various vendors. The groundwater extraction system should capture a sufficient quantity of TCE to drop TCE levels in the Royal River below the AWQC, approximately 80 percent of the TCE mass flux. An analysis of the TCE plume profiling and aquifer testing shows groundwater interception to be an effective technology. Based on continuous operation over a 1 5 year period, an estimated 3.8 billion gallons will be extracted and treated. Over 7,000 kg of TCE will be collected through carbon filtration of the air stripper's off-gases.

Sealing the spring would not lower the TCE concentration in the Royal River but it would prevent contact with the contaminated groundwater discharging at Boiling Springs. TCE levels in intermittent springs with the capture zone of the groundwater interception system should be reduced below 5.0 ug/L.

Implementability of Cover Boiling Springs/Groundwater Interception

Due to the difficulty of construction, the implementability of this alternative is moderate. Both components involve implementing proven, reliable technology. However, some adverse impacts would result from construction and maintenance activities in the floodplain and wetlands. Covering the spring would involve basic drilling and earthmoving

RI98214D 5-20 McKin Site, ME DRAFT activities. Mobilization of equipment and materials during the construction would adversely impact the floodplain temporarily. Adverse permanent impacts would result from sealing Boiling Springs (loss of wetlands) and constructing and maintaining an access road.

Groundwater interception could be implemented, at the RRDZ with moderate difficulty. No special materials or equipment would be required. However, the site poses some construction problems. Implementing the technology would require drilling and construction within the flood plain, and construction of an access road.

Operation and maintenance considerations would include cleaning and replacing well pumps, monitoring both groundwater and GAC effluent, monitoring TCE concentrations in the Royal River, maintaining the extraction and reinjection wells and periodic cleaning of the stripping trays. Concentrations from individual extraction wells would be monitored and flowrates adjusted according to TCE concentrations. This would allow for optimization of the system and minimize the quantity of groundwater extracted while maintaining the required TCE removal. Operation of the extraction system would cease when the flux of

TCE to the Royal River is less than 0.3 kg/day.

Electrical power and/or piping may have to be installed approximately 1,900 feet, from

Depot Road to the RRDZ, depending on final siting of the remedial equipment.

Cost of Cover Boiling Springs/Groundwater Interception

The capital costs for Cover Boiling Springs/Groundwater Interception are estimated at

$2,111,308 excluding land acquisition costs. Operational costs for covering Boiling

Springs include visual inspection, addition of fill due to settlement, and periodic maintenance. Operational costs for groundwater interception including periodic monitoring, recycling GAC, periodic maintenance, and reporting have been estimated at

$1,999,478 over 15 years. Total costs to implement Cover Boiling Springs/Groundwater

Interception are high, estimated at $4,110,787.

RI98214D 5-21 McKin Site, ME DRAFT

Variation in the specific assumptions associated with the groundwater interception, as well as various aspects of groundwater interception and sealing Boiling Springs, could potentially increase cost of the cover Boiling Springs/groundwater interception alternative. These include 1) lower TCE levels in the extracted groundwater; 2) higher iron/manganese levels and toxic metal levels in the extracted groundwater; 3) higher well redevelopment frequency; 4) different treatment plant and access route locations; 5) higher electric power service cost; 6) longer length of operation; and 7) unanticipated discoveries

Conclusion

Covering the spring eliminates the hazard of contacting the contaminated groundwater. Groundwater interception and discharge of the treated groundwater the Royal River should be effective in lowering the TCE concentration in the Royal River below the AWQC of 2.7 //g/L

Cost to implement, install, and operate Cover Boiling Springs/Groundwater Interception is high.

RI98214D 5-22 McKm Site, ME DRAFT

6.0 ALTERNATIVE SCREENING SUMMARY

The screening of potential mitigation alternatives involved evaluating options based on the following criteria: effectiveness, implementability, and cost. The effectiveness of each alternative was assessed based on 1) its ability to achieve the RAO of 2.7 jag/L TCE in the Royal River, 2) its ability to provide adequate protection of human health and the environment and 3) its rating of low, moderate, or high. The implementability of each alternative was gauged by the technical feasibility, technology availability, administrative feasibility, and adverse impacts to the environment and its rating as low, moderate, or high. A detailed cost estimate was compiled for the remedial options to measure their cost effectiveness. A summary of the evaluation is presented below.

6.1 Alternative 1 - Natural Attenuation

Effectiveness: Low: Natural attenuation would not achieve the remedial objective for the

RRDZ within a reasonable time frame or provide adequate protection of human health and the environment. Formation of transformation products more toxic than TCE would be likely.

Implementability. High: This alternative is technically feasible because the monitoring technology required is available. Impact to the RRDZ floodplain would be minimal.

Administratively, institutional controls and a ARAR waiver for AWQC would be required for several miles of the Royal River.

Cost: Low

Action: Eliminate from detailed analysis.

RI98214D 6-1 McKin Site, ME DRAFT

6.2 Alternative 2 - Groundwater Interception

Effectiveness: High: Groundwater interception would likely achieve the RAO of lowering the TCE concentration in the Royal River below 2.7 (ag/L during most of the year and provide adequate protection of human health and the environment.

Implementability: Moderate: Groundwater extraction, treatment, and reinjection technology is readily available, however installation would be difficult due to the RRDZ location and topography; some adverse impacts to the floodplain would result. Adverse permanent impacts would result because of constructing and maintaining an access road.

Cost: High

Action: Retain for detailed analysis.

6.3 Alternative 3 - Cover Boiling Springs/Sparge Royal River

Effectiveness: Moderate: Sealing would prevent contact with the contaminated groundwater discharging at Boiling Springs, however sealing Boiling Springs would not reduce the mass of TCE reaching the Royal River. TCE concentrations would remain above 2.7 //g/L in sections of the river during most of the year. The seasonal river sparging would be effective in lowering TCE concentrations in the Royal River during the summer and fall, however, TCE concentrations in the river would exceed 2.7 jjg/L about 6 months of the year. The TCE would be transferred from one medium to another (surface water to air).

Implementability: Moderate. Both components involve implementing available, proven, reliable technology, however some adverse impacts would result from construction and maintenance activities in the river, floodplain, and wetlands. Aeration of the Royal River

RI98214D 6-2 McKin Site, ME DRAFT would cause flooding and flow diversion. Adverse permanent impacts would result from sealing Boiling Springs (loss of wetlands) and from constructing and maintaining an access road.

Cost: High

Action: Eliminate from detailed analysis.

6.4 Alternative 4 - Cover Boiling Springs/Groundwater Interception

Effectiveness: High: This alternative would achieve the RAO of lowering TCE concentrations in the Royal River below 2.7 /;g/L during most of the year and provide adequate protection of human health and the environment.

Implementability: Moderate: Technology for groundwater extraction and treatment, and sealing Boiling Springs is readily available, however installation would be difficult due to the RRDZ location and topography; some adverse impacts to the floodplain would result. Adverse permanent impacts would result from sealing Boiling Springs (loss of wetlands) and constructing and maintaining an access road.

Cost: High

Action: Retain for detailed analysis .

RI98214D 6-3 McKin Site, ME REFERENCES DRAFT

REFERENCES

1. GEI Consultants, Inc., "Evaluation of Technical Impracticability of Ground Water Restoration and Feasibility Analysis of Remedial Alternatives", McKin Superfund Site, Gray, Maine, May 31, 1996.

2. Suthersan, S. S., "Remediation Engineering Design Concepts", CRC Press, Inc., 1996.

3. Brown & Root Environmental, "Draft Final Work Plan, Feasibility Study, Royal River Discharge Zone," McKin Site, Gray, Maine, June 1998.

4. Environmental Laboratory. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.

5. Sevee & Maher Engineers, Inc., and Environmental Engineering & Remediation, Inc. December 1989. Hydrogeologic Investigation, DEP-8 Study Area and Pilot-Scale Treatability Study, McKin Site, Gray, Maine

6. Sevee & Maher Engineers, Inc. December 5, 1997. Memorandum from John Sevee; Re: Agreed-to-Parameters for the Royal River, McKin Superfund Site, Gray, Maine.

7. U SEnvironmental Protection Agency. November 1997. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Office of Solid Waste and Emergency Response Directive 9200.4-17

8. Tetra Tech NUS, Inc. July 1998. Draft Technical Memorandum, Ecological Assessment, Royal River Discharge Zone, McKin Site, Gray, Maine.

RI98191D R-1 McKin Site, ME APPENDIX A

DIRECT PUSH TECHNOLOGY (DPT) LOGS MyKroWaters, Inc. Well ID: DP 1-274 P 6 Box 1088 Installation Date: 4/1/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 76' Water Level: Vials. Refusal: No Bailers:

Well development: Inertia! Bailer

Sampling Intervals: _ Stick-up: 2.0' 3.5'-8.5' -RRDZ-GW-DP1-274-0409 Finish: Locking Top Greyish brown fine grain sand and silt.

14.5'-19.5' -RRDZ-GW-DP 1-274-1520 i Ground Surface: 0.0' Reddish brown fine grain sand, clearing. 24.5'-29.5' -RRDZ-GW-DP1-274-2530 Brown fine grain sand, clearing.

Screen Top: 24.5'

Comments:

Total Riser: 27.0' Screen: 1 5'screen Collars: 2 Screen Bottom: 29.5' Finish: Locking Top

.Total Depth: 30.0' MyKroWaters, Inc. Well ID: DPI-320 P.O. Box 1088 Installation Date: 3/28/98. 3/30/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 495' Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 1.0' 3.5'-8.5' -RRDZ-GW-DP1-320-0409 Finish. Locking Top Greyish brown silt and sand, Water level - 0.0', (3/28/98). Ground Surface: 0.0' 13.5'-18.5' -RRDZ-GW-DP1-320-1419 Reddish brown fine grain sand, Water level - .2' AGS (Artesian Well), (3/28/98).

: Screen Top: 84.5'

Comments:

Total Riser: 86' Screen: 1 51 screen Collars: 8 Screen Bottom: 89.5' Finish: Locking Top

'Total Depth: 90.0' MyKroWaters, Inc. Well ID: DP 1-320 (page 2 of well log) P O. Box 1088 Installation Date: 3/28/98, 3/30/98 Concord. MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray. Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 1.0' 23.5' - 28.51 -RRDZ-GW-DP1-320-2429 "Finish: Locking Top Light brown fine grain sand, translucent, Water level - .5' ACS (Artesian Well), iGround Surface: 0.0' (3/28/98). 33.5'-38.5' -RRDZ-GW-DP1-320-3439 Dark brown fine grain sand, translucent, Water level-10.25 "AGS (Artesian Well), (3/28/98). Screen Top: 84.5'

Comments:

Total Riser: 86' Screen: 1 5' screen 'Screen Bottom: 89.5' Collars. 8 Finish: Locking Top

Total Depth: 90.01 MyKroWaters, Inc. Well ID: DP 1-320 (page 3 of well log) P.O. Box 1088 Installation Date: 3/28/98. 3/30/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 1.0* 43.5--48.51 -RRDZ-GW-DP1-320-4449 Finish: Locking Top Dark brown fine grain sand, translucent,

Water level - 7" AGS (Artesian Well), Ground Surface: 0.0' (3/28/98). 53.5'-58.5' -RRDZ-GW-DP 1-320-5459 Brown fine grain sand, translucent, Water level - 7.5" AGS (Artesian Well), (3/28/98). Screen Top: 84.5'

Comments:

Total Riser: 86' Screen Bottom: 89.5' Screen: 1 5' screen Collars: 8 Finish: Locking Top

Total Depth: 90.0' MyKroWaters, Inc. Well ID: DP1-320 (page 4 of well log) P.O. Box 1088 Installation Date: 3/28/98. 3/30/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertia! Bailer

Sampling Intervals: _Stick-up: 1.0' 63.5'-68.5' -RRDZ-GW-DP1-320-6469 .Finish: Locking Top Brown fine grain sand, translucent,

Water level - 5' ACS (Artesian Well). Ground Surface: 0.0' (3/28/98). 73.5'-78.5' -RRDZ-GW-DP 1-320-7479 Brown fine grain sand, fairly clear, Water level - 55' AGS (Artesian Well). (3/30/98). Screen Top: 84.5'

Comments:

Total Riser: 86' Screen: 1 5' screen I Screen Bottom: 89.5' Collars: 8 Finish: Locking Top

(Total Depth: 90.0' MyKroWaters. Inc. Well ID: DP 1-400 PO Box 1088 Installation Date 3/30/98 Concord, MA 01742 MKW Personnel JC/SS MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad. Grav, Maine

Pipe ID. 062" PipeOD 082" Points 2 Screen Slot Width 0015" Tubing 323' Water Level See Below Vials Refusal. No Bailers

Well development Inertial Bailer

Sampling Intervals Stick-up 2 5' 3 5'-8 51 -RRDZ-GW-DP1-400-0409 Finish Locking Top Greyish brown silt and sand

14.5'-19 5' -RRDZ-GW-DP 1-400-1520 Ground Surface 0 0' Brown fine grain sand, clearing, Water level - >1 0' AGS (Artesian Well) 25 5'-30 5' -RRDZ-GW-DP 1-400-2631 Reddish brown fine gram sand, clearing, Water level - >1 0' AGS (Artesian Well) Screen Top 700'

Comments

Total Riser 82 Screen: 1 5' screen Collars 7 Screen Bottom- 75 0' Finish Locking Top

Total Depth 755' MyKroWaters, Inc. Well ID: DP1-320 (page 5 of well log) P O Box 1088 Installation Date: 3/28/98, 3/30/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #• 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertia! Bailer

Sampling Intervals: _ Stick-up: 1.0' 84.5'-89.5' -RRDZ-GW-DP1-320-8590 "Finish: Locking Top Light brown fine grain sand, fairly clear, 1 Water level- 55 AGS (Artesian Well), Ground Surface: 0.0' (3/30/98).

Screen Top: 84.5'

Comments:

Total Riser: 86' Screen: 1 5' screen Collars: 8 Screen Bottom: 89.5' Finish: Locking Top

|Total Depth: 90.0' MyKroWaters. Inc. Well ID: DP 1-400 (page 2 of well log) P O Box 1088 Installation Date 3/30/98 Concord, MA 01742 MKW Personnel JC/SS MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad, Gray, Maine

Pipe I D.. 0.62" PipeOD.. 082" Points See first page of well log Screen Slot Width: 0 015" Tubing. See first page of well log Water Level: See Below Vials. Refusal. No Bailers

Well development Inertial Bailer

Sampling Intervals. Stick-up: 25' 36 5'-41 5' -RRDZ-GW-DP1-400-3742 Finish Locking Top Brown fine grain sand, clearing, Water

level - >1 0' AGS (Artesian Well) (Ground Surface: 0 O1 47 5'-52.5' -RRDZ-GW-DP 1-400-4853 Light brown fine grain sand, clearing, Water level - >1 O1 AGS (Artesian Well) 58 5'-63 5' -RRDZ-GW-DP 1-400-5964 Light brown fine grain sand, clearing, 1 Screen Top' 70 0' Water level - >1 0' AGS (Artesian Well)

Comments

Total Riser: 82 Screen: 1 5' screen Collars 7 {Screen Bottom: 75.0' i Finish Locking Top

Total Depth 755' MyKroWaters, Inc. Well ID: DP 1-400 (page 3 of well log; P.O. Box 1088 Installation Date: 3/30/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #• 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertia! Bailer

Sampling Intervals: _Stick-up: 2.5' 69.5'-74.5' -RRDZ-GW-DP1-400-7075 "Finish: Locking Top Brown fine grain sand, clearing, Water level->1.0'AGS. Ground Surface: 0.0' 70.0'-75.0' - No sample.

Screen Top: 70.0'

Comments:

Total Riser: 82 Screen: 1 5' screen Collars: 7 Screen Bottom: 75.0' Finish: Locking Top

(Total Depth: 75.5' MyKroWaters, Inc. Well ID: DP 1-560 PO Box 1088 Installation Date 4/2/98 Concord, MA 01742 MKW Personnel JC/SS/JB MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad, Grav. Maine

Pipe ID.. 062" Pipe O D 082" Points: 1 Screen Slot Width: 0015" Tubing 318' Water Level: See Below Vials Refusal: No Bailers

Well development Inertial Bailer

Sampling Intervals Stick-up 1 0' 3 5'-8 5' -RRDZ-GW-DP1-560-0409 Finish Locking Top Brown fine grain sand, clearing,

Water level - 1 0' BGS .Ground Surface: 0 0' 1 14 5'-19 5' -RRDZ-GW-DP 1-560-1520 Brown fine grain sand, clearing, Water level - 1 0' BGS 24 5'-29 5' -RRDZ-GW-DP 1-560-2530 Brown fine grain sand, clearing, Screen Top 61 5' Water level- 8'BGS 1

Comments^

Total Riser: 63' Screen 1 5' screen > " ' Collars 6 Screen Bottom: 66 5' ! • • Finish Locking Top

Total Depth 670' MyKroWaters, Inc. Well ID: DP 1-560 (page 2 of well log) P O Box 1088 Installation Date 4/2/98 Concord, MA 01742 MKW Personnel JC/SS/JB MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad, Grav. Maine

Pipe ID. 0.62" Pipe O D 0 82" Points See first page of well log Screen Slot Width 0015" Tubing See first page of well log Water Level See Below Vials Refusal. No Bailers

Well development Inertial Bailer

Sampling Intervals Stick-up 1 0' 34 5'-39 51 -RRDZ-GW-DP1-560-3540 Finish Locking Top Brown fine grain sand, cleanng,

Water level- 8'BGS Ground Surface 00' 45 5'-50 5' -RRDZ-GW-DP 1-560-4651 Light brown fine grain sand, clearing, Water level- 7 BGS 56 5'-61 5' -RRDZ-GW-DP1-560-5762 Light brown fine gram sand, cleanng, Screen Top- 61 5' Water level- 9'BGS

Comments

Total Riser 63' Screen 1 5' screen Collars 6 Screen Bottom 66 5' Finish Locking Top

Total Depth 67 0' MyKroWaters. Inc. Well ID: DP 1-560 (page 3 of well log) P.O. Box 1088 Installation Date: 4/2/98 Concord, MA 01742 MKW Personnel: JC/SS/JB MKW Project* 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 1.0' 61.5'-66.5' -RRDZ-GW-DP1-560-6267 Finish: Locking Top Brown fine grain sand, clearing, Water level - .75' BGS. Ground Surface: 0.0'

Screen Top: 61.5'

Comments:

Total Riser: 63' Screen: 1 5' screen Collars: 6 Screen Bottom: 66.5' Finish: Locking Top

Total Depth: 67.0' MyKroWaters, Inc. Well ID: DP-BS P.O. Box 1088 Installation Date: 3/30/98. 3/31/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project* 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 15' Water Level: See Below Vials: Refusal: Yes, at 10' Bailers: 1

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 3.0' 3.5'-8.5' - No sample. Water level -8.15' Finish: Slip Cap BGS Ground Surface: 0.0'

Screen Top: 3.5'

Comments:

Total Riser: 16' Screen: 1 5' screen Collars. 1 Screen Bottom: 8.5* Finish: Slip Cap

jTotal Depth: 90' MyKroWaters. Inc. Well ID: DP-BS2 P O Box 1088 Installation Date 4/2/98 Concord, MA 01742 MKW Personnel JC/SS MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad, Grav. Maine

Pipe ID.: 0.62" PipeOD 082" Points. 1 Screen Slot Width: 0015" Tubing 314' Water Level: See Below Vials. Refusal: No Bailers

Well development- Inertial Bailer

Sampling Intervals Stick-up. 25' 3.5'-8 5' -RRDZ-GW-DP-BS2-0409 Finish Locking Top Greyish brown silt and sand,

Water Level - 2.7' BGS Ground Surface: 0.0' 14.5'-19.5' -RRDZ-GW-DP-BS2-1520 Reddish brown to dark brown fine grain sand, clearing, Water Level - >1 0' AGS (Artesian Well)

Screen Top: 63 0'

Comments

• ; Total Riser: 66' ; ': Screen: 1 5' screen '• Collars: 6 | Screen Bottom: 68 0' ! Finish: Locking Top

Total Depth- 68 5' MyKroWaters, Inc. Well ED: DP-BS2 (page 2 of well log) P O Box 1088 Installation Date 4/2/98 Concord. MA 01742 MKW Personnel JC/SS MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad. Gray. Maine

Pipe I D 0 62" Pipe O D 0 82" Points See first page of well log Screen Slot Width 0015" Tubing See first page of well log Water Level See Below Vials Refusal No Bailers

Well development Inertial Bailer

Sampling Intervals Stick-up 2 5' 24 5'-29 5' -RRDZ-GW-DP-BS2-2530 Finish Locking Top Reddish brown fine gram sand, clearing, ,Ground Surface 00' Water level - >1 0' AGS (Artesian Well) i 34 5'-39 5' -RRDZ-GW-DP-BS2-3540 Reddish brown fine gram sand, clearing, Water level - >1 O1 AGS (Artesian Well) 44 5'-49 5' -RRDZ-GW-DP-BS2-4550 Reddish brown fine grain sand, clearing, Screen Top 63 0' Water level - >1 O1 AGS (Artesian Well)

Comments

Total Riser 66' Screen 1 5' screen Collars 6 Screen Bottom 680' Finish Locking Top

Total Depth 68 5' MyKroWaters, Inc. Well ID: DP-BS2 (page 3 of well log) PO Box 1088 Installation Date 4/2/98 Concord, MA 01742 MKW Personnel JC/SS MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad, Gray, Maine

Pipe ID 062" PipeOD 082" Points See first page of well log Screen Slot Width 0015" Tubing See first page of well log Water Level See Below Vials Refusal No Bailers

Well development Inertial Bailer

Sampling Intervals Stick-up 25' 54 5'-59 5' -RRDZ-GW-DP-BS2-5560 Finish Locking Top Dark brown fine gram sand,

1 Water level - >1 O AGS (Artesian Well) Ground Surface 00' 63 0'-68 0' -RRDZ-GW-DP-BS2-6368 Light brown fine grain sand, j Water level - >1 0' AGS (Artesian Well)

> Screen Top 63 0'

Comments

Total Riser 66' Screen 1 5' screen If Collars 6 ! Screen Bottom 680' Finish Locking Top

Total Depth 68 5' MyKroWaters, Inc. Well ID: DP2-150 P O. Box 1088 Installation Date: 3/31/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad, Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 75' Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: _Stick-up: 1.0' 3.5'-8.5' - RRDZ-GW-DP2-150-0409 "Finish: Locking Top Dark brown fine grain sand, Water Level -3.9'BGS. Ground Surface: 0.0* 14.5'-19.5' - RRDZ-GW-DP2-150-1520 Brown fine grain sand - clearing, Water Level-U'BGS. 25.5'-30.5' - RRDZ-GW-DP2-150-2631 Reddish brown fine grain sand. Screen Top: 25.5'

Comments:

Screen Bottom: 30.5' Total Riser: 27 Screen. 1 5'screen Collars. 2 Total Depth. 31.0' Finish: Locking Top MyKroWaters. Inc. WellID:DP2-157 P.O Box 1088 Installation Date: 3/31/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project* 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 173' Water Level: Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 2.0' 36.5' - 41.5' -RRDZ-GW-DP2-157-3742 Finish. Locking Top Reddish brown fine grain sand. 47.5' - 52.5' -RRDZ-GW-DP2-157-4853 'Ground Surface: 0.0' Reddish brown turning to brown fine grain sand. 57.5' -62.5' -RRDZ-GW-DP2-157-5964 Reddish brown turning to brown fine grain sand. j Screen Top: 57.5'

Comments:

Total Riser: 60' Screen: 1 5' screen Collars: 5 iScreenBottom:62.5' Finish: Locking Top

Total Depth: 63.0' MyKroWaters, Inc. \VellID:DP2-216 P.O. Box 1088 Installation Date: 3/31/98, 4/1/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client. Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 252' Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 2.0' 3.5'-8.5' -RRDZ-GW-DP2-216-0409 Finish: Locking Top Greyish brown silt and sand, clearing,

Water Level - 2.04' BGS (3/31/98). Ground Surface: 0.0' 14.5'-19.5' -RRDZ-GW-DP2-216-1520 Brown fine grain sand, clearing, Water Level - 51 AGS (Artesian Well). (4/1/98). 25.5--30.5' -RRDZ-GW-DP2-216-2631 Screen Top: 57 5' Reddish brown fine grain sand, clearing,

Comments:

Total Riser: 60' Screen: 1 5' screen Collars: 5 Screen Bottom: 62.5' Finish: Locking Top

Total Depth: 63.0' MyKroWaters, Inc. Well ID: DP2-216 (page 2 of well log) P.O. Box 1088 Installation Date: 3/31/98. 4/1/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project*: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0 62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0 015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals. Stick-up: 2.0' Water Level - 5' AGS (Artesian Well), Finish: Locking Top (4/1/98).

36.5'-41.5' -RRDZ-GW-DP2-216-3742 IGround Surface: 0.0* Reddish brown fine grain sand, clearing, Water Level - 5' AGS (Artesian Well), (4/1/98). 47 5'-52.5' -RRDZ-GW-DP2-216-4853 Dark brown, fine grain sand, Screen Top: 57.5' clearing,Water Level - 6' AGS (Artesian Well), (4/1/98).

Comments:

Total Riser: 60' Screen Bottom: 62.5' Screen: 1 5' screen Collars: 5 Finish: Locking Top Total Depth: 63.0' MyKroWaters, Inc. Well ID: DP2-216 (page 3 of well log) P O. Box 1088 Installation Date: 3/31/98, 4/1/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project r 980303 Equipment 6WDX6 Vibratory Drill

Client. Tetra Tech Site Location: Maine Central Railroad. Gray. Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals. Stick-up: 2.0' 57.5'-62.5' -RRDZ-GW-DP2-2 16-5863 "Finish: Locking Top Dark brown to reddish brown fine grain sand, clearing, Water Level - 8' ACS Ground Surface: 0.0' (Artesian Well), (4/1/98).

Screen Top: 57.5'

Comments.

Total Riser: 60' Screen: 1 5' screen Collars: 5 Screen Bottom: 62.5' Finish. Locking Top

Total Depth: 63.0' MyKroWaters, Inc. Well ID: DP2-282 P.O. Box 1088 Installation Date: 4/1/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 260' Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 1.0' 3.5'-8.5' -RRDZ-GW-DP2-282-0409 Finish: Locking Top Brown fine grain sand, clearing,

Water Level - 4.85' BGS. iGround Surface: 0.0' 14.5--19.51 -RRDZ-GW-DP2-282-1520 Grey silt and sand. 25.5--30.51 -RRDZ-GW-DP2-282-2631 Light grey silt and sand.

Screen Top: 58.5'

Comments:

Total Riser: 60' Screen: 1 5' screen Collars: 5 iScreen Bottom: 63.5' Finish: Locking Top

Total Depth: 64.0' MyKroWaters, Inc. Well ID: DP2-282 (page 2 of well log) P O. Box 1088 Installation Date: 4/1/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location. Maine Central Railroad. Gray, Maine

Pipel.D.. 0 62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0 015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals. _Stick-up: 1.0' 36.5--41.51 -RRDZ-GW-DP2-282-3742 Finish: Locking Top Brown and grey silt, fine grain sand,

Water Level-3.0'BGS. Ground Surface: 0.0' 47.5'-52.5' -RRDZ-GW-DP2-282-4853 Light brown fine grain sand, clearing, Water Level-2.0'BGS. 58.5'-63.5' -RRDZ-GW-DP2-282-5964 Light brown fine grain sand, i Screen Top: 58.5' Water Level- 1.3'BGS."

Comments:

Total Riser: 60' Screen: 1 5' screen Collars. 5 I Screen Bottom: 63.5' Finish: Locking Top

Total Depth: 64.0' MyKro Waters, Inc. Well ID: DP1-0 P.O. Box 1088 Installation Date3/24/98.3/25/98.3/26/98 Concord, MA 01742 MKW Personnel: JC/JB/SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech. Site Location: Maine Central Railroad Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 575' Water Level: (See sample intervals below) Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 2' 3.5'-8.5' - No Sample, Very silty and Finish: Locking Top filled w/clay - Too thick to obtain sample. (3/24/98) ground Surface: 0.0' 13.5'-18.5' - No sample, Very silty, Drier than the last interval.(3/24/98) 23.5'-28.5'-No sample,Very silty, filled with clay, Water Level - 21.4'BGS (3/24/98) Screen Top: 76.7' 33.5'-38.5' - RRDZ-GW-DP1-0-3439 Very silty, heavy clay, (Sample taken from tubing). (3/25/98)

Comments:

Total Riser: 80' Screen. 1 5' Screen Screen Bottom: 81.7 ! Collars: 8 Finish :Locking Top Total Depth: 82.2' MyKroWaters, Inc. Well ID: DP1-0 (page 2 of well log) P.O. Box 1088 Installation Date: 3/24/98, 3/25/98, 3/26/98 Concord, MA 01742 MKW Personnel: JC / JB / SS MKW Project #: 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: ( See sample intervals below) Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 2' 43.5'- 48.5' No sample, Very silty w/ Finish: Locking Top clay, Water Level - 36.3' BGS, (3/25/98) 53.5'-58.5' RRDZ-GW-DP1-0-5459 Ground Surface: 0.0' Grey silt, w/ clay, fine grain sand, Water Level - 28.7' BGS (3/25/98) Water level, (Ihr later )(3.1'BGS) 63.5'-68.5' RRDZ-GW-DP 1-0-6469, Screen Top 76.7' Some sand, fairly translucent, Water Level - 2.0' BGS (3/25/98) 73.5'-78.5' RRDZ-GW-DP 1-0-7479, Fairly translucent, Water Level - 2.27' BGS (3/25/98)

Comments: ! Screen Bottom: 81.T Total Riser: 80' Screen: 1 5'Screen Collars: 8 jTotal Depth: 82.2' Finish: Locking Top MyKroWaters, Inc. Well ID:DP 1-95 P O Box 1088 Installation Date 3/26/98 Concord, MA 01742 MKW Personnel JC/SS MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad. Grav. Maine

Pip ID 0 62" Pipe O D 0 82" Points 1 Screen Slot Width 0015" Tubing 301' Water Level See Below, Vials Refusal. No Bailers

Well development Inertial Bailer

Sampling Intervals Stick-up 1 0' 3 5'-8 5' - No sample Finish Locking top 13 5'-18 5'-No sample 23 5'-28 5'-RRDZ-GW-DPl-95­ 'Ground Surface 00' 2429,Light brown, Fine grain sand, Water Level - 6 0' BGS 33 5'-38 5'-RRDZ-GW-DP 1-95-3439, Water Level - 10" BGS, Light brown fine grain sand Screen Top 65 5' 43 5'. 48 5'-RRDZ-GW-DP 1-95-4449 Light brown fine grain sand, Water Level- 2.25" BGS

Comments M: Screen Bottom 705'

Total Riser 67 Total Depth 71 O1 Screen 1 5' Screen Collars 6 Finish Locking Top MyKroWaters. Inc. Well ID: DP1-95 (page 2 of well log) P 6. Box 1088 Installation Date: 3/26/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #• 980303 Equipment: 6WDX6 Vibratory Drill

Client. Tetra Tech Site Location. Maine Central Railroad. Gray, Maine

Pipel.D.: 0 62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0 015" Tubing: See first page of well log Water Level: See below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 1 0' 54.5'-59.5'-RRDZ-GW-DP 1-95-5560 Finish: Locking Top Light brown, some fine sand. Water level - 3" BGS. Ground Surface: 0.0' 65.5'-70.51-RRDZ-GW-DPl-95-6671, Water level-.5" BGS.

Screen Top: 65.5"

Comments:

Total Riser: 67 Screen: 1 5* Screen Collars: 6 ,Screen Bottom: 70.5' Finish: Locking Top

Total Depth: 71.0' MyKroWaters. Inc. Well ID: DPI-160 P.O. Box 1088 Installation Date: 3/27/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project* 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech. Site Location: Maine Central Railroad. Grav. Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 494' Water Level: See below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 3.0* 4.5'-9.5' - RRDZ-GW-DP1-160-0510 Finish: Locking Top Water level - 2.7' BGS, very silty. 14.5'-19.5' - RDZ-GW-DP1-160-1520, Ground Surface: 0.0' Water level - 3.8 BGS, Brown silt, fine grain sand. 24.5'-29.5' - RRDZ-GW-DP1-160-2530 Water Level -1.3 BGS, Fine brown sand. 34.5'-39.5' - RRDZ-GW-DP1-160-3540 Screen Top: 81.5' Water Level -1.0 AGS, Reddish brown fine sand.

Comments:

Total Riser: 85' Screen Bottom: 86.5' Screen: 1 5' screen Collars: 8 Finish: Locking Top Total Depth: 87.0' MyKroWaters, Inc. Well ID;DP1-160 (page 2 of well log) P.O. Box 1088 Installation Date: 3/27/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project #' 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad, Grav. Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 3.0' 44.5'-49.5'-RRDZ-GW-DP 1-160-45 50 "Finish: Locking Top Water level - 1.0' AGS, Light brown fine grain sand, lower turbidity Ground Surface: 0.0' 54.5'-59.5I-RRDZ-GW-DPl-160-5560 Water level -1.0' AGS, Trace light brown fine sand, lower turbidity 64.5'-69.5'-RRDZ-GW-DPl-160-6570 Water level - l.O1 AGS, Light brown, Screen Top: 81.5' fine grain sand, clearing

Comments:

Total Riser: 85' Screen: 5 foot Collars: 8 Screen Bottom: 86.5' Finish: Locking Top

Total Depth: 87.0' MyKroWaters, Inc. Well ID: DP1-160 (page 3 of well log) P.O. Box 1088 Installation Date: 3/27/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project # 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 3.0' 73.5'-78.5 '-RRDZ-GW-DP1 -160-7479 "Finish: Locking Top Water level -1.0' AGS, Light brown fine grain sand, clearing. Ground Surface: 0.0' 81.5'-86.5'-RRDZ-GW-DPl-160-8287 Light brown fine grain sand, Clearing.

Screen Top: 81.5'

Comments:

Total Riser: 85' Screen: 1 5' screen Collars: 8 [Screen Bottom: 86.5' Finish: Locking Top

Total Depth: 87.0' MyKroWaters, Inc. Well ID: DPI-196 P.O. Box 1088 Installation Date: 3/31/98 Concord. MA 01742 MKW Personnel: JC/SS MKW Project # 980303 Equipment. 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points. 1 Screen Slot Width: 0.015" Tubing: 120' Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals. Stick-up: 2.5' 3.5'-8.5' -RRDZ-GW-DP1-196-0409 .Finish: Locking Top Greyish brown silt and sand, Water level - >1.0' AGS (Artesian Well). Ground Surface: 0.0' 14.5'-19.5' -RRDZ-GW-DP1-196-1520 Brown fine grain sand, clearing, Water level - >1.0' AGS (Artesian Well). 25.5'-30.5' -RRDZ-GW-DP1-196-2631 Reddish brown fine grain sand, clearing, Screen Top: 33.0' Water level - >1.0' AGS (Artesian Well).

Comments:

Total Riser: 36' Screen: 1 5' screen Collars: 3 'Screen Bottom: 38.0' Finish: Locking Top

Total Depth: 38.5' MyKroWaters. Inc. WeUID:DPl-196 (page 2 of well log) P.O. Box 1088 Installation Date: 3/31/98 Concord. MA 01742 MKW Personnel: JC/SS MKW Project #• 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers:

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 2.5' 33'-38' -RRDZ-GW-DP1-196-3338 Finish: Locking Top Reddish brown fine grain sand, clearing. Ground Surface: 0.0'

Screen Top: 33.0'

Comments:

Total Riser: 36' Screen: 1 5' screen Collars: 3 Screen Bottom: 38.0' Finish: Locking Top

Total Depth: 38.5' MyKroWaters, Inc. Well ID: DP 1-240 P.O. Box 1088 Installation Date: 3/27/98, 3/28/98 Concord, MA 01742 MKW Personnel: JC/SS MKW Project # 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray, Maine

Pipel.D.: 0.62" PipeO.D.. 0.82" Points: 1 Screen Slot Width: 0.015" Tubing: 601' Water Level: See Below Vials: Refusal: No Bailers: 1

Well development: Inertial Bailer

Sampling Intervals: Stick-up: 3.0' 4.5'-9.5' -RRDZ-GW-DP1-240-0510 Finish: Locking Top Fairly muddy and sandy, clearing after purged, Water level - 1.8' BGS (3/27/98) Ground Surface: 0.0' 14.5'-19.5' -RRDZ-GW-DP1-240-1520 Trace fine sand, very translucent, Water level - >1.0' AGS (Artesian Well). (3/27/98).

Screen Top: 97.5'

Comments:

Total Riser: 106' Screen: 1 5' screen Collars: 10 [Screen Bottom: 102.5' Finish: Locking Top

Total Depth: 103.0' MyKroWaters, Inc. Well ID: DP 1-240 (page 2 of well log) P O Box 1088 Installation Date 3/27/98. 3/28/98 Concord, MA 01742 MKW Personnel JC/SS MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad. Grav. Maine

Pipe ID. 0.62" PipeOD 082" Points See first page of well log Screen Slot Width 0015" Tubing See first page of well log Water Level See Below Vials Refusal No Bailers See first page of well log

Well development Inertial Bailer

Sampling Intervals Stick-up 3 0' 24 5'-29 5' -RRDZ-GW-DP1-240-2530 Finish Locking Top Reddish brown fine gram sand, fairly clear, Water level - >1 O1 AGS (Artesian Ground Surface 00' Well) (3/27/98). 34 5'-39 5' -RRDZ-GW-DP1-240-3540 Light brown fine grain sand, fairly clear, Water level - >1 0' AGS (Artesian Well) (3/27/98). Screen Top 975'

Comments'

Total Riser 106' Screen 1 5* screen Collars 10 Screen Bottom. 102 5' : . Finish Locking Top

Total Depth 103 0' MyKroWaters. Inc. Well ID: DP1-240 (page 3 of well log) P O Box 1088 Installation Date: 3/27/98. 3/28/98 Concord. MA 01742 MKW Personnel: JC/SS MKW Project #• 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Gray. Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers: See first page of well log

Well development: Inertial Bailer

Sampling Intervals: _Stick-up: 3.0' 44.5'-49.5' -RRDZ-GW-DP1-240-4550 Finish: Locking Top Light brown fine grain sand, translucent,

Water level - >1.0' AGS (Artesian Well), i Ground Surface: 00' (3/27/98). 54.5'-59.5' -RRDZ-GW-DP1-240-5560 Dark brown fine grain sand, clearing, Water level - >1.0' AGS (Artesian Well), (3/28/98). Screen Top: 97.5'

Comments:

Total Riser: 106' Screen: 1 5' screen Collars: 10 'Screen Bottom: 102.5' Finish: Locking Top

Total Depth: 103.01 MyKroWaters. Inc. Well ID: DP 1-240 (page 4 of well log) PO Box 1088 Installation Date 3 '27/98. 3/28/98 Concord. MA 01742 MKW Personnel JC/SS MKW Project # 980303 Equipment 6WDX6 Vibratory Drill

Client Tetra Tech Site Location Maine Central Railroad. Grav, Maine

Pipe ID. 0.62" PipeOD.. 082" Points: See first page of well log Screen Slot Width: 0015" Tubing See first page of well log Water Level. See Below Vials Refusal: No Bailers See first page of well log

Well development Inertial Bailer

Sampling Intervals Stick-up 30' 64 5'-69 5' -RRDZ-GW-DP1-240-6570 Finish Locking Top Dark brown fine grain sand, clearing, Water level - >1 0' AGS (Artesian Ground Surface 00' Well), (3/28/98). 74 5'-79 5' -RRDZ-GW-DP 1-240-7580

Brown fine grain sand, fairly clear, ; Water level - >1 0' AGS (Artesian Well), (3/28/98). Screen Top 975'

Comments

1. Total Riser 106' : Screen: 1 5' screen i; Collars 10 Screen Bottom 102.5' Finish Locking Top '•

Total Depth 103 0' MyKroWaters, Inc. Well ID: DP1-240 (page 5 of well log) P.O. Box 1088 Installation Date: 3/27/98, 3/28/98 Concord. MA 01742 MKW Personnel: JC/SS MKW Project #• 980303 Equipment: 6WDX6 Vibratory Drill

Client: Tetra Tech Site Location: Maine Central Railroad. Grav, Maine

Pipel.D.: 0.62" PipeO.D.: 0.82" Points: See first page of well log Screen Slot Width: 0.015" Tubing: See first page of well log Water Level: See Below Vials: Refusal: No Bailers: See first page of well log

Well development: Inertial Bailer

Sampling Intervals: , Stick-up: 3 0' 84.5'-89.5' -RRDZ-GW-DP1-240-8590 Finish: Locking Top Light brown fine grain sand, fairly

clear, Water level - >1.0' AGS (Artesian Ground Surface: 0.0' Well), (3/28/98). 94.5'-99.5' -RRDZ-GW-DP 1-240-95100 Light brown fine grain sand, fairly clear, Water level - >1.0' AGS (Artesian Well), (3/28/98). Screen Top: 97.5' 97.5'-102.5' - No sample, Water level ­ 2.02' AGS, (3/28/98).

Comments:

Total Riser: 106' Screen Bottom: 102.5' Screen: 1 5' screen Collars: 10 Finish: Locking Top Total Depth: 103.0' APPENDIX B

FIELD SCREENING GAS CHROMATOGRAPH (GO RESULTS FIELD GAS CHROMATOGRAPH (GO RESULTS GROUNDWATER TCE PROFILING STUDY ROYAL RIVER DISCHARGE ZONE FS McKIN SITE, GRAY, MAINE

Sample Number Media Location Station Depth Sequence Date Time TCE CLP TCE Notes feet (ug/LI (ug/L) (bgs) Groundwater Samples GW-DP-BS2-0409 GW DP BS2 04-09 01 4/2/98 0846 2 GW-DP-BS2-1520 GW DP BS2 15-20 01 4/2/98 0910 200 250 GW-DP-BS2-2530 GW DP BS2 25-30 01 4/2/98 0929 300 180 D15* GW-DP-BS2-3540 GW DP BS2 35-40 01 4/2/98 0948 100 GW-DP-8S2-4550 GW DP BS2 45-50 01 4/2/98 1012 200 GW-DP-BS2-5560 GW DP BS2 55-60 01 4/2/98 1035 300 GW-DP-BS2-6368 GW DP BS2 63-68 01 4/2/98 1104 250

GW-DP1 -0-5459 GW DP1 0 54-59 01 3/25/98 ND GW-DP1 -0-6469 GW DP1 0 64-69 01 3/25/98 126 GW-DP1-0-7479 GW DP1 0 74-79 01 3/25/98 36 GW-DP1 -0-7782 GW DP1 0 77-82 01 3/25/98 46

GW-DP1 -80-0409 GW DP1 80 04-09 01 3/26/98 ND 10U D1

GW-DP1-95-2429 GW DPI 95 24-29 01 3/26/98 180 GW-DP1-95-3439 GW DP1 95 34-39 01 3/26/98 149 GW-DP1-95-4449 GW DPI 95 44-49 01 3/26/98 1360 GW-DP1-95-5560 GW DPI 95 55-60 01 3/26/98 552 GW-DP1-95-6671 GW DPI 95 66-71 01 3/26/98 1040

GW-DP1-1 60-1 520 GW DP1 160 15-20 01 3/27/98 0902 70 GW-DP1-1 60-2530 GW DP1 160 25-30 01 3/27/98 0945 192 GW-DP1-160-3540 GW DPI 160 35-40 01 3/27/98 1004 1 280 1 800 D4 GW-DP1-160-4550 GW DPI 160 45-50 01 3/27/98 1033 1420 GW-DP1 -160-5560 GW DP1 160 55-60 01 3/27/98 1049 450 GW-DP1 -160-6570 GW DP1 160 65-70 01 3/27/98 1117 558 GW-DP1-1 60-7479 GW DPI 160 74-79 01 3/27/98 1342 615 GW-DP1 -160-8287 GW DP1 160 82-87 01 3/27/98 1425 749 GW-DP1-1 60-8287-02 GW DP1 160 82-87 02 3/31/98 1105 696

GW-DP1 -196-0409 GW DP1 196 04-09 01 3/31/98 1040 506 740 GW-DP1-1 96-1 520 GW DPI 196 15-20 01 3/31/98 1100 1210 GW-DP1-1 96-2631 GW DPI 196 26-31 01 3/31/98 1119 641 GW-DP1-1 96-3338 GW DPI 196 33-38 01 3/31/98 1 142 504 GW-DP1-1 96-3338-02 GW DP1 196 33-38 02 3/31/98 1518 373

GW-DP1-240-0510 GW DP1 240 05-10 01 3/27/98 1521 395 GW-DP1-240-1520 GW DP1 240 15-20 01 3/27/98 1543 979 GW-DP1 -240-2530 GW DP1 240 25-30 01 3/27/98 1606 786 GW-DP1 -240-3540 GW DP1 240 35-40 01 3/27/98 1626 896 1200, 1300 GW-DP 1-240-45 50 GW DP1 240 45-50 01 3/27/98 1657 797 GW-DP1-240-5560 GW DP1 240 55-60 01 3/28/98 0803 618 GW-DP1 -240-6570 GW DPI 240 65-70 01 3/28/98 0837 364 GW-DP1 -240-7580 GW DP1 240 75-80 01 3/28/98 0920 448 GW-DP1 -240-8590 GW DPI 240 35-90 01 3/28/98 1004 494 GW-DP1 -240-095 100 GW DP1 240 95-100 01 3/28/98 1058 460 GW-DP1-240-098103 GW DP1 240 98-103 01 3/31/98 1424 455

GW-DP1 -274-0409 GW DPI 274 04-09 01 4/1/98 1658 1200 GW-DP1 -274-1 520 GW DP1 274 15-20 01 4/1/98 1710 900 GW-DP1-274-2530 GW DPI 274 25-30 01 4/1/98 1724 350

GW-DP1 -320-0409 GW DP1 320 04-09 01 3/28/98 1430 696 GW-DP1-320-1419 GW DP1 320 14-19 01 3/28/98 1451 963 GW-DP1-320-2429 GW DP1 320 24-29 01 3/28/98 1519 839 GW-DP1-320-3439 GW DP1 320 34-39 01 3/28/98 1541 714

GC-DATA XLS FIELD GAS CHROMATOGRAPH (GO RESULTS GHOUNDWATER TCE PROFILING STUDY ROYAL RIVER DISCHARGE ZONE FS McKIN SITE, GRAY, MAINE

Sample Number Media Location Station Depth Sequence Date Time TCE CLP TCE Notes feet lug/L) (ug/L) (bgs) GW-DP1 -320-4449 GW DP1 320 44-49 01 3/28/98 1609 609 GW-DP1 -320-5459 GW DPI 320 54-59 01 3/28/98 1635 544 GW-DP1 -320-6469 GW DP1 320 64-69 01 3/28/98 1707 294 GW-DP1 -320-7479 GW DP1 320 74-79 01 3/30/98 0937 374 GW-DP1-320-8590 GW DP1 320 85-90 01 3/30/98 1025 327 GW-DP1-320-8590-02 GW DP1 320 85-90 02 4/1/98 1028 500

GW-DP1 -400-0409 GW DP1 400 04-09 01 3/30/98 1348 202 D7 GW-DP1-400-1520 GW DP1 400 15-20 01 3/30/98 1410 285 GW-DP1 -400-2631 GW DP1 400 26-31 01 3/30/98 1431 315 GW-DP1 -400-3742 GW DP1 400 37-42 01 3/30/98 1446 256 330 D8 GW-DP1 -400-4853 GW DP1 400 48-53 01 3/30/98 1508 229 GW-DP1 -400-5964 GW DP1 400 59-64 01 3/30/98 1539 338 GW-DP1 -400-7075 GW DP1 400 70-75 01 3/30/98 1608 265 320 D9

GW-DP1 -560-0409 GW DPI 560 04-09 01 4/2/98 1156 200 210. 170 D17 GW-DP1-560-1520 GW DPI 560 15-20 01 4/2/98 1436 200 GW-DP1-560-2530 GW DP1 560 25-30 01 4/2/98 1500 250 GW-DP1 -560-3540 GW DPI 560 35-40 01 4/2/98 1532 200 GW-DP1 -560-4651 GW DP1 560 46-51 01 4/2/98 1617 150 GW-DP1 -560-5762 GW DP1 560 57-62 01 4/2/98 1650 200 GW-DP1 -560-6267 GW DPI 560 62-67 01 4/2/98 1713 250 230

GW-DP2-1 50-0409 GW DP2 150 04-09 01 3/31/98 1406 120 GW-DP2-1 50-1 520 GW DP2 150 15-20 01 3/31/98 1424 1330 GW-DP2-1 50-2631 GW DP2 150 26-31 01 3/31/98 1459 900 GW-DP2-1 50-2631 -02 GW DP2 150 26-31 02 3/31/98 1626 1300 D13

GW-DP2-1 57-3742 GW DP2 157 37-42 01 3/31/98 1533 600 GW-DP2-1 57-4853 GW DP2 157 48-53 01 3/31/98 1603 600 GW-DP2-1 57-5863 GW DP2 157 58-63 01 3/31/98 1624 300

GW-DP2-2 16-0409 GW DP2 216 04-09 01 4/1/98 0835 750 920 GW-DP2-216-1520 GW DP2 216 15-20 01 4/1/98 0916 1100 GW-DP2-216-2631 GW DP2 216 26-31 01 4/1/98 0940 550 GW-DP2-21 6-3742 GW DP2 216 37-42 01 4/1/98 0955 350 GW-DP2-216-4853 GW DP2 216 48-53 01 4/1/98 1012 400 930 GW-DP2-21 6-5863 GW DP2 216 58-63 01 4/1/98 1038 500 D14

GW-DP2-282-0409 GW DP2 282 04-09 01 4/1/98 1146 1200 GW-DP2-282-1520 GW DP2 282 15-20 01 4/1/98 1402 250 GW-DP2-282-2631 GW DP2 282 26-31 01 4/1/98 1423 550 GW-DP2-282-3742 GW DP2 282 37-42 01 4/1/98 1511 5 GW-DP2-282-4853 GW DP2 282 48-53 01 4/1/98 1535 500 D14b GW-DP2-282-5964 GW DP2 282 59-64 01 4/1/98 1602 400

Boiling Springs Surface Water Samples SW-BSC-01 SW BSC 01 3/26/98 158 SW-BSC-02 SW BSC 02 3/27/98 0855 164 SW-BSC-03 SW BSC 03 3/28/98 0940 133 SW-BSC-04 SW BSC 04 3/30/98 1150 167 SW-BSC-05 SW BSC 05 3/30/98 1635 127 SW-BSC-06 SW BSC 06 3/31/98 1021 213

SW-BSE-01 SW BSE 01 3/26/98 173 SW-BSE-02 SW BSE 02 3/27/98 0915 112 SW-BSE-03 SW BSE 03 3/27/98 1010 139 SW-BSE-04 SW BSE 04 3/30/98 1158 135

GC-DATA.XLS FIELD GAS CHROMATOGRAPH (GO RESULTS GROUNDWATER TCE PROFILING STUDY ROYAL RIVER DISCHARGE ZONE FS McKIN SITE. GRAY, MAINE

Sample Number Media Location Station Depth Sequence Date Time TCE CLP TCE Notes feet lug/L) (ug/L) (bgs) SW-BSE-05 SW BSE 05 3/30/98 1644 150 SW-BSE-06 SW BSE 06 3/31/98 1035 201

SW-BSN-01 SW BSN 01 3/26/98 141 SW-BSN-02 SW BSN 02 3/27/98 0900 116 SW-BSN-03 SW BSN 03 3/27/98 0945 143 SW-BSN-04 SW BSN 04 3/30/98 1145 50 SW-BSN-05 SW BSN 05 3/30/98 1638 73 SW-BSN-06 SW BSN 06 3/31/98 1025 229

SW-BSS-01 SW BSS 01 3/26/98 0835 239 SW-BSS-02 SW BSS 02 3/26/98 1425 125 SW-8SS-03 SW BSS 03 3/27/98 0850 239 SW-BSS-04 SW BSS 04 3/27/98 1130 242 350 SW-BSS-05 SW BSS 05 3/28/98 0930 209 SW-BSS-06 SW BSS 06 3/30/98 1148 299 SW-BSS-07 SW BSS 07 3/30/98 1632 299 SW-BSS-08 SW BSS 08 3/31/98 1015 278

SW-BSU-01 SW BSU 01 3/26/98 1440 ND SW-BSU-02 SW BSU 02 3/27/98 0910 ND SW-BSU-03 SW BSU 03 3/30/98 1153 ND SW-BSU-04 SW BSU 04 3/30/98 1641 ND SW-BSU-05 SW BSU 05 3/31/98 1030 ND

Royal River Surface Water Samples SW-RR01-01 SW RR01 01 3/27/98 0922 1.6 D3 SW-RR01-02 SW RR01 02 3/27/98 1450 1.2 SW-RR01-03 SW RR01 03 3/28/98 0815 0.6 SW-RR01-04 SW RR01 04 3/28/98 1730 0.8 SW-RR01-05 SW RR01 05 3/30/98 0935 1 SW-RR01-06 SW RR01 06 3/30/98 1607 0.9 SW-RR01-07 SW RR01 07 3/31/98 0940 1.2 10U SW-RR01-08 SW RR01 08 3/31/98 1625 1.2 SW-RR01-09 SW RR01 09 4/1/98 1120 30 SW-RR01-10 SW RR01 10 4/1/98 1615 1 SW-RR01-11 SW RR01 11 4/2/98 1020 1 2J,U SW-RR01-12 SW RR01 12 4/2/98 1643 1

SW-RR02-01 SW RR02 01 3/28/98 0830 0.7 SW-RR02-02 SW RR02 02 3/30/98 0940 0.9 SW-RR02-03 SW RR02 03 3/30/98 1611 1 SW-RR02-04 SW RR02 04 3/31/98 0954 1.1

SW-RR05-01 SW RR05 01 3/26/98 0935 43 SW-RR05-02 SW RR05 02 3/27/98 14 SW-RR05-03 SW RR05 03 3/28/98 0905 2.6 SW-RR05-04 SW RR05 04 3/30/98 0950 3.6 SW-RR05-05 SW RR05 05 3/30/98 1623 5.6 SW-RR05-06 SW RR05 06 3/31/98 1009 7.7

SW-RR06-01 SW RR06 01 3/31/98 1350 39 93 Floodplam Seep

SW-RR08-01 SW RR08 01 3/26/98 ND SW-RR08-02 SW RR08 02 3/27/98 0920 ND SW-RR08-03 SW RR08 03 3/27/98 1015 ND SW-RR08-04 SW RR08 04 3/30/98 1205 ND SW-RR08-05 SW RR08 05 3/30/98 1648 ND

GC-DATA XLS FIELD GAS CHROMATOGRAPH (GO RESULTS GROUNDWATER TCE PROFILING STUDY ROYAL RIVER DISCHARGE ZONE FS McKIN SITE GRAY MAINE

Sample Number Media Location Station Depth Sequence Date Time TCE CLP TCE Notes feet (ug/L) (ug/L) (bgs) SW RR08 06 SW RR08 06 3/31/98 1040 ND

SW RR1001 SW RR10 01 3/26/98 ND SW RR10 02 SW RR10 02 3/30/98 1213 0 6 SW RR10 03 SW RR10 03 3/30/98 1654 0 5 SW RR10 04 SW RR10 04 3/31/98 1047 0 6

Groundwater Treatment Effluent Samples GW GAC EF 01 GW GAC EF 01 4/2/98 1633 ND GW GAC EF 02 GW GAC EF 02 4/2/98 1055 ND GW GAC EF 03 GW GAC EF 03 4/2/98 1540 ND GWGAC EFDUP01 GW GAC EFDUP 01 4/2/98 1057 ND

QC Samples Duplicates GW DUP 01 GW DP1 80 04 09 3/26/98 0948 ND D1 GW DUP 02 GW DP1 160 3540 3/27/98 1 104 1180 D4 GW DUP 04 GW DP1 400 04 09 3/30/98 1410 202 D7 GW DUP 05 GW DP1 400 37 42 3/30/98 1410 303 D8 GW DUP 06 GW DPI 400 70 75 3/30/98 1638 289 D9 GW DUP 07 GW DPI 196 0409 3/31/98 1140 536 GW DUP 08 GW DP2 150 2631 3/31/98 1509 1020 GW DUP 09 GW DP2 150 2631 3/31/98 1519 943 GW DUP 10 GW DP2 150 2631 3/31/98 1636 1000 D13 GW DUP 11 GW DP2 150 2631 3/31/98 1646 1000 D13 GW DUP 12 GW DP2 216 5863 4/1/98 1048 700 014 GW DUP 13 GW DP2 282 48 53 4/1/98 1545 1000 D14b GW DUP 14 GW DP 8S2 25 30 4/2/98 0939 250 D15 GW DUP 15 GW DPI 560 04 09 4/2/98 1159 200 D17 GW DUP 16 GW DPI 560 62 67 4/2/98 1713 100 D18

SW DUP 01 SW DUP 3/27/98 0905 156 SW DUP 02 SW RR01 3/27/98 0840 1 2 D3 SW DUP 03 SW RR01 3/27/98 1028 1 2 D3 SW DUP 04 SW RR01 3/27/98 1115 1 3 D3 SW DUP 05 SW RR01 3/27/98 1410 0 9 D5 SW DUP 06 SW RR01 3/27/98 1430 1 1 D5 SW DUP 07 SW RR01 3/27/98 1440 1 2 D5 SW DUP 08 SW BSE 3/30/98 1 159 151 SW DUP 09 SW RR01 3/31/98 0943 1 5 D10

Trip Blanks GW TB01 GW TB 3/25/98 ND GW TB 03 GW TB 3/26/98 ND GW TB 05 GW TB 3/27/98 0818 ND GW TB 06 GW TB 3/27/98 0818 ND GW TB 10 GW TB 3/30/98 1330 ND GW TB EF 1 8 GW TB EF 4/2/98 0800 ND

SW TB 08 SW TB 3/27/98 0818 ND SWTB 15 SW TB 4/1/98 0745 ND SW TB 17 SW TB 4/2/98 0730 ND SW UTROW 01 SW UTROW 3/25/98 ND

ND not detected * duplicate sample reference

GC DATA XLS APPENDIX C

BOREHOLE LOGS, WELL CONSTRUCTION DIAGRAMS, AND GRAIN SIZE ANALYSIS McKin Site RRDZ Borehole Logs Notes

Monitoring well MW-1 installed in Boring MW-1D. Borings MW-1A, MW-1B, and MW-1C were abandoned. See boring log MW-1 A for material classification 0' to 68'. < ^~ z " •5 y u] oo CNJ ^> a: 5 5 § co ^ • c ^ 0> * * ^^ o To Q "^ ' O w -a 5> -. -S C? < •• O "* Q O 2 z ill zz> h— 1 o P _l Q % CD Q HI > UJ "S •& TS — i ^ 1- 1 § $ § ^ 0 I ^

co O 5 O 1§*§! o_ =) K 00 o CO o i s -g UJ c i < g s 2 cs: t •5 o I I w Z u i o o 5 ce 1 V- 1 £ u u o •5 iu £ UJ UJ u Q . o * O CO 1 S co CO £ CO V ^^ 4> 1 o > 5 ^- OTQ o ^ in a JTl CO 1 o -g i 0 V ° I UJ co S 1|| Q O § 0 i 1 2 z ^ CO CO c O £~ •• UL 1 3 1- t In CN! il ce I ! OQ 0 CO CO

^M 111 ? |l GO a: . OH u_ •s i * ll > I o co 2 2 O Q .0 ll TJ ±S 01 * w 0 I sb . o: < -ijgtJcj i 1 01 c UJ 1wio ! o = Q o fe UJ 1 ig 1 0 I _i -- _, H 1- f_ O j u­ •o 1Q - < x UJ O 1 w Q ^ a. F55 ! ^ 1 cl i efl>> (U CO CO CO .c CO 3 CO O §^ ** ll ?1 CO _j z z < S c 1•5 Q _j a! 2 «3 —'w « ^5 Z i ^ 2 ^ % O Q g­ < 5 O ^ i^ W (E s lSZ| IQ 2 K _ 1>5i o _o BO I "53 \ s f in o HI s CO ^ <" _| C0\

ELEVA T a:

V SAMPLIN G mpany/ D NCIN G UJ (CORIN G

-i L u_ CO

O 6 (C o *­ SO I ADV A ^ in ROC C _i Q- o - o

_i B Y co CO o o O F Q DRILLIN G CD o OBSERVA l SURFAC E Z iii O F LE D E R . HO D O F HO D O X p E HO D O F 1 o: jr~ u i a. I- I- 1- o o UJ LU UJ UJ a: 0 on 0 - CM CO in CO 222 O 1 00 0_ 3oo ^ CN CO in CO ^ CO O> ; * _ < •* Z " T 5 "° 3g (io te 2 CM 0 uj C ^ 0 ^ Q- z oo S CO co 0) CO (3 g> » E TT 0 < 1 I CO Z Q­ oo ^r S O^ 2 •^ r— 1 CQ . . OO • 5 ujg ) CM roc k et c was h indicate d §* indicate d condition , 5 " geologica l Z Z CM I 0 |ui I stur e athenng , REMARK S O_i srs , isification , I ;over y ;over y i s «" <> c TJ O < 1 fill 13 m o * 1 y§!£ 1 h­ n 1 11 i 1 0£ •P" ^^ ^J ! 5 Z m <« p OOx 1w woi CO O 2 O W c5O K D. 0. Q. 1^ D:m O CO i CO 1

z g 1 1 E u ujc ^_ 1 »l

t san d 0 UJ ti t CO s

S ars e I cc UJ 0) 0 o ^ O ^ 0 O a cc z 1 i i 1 IS 01 , o 0 u_ ( 1 o o 0c) o a I 1 £ m 1 1 \ 1 UJ |$; m "3 2 f: _ J s 3 1 l cc O o sz » o OH 1 i > £ >1 CO u_ i ^ 1 ;! z z [£ o C I 1 O Q 0 fe ^> dl!i UJ >^ s •g |S >= £ UJ I_J - _, > 5 |— f_ (T) j U. S 5 O) J2 3 1' gi < g y 2 n g i" CO Q Q. w 1 cl si 0} El S ,-—, gP CD CD cn in o o^ CO CO CO CO CO U Ik CO C ^ UJ uj h­ o I'S 5 Q | s. 2 rP~~ •{Q,• CtiJ ^1 0) N. ol ^ ^ O in I| CO Z CO Q> «) £ = i^

B Y - CD O F

CO O F O F SO I L in co , co DRILLIN G DWATE R LEVEL S OBSERVATION S tt Q D URFAC E ELEV A F D D D UJ UJ UJ CO OO O O Z £C Z_ =, O -J • ~~ in XIX ^ LU rv o 1 P n 1- H Ho x LU LU 11. IT 1­ occ at- CO 00 O) CD O m n. 3 QO - 8 CM H f3 s « R s 8 a R co BORING LOG FOR: Royal River Discharge Study BORING NO. : MW-1A PROJECT NO: 7793-0330 START DATE: _4~/2~4"""""19....-..8___ LOGGED BY: J. Mello TRANSCRIBED BY:FMD ____ COMPLETION DA TE: 4/28/98 DRILLED BY (Company/Driller): D.L. Maher______MON. WELL NO.: '""'M"""W~-...... 1 __ GRD. SURFACE ELEVATION: ELEVATION FROM: CHECKED BY: ~~~~~~::~~~$~~~~~~~~ =~~x~~x~~~~~~~~~~~~~~~: ~~~~$~~?.~~=~~~~~~~~ ~~~~~~~~~~~~$~~~$$$~~~t=.4X$?:~$~~;;$~~x::::$~==~$$~~~~~~~~~$m$~$~$~r$$~<

TYPE OF DRILLING RIG: Mobile B-57 I METHOD OF ADVANCING BORING: Driven casing, pre-auger first 10 ft METHOD OF SOI L SAMPLING: Split-spoon (SPT) METHOD OF ROCK CORING: NA GROUNDWATER LEVELS: Water free flowing from casing BORING NO.:MW-1A OTHER OBSERVATIONS: Washed soil headspace =7 ppm. This is the first attempt install MW-1. PAGE: 3 of 4 BORING LOG FOR: Royal River Discharge Study BORING NO.: MW-1A PROJECT NO: 7793-0330 START DATE: --'4"""/2::....;;4.-:/9""'"8___ LOGGED BY: J. Mello TRANSCRIBED BY:FMD____ COMPLETION DATE: 4/28/98 DRILLED BY (Company/Driller): D.L. Maher______MON. WELL NO.: =M-=-W=-·-=-1__ GRD SURFACE ELEVATION· ELEVATION FROM· CHECKED BY: ~~~~}~~}~~==~i~==~~f ·~~~S~Sf.~~~~~~~~?.~~~;:::~~ ~:~::~::~~~~~~~~::~~s~~:: ::s~s==t~::}s::::::~s~::::::x~~x::~s::~~::s~$mss~~Amw£x::::::mss~~s~~~:zs~ss~~~s==::w~~x ==~~~~SSSf~S ~J~Jss~~::~::~~s::::s~~s~~s::~~~s~};:~}::::::::::::::~ DEPTH BLOWS SAMP SAMPLING DEPTH SOIL uses REMARKS FIELD (FEET) PER REC. TIME MAT'L DENSITY/ MATERIAL or (moisture condition; SCREENING 6" I & CHG./ CONSIS. CLASSIFICATION ROCK odors; geological DATA SAMP SAMPLE NO. WELL or ROCK CLR BRKN classification; rock METHOD= LENG. (QA/QC STATUS! PROF'L HARD. weatherina· etc.I f PID Jar HS I 3 0845 Loose L. Gray SAND SP 68 7 IX2.0 (fine sand with trace coarse sand) 5.5 8 69 14 S-16 Casing became disconnected. Lost hole. Lost 10' of disconnected casina with shoe.

TYPE OF DRILLING RIG: Mobile B-57 I METHOD OF ADVANCING BORING: Driven casing, pre-auger first 10 ft METHOD OF SOI L SAMPLING: Split-spoon (SPT) METHOD OF ROCK CORING: NA GROUNDWATER LEVELS: Water free flowing from casing BORING NO.:MW-1A OTHER OBSERVATIONS: This is the first attempt install MW-1. PAGE: 4of 4 BORING LOG FOR: Royal River Discharge Study BORING NO. : ------MW-1 B PROJECT N0:7793-0330 START DATE: 4-30-98 LOGGED BY: Karl DeBisschop TRANSCRIBED BY:FMD __ COMPLETION DA TE: 4-30-98 DRILLED BY (Company/Driller): D.L. Maher______MON. WELL NO.: -----MW-1 GRD. SURFACE ELEVATION: NM ELEVATION FROM: CHECKEDBY:

DEPTH BLOWS SAMP SAMPLING DEPTH SOIL uses REMARKS FIELD (FEET) PER REC. TIME MAT'L DENSl"TY/ MATERIAL or (moisture condition; SCREENING 6" I & CHG./ CONSIS. CLASSIFICATION ROCK odors; geological DATA SAMP SAMPLE NO. WELL or ROCK CLR BRKN classification; rock METHOD= 0 LENG. (QA/QC STATUS) PROF'L HARD. weatherina: etc.) rPIO Jar HS I

2

3 no samoles collected /

4

5

6 EOB EOB

"TYPE OF DRILLING RIG: Mobile B-57 Brown& Root I Environmental METHOD OF ADVANCING BORING: Driven casing METHOD OF SOI L SAMPLING: none METHOD OF ROCK CORING:none ~ GROUNDWATER LEVELS: BORING NO.:MW-18 OTHER OBSERVATIONS: casing refusal (probably a root) at 6 ft bgs (2nd attempt@MW-1) PAGE: 1 of 1 BORING LOG FOR: Royal River Discharge Study BORING NO. : ~M~W~-~1C___ PROJECT N0:7793-0330 START DATE: 4-30-98 LOGGED BY: Karl DeBichop TRANSCRIBED BY:FMD __ COMPLETION DATE: 5-5-98 DRILLED BY (Company/Driller): D.l. Maher______MON. WELL NO.: None GRD. SURFACE ELEVATION:NM ELEVATION FROM: CHECKED BY: ~=~~~f~~$~~==~~~~==~==== :~:::::::::~~~~=~?:~:3~~:;:t;;:~=~~~~=~ ~:::::::::::::3::~~3::3~~~~ ::::::~::z==::::::::~::~::::==::~:;::x::~?=J::::::::::::::::::::::::::::::::~::::~::~3~lli~~::&1::::::==::::::::::::~::~~::::::::t::::::w@~~::~~ :::::::~::::~::::3~~333: ::r@.~::~~rz::::::::::mm::::::~::~r.::::::~::::::::3~::::~:::: DEPTH BLOWS SAMP SAMPLING DEPTH SOIL uses REMARKS FIELD (FEET) PER REC. TIME MAT'L DENSITY/ MATERIAL or (moisture condition; SCREENING 6" I & CHG./ CONSIS. CLASSIFICATION ROCK odors; geological DATA SAMP SAMPLE NO. WELL or ROCK CLR BRKN classification; rock METHOD= 0 LENG. (QA/QC STATUS) PROF'L HARD. weatherina; etc.) [PIO Jar HS I

5

10

15 1420 W-1 SAND SP 20 14-19 ft (fine sand) 1440 W-2 SAND SW 25 19-24 ft (fine to coarse sand) 1500 W-3 30 24-24 ft 1520 W-4 35 24-34 ft 1550 W-5 40 34-39 ft

45 so

55 tried mud @ 54'unable to 60 casina blows 53-58: 32130/29/21 /31 builduD suitable wall switched to 3" casing. 65 62 ti casina blows 58-62 : 44n8/300/200 oer 11" C 54 ft on 4 Mav 1998 EOB

TYPE OF DRILLING RIG: Mobile B-57 Brown & Root I Environmental METHOD OF ADVANCING BORING: Driven casing METHOD OF SOI L SAMPLING: casing washout samples only METHOD OF ROCK CORING: none ~ GROUNDWATER LEVELS: 62 BORING NO.: MW-1C OTHER OBSERVATIONS: casing separation driving to 62 ft abandoned hole. This is the 3rd attempt at MW - 1 -­ PAGE: 1 of 1 BORING LOG FOR: Roval River Discharge Study BORING NO.: ...... M....D~--'-'1D ______PROJECT NO: 7793-0330 START DATE: _..5_.-6~-9.-...8..____ LOGGED BY: Karl DeBissop TRANSCRIBED BY:FMD COMPLETION DATE: 5-8-98 DRILLED BY (Company/Driller): D.L. Mahar MON. WELL NO.: MW-1 GRD. SURFACE ELEVATION: 89-01 ELEVATION FROM: CHECKED BY: ~~s~ss~s~~s~~s~~s~ .~oo~s~~~~~~~=~~~~~~~~ ~~s~==s~~~s~~s~~~: ~m~~~~mmills~smssm~~s~~s::~::~~~~~====n7....P-«~sss$~..mssssss::sssssill~~:;ss~~<~~~==...... :sm--~sssssssss= ~sssssss~s:;

53 Set 3" casing (telescooel to 53 ft BGS 1416 58 advance 53-58 Blows oer ft: 8-9-13-17-12 1436 63 advance 58-63 12-26-16-12-12 1455 68 advance 63-68 4-10-25-80-110 1523 73 advance 68-73 52-66-95-105-105 0745 5/7/98 78 advance 73-78 28-95-110-135-152 3 0840 S-1 V. LT SAND TRACE SILT Very uniform. Absense of 6 % 0 brown (fine to medium sand trace coarse sand) SP silt suaaests wash but no 16 8 grain size graduation 80 6 78-80 ft seen in sample

Casino blows 78 - 83 ft: 50-91-157-180-164

83- 88 ft: 50-148-125-230-215

82

84

86

TYPE OF DRILLING RIG: Mobile B-57 I METHOD OF ADVANCING BORING: Driven casing METHOD OF SOI L SAMPLING: Split spoon (SPT) METHOD OF ROCK CORING: N/A

92

93

94 outwash

95

96

97

98 1208 517198 similar to above SP 7ppm 99 % 0

100 S-3

101 bedrock mica-rich (mostly muscovite, layers of biotite for 2 ft; feldspar-qtz-musc-biotite 102 more feldspar for 2 ft· mica rich for 1 ft Qneiss

104

106

TYPE OF DRILLING RIG: Mobile B-57 I METHOD OF ADVANCING BORING: Driven casing METHOD OF SOI L SAMPLING: Split spoon (SPT) METHOD OF ROCK CORING: NIA (roller bit) GROUNDWATER LEVELS: Water free ftowing from well. BORING NO.:MW - 1 D OTHER OBSERVATIONS: PAGE: 1of2 BORING LOG FOR: Royal River Discharge Study BORING NO.: MW-2 PROJECT NO: 7793-0330 ST ART DATE: -'4'"""'-2=8--'-9'"""8___ LOGGED BY: Joe Mello/Karl DeBisschop TRANSCRIBED BY:FMD COMPLETION DATE: 4-29-98 DRILLED BY (Company/Driller): =D-=L:...;.M=a=h=e:..:.;r/-=D-=e=n.;..;.rn=·s-=D:;...:u:;..;;c=h=an=o=w..:...:s:.;..ko;._i------­ MON. WELL NO.: MW-2 GRD. SURFACE ELEVATION: 89-74 ELEVATION FROM: CHECKED BY: ~~~~~;:~~~~~3~~;:3f;:~ =~~~i:~:~~:~:~~:~~=~~~=~i~@: ~~~f~~~~}~~SS~3~ =~;:~~M;:;:;:~~~;:;:;:;:~~~ss;:@~;:;:;:;:~;:~~~;:s~~~~;:;:~~;:;:~;:;:;:;:;:;:;:;:;:;:~;:~;:;:~~~;:~~m;:;:rJ1;:;: ~~~r~ms~m~z3 ~z~~;:~;:;:~;:;:~~~s;:s~;:ss~ss~~~;:;:;:;:~;:~;:;:;:;:~;:~;:;:;:;:;::sssss: DEPTH BLOWS SAMPR SAMPLING DEPTH SOIL USC Sor REMARKS FIELD (FEET) PER EC. TIME MAT'L DENSITY/ MATERIAL ROCK (moisture condition; odors; SCREENING 6" I & CHG./ CON SIS. CLASSIFICATION BRKN geological classification; rock DATA SAMP SAMPLE NO. WELL or ROCK CLR weathering; etc.) METHOD= 0 LENG. (QA/QC STATUS) PROF'L HARD. IPIDI CLAY Grav (fat marine clavl CH from cuttinas

Brown •• 23 9 1540 Medium SAND - TRACE SILT - TRACE CLAY SP-SM sooon 116 12 12· (very fine sand, wet) 14 ~ 25 16 3" wash S-1

cuttings are silty - Dennis thinks 29 stuck on pipe from above 8 1y 1620 SAND - TRACE SILT SP spoon 119 8 24" S-2 (fine sandl 9 31 15

coarse sand in wash

34 12 spoon 8 S-3 - one piece of gravel casino blows 80 19.1 8 80 36 10 end 4/28/98 95 133

38 •

TYPE OF DRILLING RIG: Mobile B-53 I METHOD OF ADVANCING BORING: 4" flush - joint driven casing METHOD OF SOI L SAMPLING: 2" OD split - barrel sampler METHOD OF ROCK CORING: N/A GROUNDWATER LEVELS: BORING NO.: MW-2 OTHER OBSERVATIONS: PAGE: 1of2 BORING LOG FOR:Royal River Discharge Study BORING NO. : MW-2 PROJECT NO: 7793-0330 ST ART DATE: 4-28-98 LOGGED BY: Joe Mello/ Karl DeBisschop TRANSCRIBED BY:FMD COMPLETION DATE: 4-29-98 DRILLED BY (Company/Driller): D.L. Maher/Dennis Duchanowski MON. WELL NO.: MW-2 GRD. SURFACE ELEVATION: ELEVATION FROM: CHECKED BY: 3~~~~~~~~~~~~?.~~~~~ .~}~~~}~3~~?.?.?.?.?.?.?.?.?.?.?.f~. ~:~~~~~~~s?.?.?.~~~~ ~~~~@~@~S~~~w~~~~~~w~~~r~..~ss~~s?.ss~~M?.ms#r~::s~&~~~~ss~~s*'s ·~;m~s~==ssf ?.~~m~s?.~..mm~w~~sm~~~.ajsm?.sssw# DEPTH BLOWS SAMP SAMPLING DEPTH SOIL uses REMARKS FIELD (FEET) PER REC. TIME MAT'L DENSITY/ MATERIAL or (moisture condition; SCREENING 6" I & CHG./ CON SIS. CLASSIFICATION ROCK odors; geological DATA SAMP SAMPLE NO. WELL or ROCK CLR BRKN classification; rock METHOD= 38 LENG. (QA/QC STATUS) PROF'L HARD. weathering; etc.) [PIO Jar HS 1 fsand Casing Blows ! ! 94 10 brn/ SAND. TRACE SILT. TRACE GRAVEL. 40 13 1.2/ 0835 arav Cfine to mecium sand fine gravel) 100 16 ·/2.0 S-4 16 100

42 msand 125

180

44 • 160 2 0920 brn/ SAND. TRACE GRAVEL 4 %10 redbm (fine to coarse sand fine gravel) 137 5 I 46 5 S-5 133

134

48 143

• 153 8 1515 ltbm 50 6 u/ 63 5 S-6 1/2.0 6 • 82 EOB 52

TYPE OF DRILLING RIG: Mobile B-53 I METHOD OF ADVANCING BORING: 4" Driven flush-joint casing METHOD OF SOI L SAMPLING: 2" OD split - barrel sampler METHOD OF ROCK CORING: NIA GROUNDWATER LEVELS: BORING NO. : MW-2 OTHER OBSERVATIONS: PAGE: 2of 2 BORING LOG FOR: Royal River Discharge Study BORING NO. : MW-3 PROJECT NO: 7793-0330 START DATE: __s_-1...... 2---9....-.8___ LOGGED BY: Karl DeBisschop, Josh Holden TRANSCRIBED BY:FMD COMPLETION DATE: 5-12-98 DRILLED BY (Company/Driller): D.L. Maher I D. Duchanowski MON. WELL NO.: MW-3 GRD SURFACE ELEVATION· 91.01 ELEVATION FROM: CHECKED BY: ,, ,, ~~~~~S~$~~$$~~~ss~~ :~~~~~~~~~~~~~~f~~~~~~:- ~~~~~~~~~m~~~~ 7-~SSfil~ " "'*'A~HA~J'~~axs~~~~~$:::~:~s~~~~~~~~~~i$W"°~SS~SS$S~4 ·;:--W..$~;:~;:$$::~: }t~~~~~~~iliXIB~$$~~$$~:$$$~$:m::~~~$~~~~~ DEPTH BLOWS SAMP SAMPLING DEPTH SOIL uses REMARKS FIELD (FEET) PER REC. TIME MAT'L DENSITY/ MATERIAL or (moisture condition; SCREENING 6" I & CHG./ CONSIS. CLASSIFICATION ROCK odors; geological DATA SAMP SAMPLE NO. WELL or ROCK CLR BRKN classification; rock METHOD= 0 LENG. (QNQC STATUS) PROF'L HARD. weathering; etc.) IPIDJ

2

4

6 2 0828 GR SILT AND CLAY CL 3 o./ 5 /2.0 SAND. TRACE SILT SP 8 5 S-1 (fine to medium sand) 5.0oom

10

' 3 LT SAND 12 3 1.0/ 0845 BRN (fine to medium sand} 9.5ppm 4 /2.0 S-2 4

14

16 ' ·~

TYPE OF DRILLING RIG: Mobile B-53 I METHOD OF ADVANCING BORING: Drive casing, 4" flush joint METHOD OF SOI L SAMPLING: 2" OD split barrel sampler METHOD OF ROCK CORING: NIA GROUNDWATER LEVELS: BORING NO.: MW3 OTHER OBSERVATIONS: PAGE: 1 Of 3 BORING LOG FOR:RRSZ - Royal River Discharge Study BORING NO. : MW-3 PROJECT NO: 7793-0330 START DATE: -=5'--1=2'-"-9'-=8___ LOGGED BY: Karl DeBisschop, Josh Holden TRANSCRIBED BY:FMD COMPLETION DATE: 5-12-98 DRILLED BY (Company/Driller): DL Maher/D. Duchanowski MON. WELL NO.: MW-3 GRD. SURFACE ELEVATION: ELEVATION FROM· CHECKED BY: ~~rarx~s~::::;:;:;:;:};:~ =~~~~::~r::~~~~~~~r:~}}}r:r::::. ::;:;:;:;:;:};:;:};:;:~;:;:;:;: ~mm~..Amfmffe#Ar:~~A~Jmr:m%r~~..~,.::r:::r:~};:;:~;:~;:;:;:;:::::~;:::::::~~::~::::::::~..... ,•.'.'.~~:-3;:;:}~;:~~::. ~=~~~::::~::::3::~::}?.:r:}~r:::~::~~::::::m~::~r:::r:r::tm DEPTH BLOWS SAMP SAMPLING DEPTH SOIL uses REMARKS FIELD (FEET) PER REC. TIME MAT'L DENSITY/ MATERIAL or (moisture condition; SCREENING 6" I & CHG./ CONSIS. CLASSIFICATION ROCK odors; geological DATA SAMP SAMPLE NO. WELL or ROCK CLR BRKN classification; rock METHOD= 16 LENG. (QA/QC STATUS\ PROF'L HARD. weatherina: etc.) IPIDl 4 0910 Ltbm SAND 5 1.3/ lfine to medium sand clav laver at 1.O' - 1• thick\ SP 2.4 5 1/2.0 18 6 S-3

20

' 3 SAND. TRACE GRAVEL. 22 3 0945 lfine to coarse sand fine aravell 7.8 4 S-4 4

24

26 2 1010 1%. 2 2.0 2 I/ 28 3 S-5

30

3 1054 Bm SAND. TRACE GRAVEL 32 11 -%0 S-6 (fine to coarse sand sand fines upward· all wash mat.\

TYPE OF DRILLING RIG: Mobile B-53 I METHOD OF ADVANCING BORING: Drive casing, 4" flush joint METHOD OF SOI L SAMPLING: 2" OD split barrel sampler METHOD OF ROCK CORING: N/A GROUNDWATER LEVELS: BORING NO.: MW-3 OTHER OBSERVATIONS: PAGE: 2 of 3 BORING LOG FOR: Royal River Discharge Study BORING NO. : MW3 PROJECT NO: 7793-0330 START DATE: _5_-1_2_-9_8___ LOGGED BY: D.L. Maher I D Duchanowski TRANSCRIBED BY:FMD COMPLETION DATE: 5-12-98 DRILLED BY (Company/Driller): D.L. Maher/ D Duchanowski MON. WELL NO.: MW3 GRD SURFACE ELEVATION: ELEVATION FROM: CHECKED BY· ~~~~~~~~$~~~r:~~~~~ ·~~~~s~~~~~~~~=~~=~f-~~~t~ ~=~~~~~~~~~~~~~~~~: $~~$~$~},l.~~--~~z.x.$~S~$~~W$~J$~~$~$W.$~~r~~~~~$M$$$$~$~~$ri~$$$$mr~~ :$$$~_$.:~$~~~$~$: ~$$~$~$$$$Z~mS$$~i~$~$~$$$$f$~~$$1~ DEPTH BLOWS SAMP SAMPLING DEPTH SOIL uses REMARKS FIELD (FEET) PER REC. TIME MAT'L DENSITY/ MATERIAL or (moisture condition; SCREENING 6" I & CHG./ CONSIS. CLASSIFICATION ROCK odors; geological DATA SAMP SAMPLE NO. WELL or ROCK CLR BRKN classification; rock METHOD= 32 LENG. (QA/QC STATUS) PROF'L HARD. weatherina: etc.) I PIO Jar HS I 15 14

34

36 4 1125 SAND. SOME GRAVEL. 5 0.6/ (medium to coarse sand fine aravel) 7 /2.0 38 7 S-7

40

6 42 6 1200 SANDY GRAVEL 7 (fine gravel, medium to coarse sand (not quite clast 8 S-8 suooorted), whole sample may be wash)

44

46 4 1300 SAND AND GRAVEL 4 2.2/ (altematina 5 to 10 cm lavers of (1 l medium sand 5 /2.1 and (2) fine gravel and medium to coarse sand 48 7 S-9 which is matrix suooorted)

TYPE OF DRILLING RIG: Mobile B-53 I METHOD OF ADVANCING BORING: Drive casing, 4" flush joint METHOD OF SOI L SAMPLING: 2" OD split barrel sampler METHOD OF ROCK CORING: NIA GROUNDWATER LEVELS: BORING NO.: MW-3 OTHER OBSERVATIONS: PAGE: 3 Of 3 OVERBURDEN MONITORING WELL CONSTRUCTION TETRA TECH NUS, INC. PROJECT NAME: = Royal River Discharge Zone FS PROJECT NO: 7793 PROJECT LOCATION: McKio Superfund Site, Gray, ME WELL NO: JW-1 BORING NO: CLIENT: U.S. EPA BORING LOCATION: CONTRACTOR: PL Maher DRILLER: pennjs Duchanowski LOGGED BY: Karl DeBisschop DATE : May 22, 1998

CHECKED BY: DATE: PAGE: 1 OF 1

ELEVATION TOP OF PROTF~~T'~. _ _ _ _ CASING Final 93.68 LENGTH OF PROTECTIVE CASING ABOVE GROUND SURFACE (Ft.) 3.4R Elevation Top of Casing LENGTH OF RISER PIPE ABOVE GROUND No Riser (Survey) SURFACE (Ft.) 91.69 Note: Drillers added 1.99 ft GROUND ELEVATION 90.22 TYPE OF SURFACE SEAL None DIA. SURFACE SEAL BGS (In.) None DEPTH TO BOTTOM OF SURFACE SEAL (Ft.)Non6 None DRAIN LAYER I.D. OF PROTECTIVE CASING (In.)

TYPE OF CASING Mnnp DEPTH BOTTOM OF PROTECTIVE CASING (FtNOnC

DEPTH BOTTOM OF DRAIN LAYER (Ft.) None

RISER PIPE (In.)I.D1_5

TYPE OF RISER PIPE Flush joint Steel

TYPE OF BACKFILL AROUND RISER PIPE None DEPTH TOP OF SEAL (Ft.) N/A

TYPE OF SEAL None

DEPTH BOTTOM OF SEAL (Ft.) N/A

DEPTH TOP OF PERVIOUS 29'1" DIAMETER OF BOREHOLE (In. TYPE OF PERVIOUS Stainless Steel— TYPE OF Wire-wrap vee-slot PERVIOUS SECTION I.D. :4" O.D. : 4.5"

TYPE OF FILTER PACK AROUND PERVIOUS SECTION Naturally Developed

DEPTH BOTTOM OF PERVIOUS SECTION 58.75

DEPTH BOTTOM OF FILTER PACK (Ft.) None

TYPE OF BACKFILL BELOW FILTER None 58.75 END OF BORING(Ft.)

GENERAL NOTE 1. Entry of 0.00 for Ground Elevation, Elev. Top of Riser Pipe & Elev. Top of Protective Indicates that Surveyed Ground Elevation Not OVERBURDEN MONITORING WELL CONSTRUCTION LOG TETRA TECH NUS, INC PROJECT NAME Royal River Discharge Zones FS PROJEC7 NO 7793

PRCUCT LOCATION McKin Superfund Site, Gray, ME W:LL NJ MW-I

CL ENT 1 1 c; FPA MW-1D

CONTRACTOR DL Maher DRILLER Dennis Duchanowski

LOGGED B^ Karl DeBisschop DATE May 8, 1998 CHECKED Bf DATE PAGE 1 OF

ELEVATION TOP OFUr "KUItLMVt g.| g2 ~~ CASING -i« LENGTH Or PROTECTIVE CASING ABOVE T .ROUND SURFACE (Ft) 2.31 ELEVATION TOP OF F ,i tENf^H OF RKEP piP[ ABOVE npniiND 2.05 RISER PIPE ° 91.66 SURFACE iF')

GROUND ELEVATION 89.61 r r — I Tvnr nr iprArr rAi Bentonite Chips = c r r ^ HA i ,prArr rAi Rr i\r } 10 ^ + CEP1H 10 BOTTOM OF S JRFACE S.AL F* ) ^—i 1 [j QP ppoi[CT!VE CASING (In } rvpr nr pRriTrrnvr rAHMp Steel _5 None v \\ \ \ \ \ \^ \ •*V^ RISER PIPE (In) 10 9 OD ? 3/R \ \. \ s\ r '\> V rvrr nr ni rp PIPP PVC X; v^ \^H CB Grout \ \ \ • prpTu Tnp nr rr^i fc\ \ 37 '///), Note: C Bentonite Chips W %% TYPE OF EAL entralizers ­ '//% /%/,w, '/A r jottom of screen — irpTM priTTn^' nr ^r^i n "[PJH JQP pr P[P*'AUC e [frn N FI ) 41 — •* DAWEIEP HF BOREHOLE (In ) 4.5 [yp[ OF PrPwIOUc "ECTION rvor nr norMiMrc Machine Cut (0.020) OD 2 3/8 _

rrPE OF FiLTEP PACK AROUND Morie naturally collapsed 1 PERVIOUS SECTION 1' to 65 51

~* nrnTi.DOTTniiinrriiTrnpAfiLk, /rt(Ft i 51.1

T/PE OF BACKFILL BELOW FLTER PACK CemRnt-hfintomte grnut 106ft bgs END OF BORINGfFI)

S E M E p A L NOTE

I Enlrv ot UOO lor Ground Elevation Elev Fop 01 Rser Pipe 4 Elev lop of Proteclive Losing Ir^icoies (hot Surveveo Ground Elevation Not Available OVERBURDEN MONITORING WELL CONSTRUCTION LOG TETRA TECH NUS,

PROJECT NAME McKin Superfund Site Royal River Discharge Zone Study PROJECT NO 7793 PRaiFn i OPTION Gray, ME WELL NO MW-2

MW 2 CLIENT ii 5 EPA BORING NO -.

CONTRACTOR DL Maher WFR Dennis Duchanowski BORING .CiMON

LOGGED BY Karl DeBisschop DATE Anril "3D 1 QQfi

CHECKED BY DATE ^GE 1 01- 1

ELEVATION TOP OF PROTECTIVE Q0 1^ CASING 3

GROUND ELEVATION 89.74 IYPE QP -^RFACE SEAL Bentonite Chips =* n •« niA SURFACE SFAI RGS fin \ 10 K •* DEP^H in BinnM r>F SLi»F4fE SEAL (Ft j ° 4. CAND DPAIN LAYER •*- ID OF PROTECTIVE CASING (in I 4— TYPF OF PROTECTIVE CASING StPfl

•*- DEPTH BOTTOM OF PROTECTIVE CASING (Ft "I 5

~4 DEPTH BOTTOM OF DRAIN LAYER (Ft ) None \ N RISER PIPE (In) ID 7 OD 93/8 \ \ % TYPF OF RISER PIPF PVC

\\ TYPF OF PACKFIII AROUND RISER PIPF Pure Gold Gel Slurry

X N Note: \ > \\ •+ DEPTH TOP OF SEAL (El } 36.5 Used 2 Centralizers n n TYP[ QF E Pure Gold Med. Bent. Chips Top and bottom of screen w/, *« DEPTH BOTTOM OF SEAL !Ft ) 38 i, •+— •« niAMFTFP OF RDRFHOI E (In ) 45 — -«— . TYPF OF PERVIOUS SECTION PVC rfPE OF bPENiNCj Q 020" Cut Slot

=

TYPE OF FILTER PACK AROUND PERVIOUS SECTION ' '" G •^— DEPTH BOTTOM OF PERVIOUS SECTION (Ft ) ^®

^ DEPTH BOFOM OF FILTER PACK (Ft 1 51

|yp[ OF BACKFILL BELOW FILTEP PACK Non^ 51 ^ rur, nr nAnikin^n \

GENERAL MOTE

I Entry of 0 00 for Ground Elevation Elev lop of Riser Pipe 4 E ev lop of Prelect ve Casing Indicates tha t Surveyed Ground Elevation Not Available OVERBURDEN MONITORING WELL CONSTRUCTION LOG TETRA TECH NUS,

PROJECT NAME McKin FS ­ RRDZ Study PROJECT NO 7793 PROJECT LUCATON Gray, ME tVELL NO MW-3 BORING NO MW-3 US EPA BORING LOCATION DL Maher DRILLER Dsnnis Duchonowski K. DeBisschop DATE 12 May 1998 DATE PAGE 1 OF 1

T ELEVATION OP OE PROTECTIVE 93.06 CASING LENGTH OE PROTECTIVE CASING ABOVE GROUND SUREACE (E!) 2.05 ELEVATION TOP OE LENGTH CE RISER PIPE ABOVE GROUND 1.06 RiSEPP^E 92.07 SURFACE rt j

GROUND ELEVAFION 91.01 TYPE OF SURFACE SEAL Bentonite Chips DIA SURFACE SEAL BGS (In ' 10 DEPTH 1C BOTTOM OF SURFACE SEAL (R ;

SAW DRAIN LAYER I C OF PROACTIVE CASING (In ) TYPE OF FPOTEC'IVE CASING Steel

— DEPTH BOrCM OF PROTECTIVE CASING (rl

— DEPTH BOTTOM OF DRAIN LAYER (Ft \ None — RISER PIPE (In) ID .2 OD ? 3/8

— TYPE OF RISER PIPE PVC

TYPE OF BACKFILL AROUND RISER PIPE Bentonite Slurry Note: DEPTH TOP OF SEAL (Fl) Used 2 Centralizers Bentonite Chips TYPE OF SEAL Top and bottom of well screen DEPTH BOTTOM OF SEAL (Ft) 39

— DEPTH TO3 nr PERVIOUS SECTION (Ft j — DIAfVETE' ~ r EOREHOLE ( n ) — F/PE OF PERVIOUS SECTION -PVG — TYPE OF OPENINGS 0,020" Cut — PERVIOUS SECTION (In) i Q 2" O D 2 3/8 rYPE OF FIL'ER PACK AROUND PERVIOUS SECTION #1 Morie DEPTH BOTTOM OF PERVIOUS SECTION (Ft ) 51

— DEPTH BOTTOM OF FILTER PACK 'El; 52

— "YPE Or BACKFILL BELOW FILTER PACK Nans 52 - END OF BORING(Ft)

GENERAL NOTE

1 Enlry of 000 for Ground FJevation. Elev Fop of Riser Pipe & Elev lop of Profeclive Casing Indicates Inot Surveyed Ground Elevation Not Available 41116

c c o o o

. .n 0 - c >­ < _J :°^ u — 5 CE 0 0 —1 J\

"r in - O - 0

~~ c oo o: 2 UJ l>­ ^» i! r" i-^ o I Q z S rS d—

UJ 1. O •Z u_

U>J < o: o 0 I o O m O r r C ^ o o — o Ifl V c

- >.

- c _ ,r I S o 2 ^- 9 — o "5."=­

\ O

GeoTestmg Express • Boxborough. MA • (978) 635-0424 • Fax (978) 635-0266 T^e Acr :_­ 1~ I7.52 1333 ?aoe

LA3CR.VTC.-.V 7IS7 TATA

Tetra Tec.-., Xc.

T-553 late • :4/2S r = Testa- cy gsg yw-1 ,33-41) Test "etr.od ASTV : 42;

Sci- rescript!" ^oist. light crr.r.ij- gray fine Sana

Siev• e Sieve Openings Weight Percent Mesr. Inches Millimeters Secained Heig.-.c Retained Finer (V)

0.5" 0 .500 12. 70 0 .00 0.00 0. 37 5" 0 .374 9. 5 1 9 .02 9.02 #4 0 .137 4 .7 5 13..7 0 22.72 mo 0 .079 2. CO 25 .43 48.15 71 S20 0 .033 0. 34 40.. 19 33.34 4 6 *4C 0 .017 0 .4 2 39..4 0 127.74 22 *6C 0 . 010 0. 25 23..2 3 150.97 3 *100 0 .006 0. 15 3 . 73 159. 7S 4200 0 .003 0 07 2. 63 162.33 Pan 1. 56 163. 94 Total Dry We ight of Sample = 1-3.2

D8S 4.4571 TTO D6G • 1.3737 TIB D50 : 0 . 5648 T.IB D30 0.5230 "KB D15 : 0 3241 mm DID : 0.2599 T.1B

Soil Classification ASTM Group SyrBbol SP AS7M Group Name Poorly graded sand AASKTC Group Symbol A-I-O :; AASKTO Group Name Stone .-rag-ner.ts. Gravel a.-.d Sand

GeoTesting Express • Boxborough. MA • (978) 635-0424 • Fax (Q7R\ o E cu ; 2 c:

I i O I '^J I

•c c c '/I

"O c c 1/1

u n_ ^ - —

o 10

GeoTesting Express • Boxborough, MA • (978) 635-0424 • Fax (978) 635-0266 GiGTECKNICAI- LA3CRATCKY TEST DATA

.-r::?i- No 3TX-1S23 Dectr. 61-53 :; Elevaticn = crir.g N'c Test Date :4 '23, 93 Testea by : gsg iarple No MW-1 il-63. Test >»ethc3 ASTM D 4C2 Checked cy gtt Lccati;.-. Gray. ME £;>:1 Descriction • Voist, lig-t browais.1- . gray fine sar.^

TIME SIEVE SIT Sieve Cpar.ir.ss Weigr.: C'jmulacive Percent Ir.c.-.es Millimeters Rscair.ad ^eig.-.c Retained Finer (gm! 'gml 1%)

0..50 0 12..7 0 0 .00 0..0 0 100 0..37 4 g .51 3..9 1 3 .91 97 0..18 7 4 .75 0.. 77 4 .63 97 o .079 2..0 0 4 .6= 9 .33 93 0..03 3 3 . 34 21. 34 30..6 7 77 0. 317 0 .42 60..O-' 90 .74 33 0..01 0 3..2 5 30. 7 a 121 .53 10 513C 0. 006 0. 15 13. 26 131. 79 2 S20C 0. 003 3. 07 1 . 33 133..6 7 1 Par. 0. 79 134 .,4 6 0 Total Dry Weign.t of Sarrrale - 143.74

D8S : 1.2881 mm E60 : 3.6438 trm 353 . 0 .5511 mm D30 • 0.3967 -ran 015 : 0.2824 mm :iC C.2522 ram

Soil Classification ASTM Group Symbol : SP ASTM Group Mame : Poorly graded sand AASHTO Group Symccl : A-l-b(O) AASHTO Group Name Stone Fragments, Gravel and Sand

GeoTesting Express • Boxborough, MA • (978) 635-0424 • Fax (978) 635-02fifi 00

•J 55 u CT 2 01 .— CN .c CO O u •— "*) V 1 ^ i— X ^-^ Q. 1— o o ,; < r^. o 13 o 'o5^" "o" u L_ o Q Q (ft 5

r*

f~\ "z < to" •s-. p--; i CN 'J-. 1 CN

M~) ^ to -—• •o ^ CM l 1 2 C^N l r/^ 1 2^ < 2^ T3 o c s ^~­ CJ o ^O c 2 c 5 E CJ ^c o o In 1 c C/i ~ '— c

. o CD •- c O CJ

O o

.± 2_ u ~

GeoTesting Express • Boxborough, MA • (978) 635-0424 • Fax (978) 635-0266 r-_ Apr :-: 39 13 :3 1993 Page

?i le.-.atre MW23435 Hilevaiicr. . --­ Tes;ad oy gsg Sample No. XW-2 34-35, Test Met.-.cd . ASTM ; 422 C.u.sc

FINE s:r;z SET S-eve Cper.i.-.gs Weig.-.; I.-.cr.es Millimeters Retained Height Regained (gmi

34 4.75 0.00 3 00 100 310 2.00 0.39 0.33 130 320 0.84 1.10 1.49 99 =i4C 0.42 3.15 4.S 4 96 =60 0.25 19.04 23 S3 79 =130 0.15 55.34 79 72 29 =200 0.07 23.63 133.35 4 ?an 3 . 94 112.29 0 Tocal Dry Weig-; of Sample » 121.16

D85 0.3012 mn D60 0.2055 mn 050 0.1852 irm 330 0.1505 rrai D15 0.1014 T.TI D10 0.0884 rr.rr.

Soil Classif icat-cr. ASTM Group S%^nbol SP ASTM Group Name Poorly graded sand AASHTO Grcup Symbol A-310 ) AASHTC Grs-= Mame Fine Sand

GeoTastina Excrsss • Boxborouah. MA P-.V APPENDIX D

ANALYTICAL LABORATORY RESULTS DATABASE (0 ra 1 3 3 a O O « 5 i 75 75 "c5 (fl (0 5 § § ffl" to" _co" _co 1 1 CO CO "CD (fl 1 11 1o V] (fl co" V) o o o O to O o 8 O CO CO to u o o o o o u u o u to S" _w _w to [fl V) w CO v> M Cfl CO CO to Ifl » w w w" «" 05 LO w w UJ LO to CO v> to tf> CO LO y) « M w" cfl O o O o O o O CO O o o 0 o o 8 8 8 8 8 o § 8 8 8 8 8 8 8 s 8 8 s § § § § § 11§ 1 i§ § s 8 § § S §

c X to V) CO CO CO w CO CO CO CO CO CO (fl W CO CO (0 to CO to CO CO CO to CO to (0 LO to (0 CO CO (0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 o O o O O O O OO o 0 O O O O O O O O OO O O « CD CD CD CD CD CD CD CD CD CD CO CD CD CD CD 0) 01 CD CD 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 cr cr cr cr cr <" < < 3 <" 3" <" 5" ^ * * CD CL O £ O CO CO S c o i U> o ^_ ^ ID o. *7 CM in 9 9 CD CD "co m F m m I CL CL E o 0) Q) o c CL CL CL sa i cr rr CD CD o Q CD cr (U CD rr 1 (rt o CL CL "5. CL

sampi t u sampi t a. 5 sampi t 5 JZ 1 1 g o .2 O f to CL CO CD CL ar t V) a. matio n io n CO io n CO CD i V) CD CO > s t fi r fi t

Q s e s e "c CD CD rr 1 CD CD CO sa m 1 tr CL CL 3 Rive r tes t tes t tes t RRD Z RRD Z RRD Z RRD Z RRD Z RRD Z cr cr 1. 1 to O o tar t e r e r e r CO s t e t e l e t e i-onftrma t irfac e :onfirma t t e fa l irfac e l e ID O3 u "5 to CO CO CD C CO cr cr 0 CO n 0 3 O 3 3 O Ifl a cr c 0) o I" 2 CL rr c Ro y I CL CO "CL CO CO "5. cr rr ___ CL "a. S CO ICO £ CO I 3 3 3 -o 3 1 T3 •a O) rr CL cr 1 tr CL cr

tes t -o "8 CO CO 1 3 II "5. oo •a S •D O •a 3 "co CD CD 5­ CD 1 £ °* "5 "o> O £. 1 S c? a U_ LL f 1cr cr li. Ou a. 1 I1 cr 01 lE cr CD O in in o O o 0 h* 0 in 0 0 ro ro m CM CO S CM CO il CM CM OJ CM o o CO 0 r-- CO CO CO CM o "D D T­ T T •«— 3 -> CO ^~ *~ ^~ ^™ ' ~ ~ *~ *~ en ' E N o |Z KQ ™­ IT 2

£ 13 CO to CO CO CO CO oo CO CO CO CO CO CO co CO CO CO CO 00 CO CO 00 00 CO CO CO CO CO CO CO oo CO CO CO CO CO o> O> _^ o V) CO 9> 9! 9? CL CM a s CM CM 3 1 c 1CM CM CM CM 11115 CM eg CM CM CM CN (B to 1CM rj CM CM CO CO ro iro CO S tn S in 1I 1 i £ S u CO 5 —"(5 Q o o> o O) o o CM in o r- o ffi < < < < < < to CM ro o o r- o 9 to 9 Z < Z z z Z z Z z Z Z z Z •z. Z Z Z O) -q- 0 in in in in in o CM - CM o CO o ro CO CO O o (0 0 ^ "CL CD

|

OJ c CD C O) O) O CO (5 Q CM CM CD o o o o O 0 (O CM CO 8 O) CO OO a. CO CO o o to r- O § s CM CM CN CM to _J CQ 1 5 s 1 1 o o o o 0 5 5 0 O S § 0 "a -5 •5 eg CM i CO tr cr rr cr 'w rr rr rr rr tr rr rr cr Q) P CD i 1 CL CL Q. CL rr cr rr cr cr rr rr rr rr rr rr rr rr cr CL 0 Q § Q Q Q Q Q Q Q Q Q Q Q *~ 03 _CD 1 — CO (fl 3 i "c to CO CO 3 o- O O "5 ai 3 E OJ 0) CO wj UJ CD CD CO (1) c a 3 3 C g •a i •o S 1 CO to _0) "co 73 "o "5. 0) c= 5 CD o O) o CM in CD r* CO "5 "o § o o O) o r- O CO m CD CO o IT> tn o CM 1CO i u_ i | CO o n ro r— O u. u_ CO LO S ° CM CD CD > CD to o o CD O g CD r-. CO <0 r- CO T- T­ 'Z. CM CM Q Q o o CM CM T- "CL ^ in *- 1 1 to to CO ,­ ^­ •Q. 5 n O 0 CO CM in CM CM ^1 o •7 CD 1 9 H 9 H­ 9 O r-­ Q. CL 5 O. 0. 1 CL g CL o 0 S S X CO o s o o o o 5 5 CO S o sa m £ CL CL. CL K CL CL CL a sa m u. tx 5! S £ c | CO rr cr rr cr rr tr irr rr rr rr cr O UJ CO Q Q Q 9 9 Q 9 9 9 9 9 Q 9 Q 9 9 e r m rr cr 9 e r cr X rr rr rr rr 3 rr rr Q cr CO i LO Cd 1 g i 1 S g "co g § CD CD CD CD CD H to CO to LO 1 a o io 9 9 9 o o [ to CO CD to CO to •f> ? 9 9 o 9 C 0 rj O N i 3 i g •5 Q O 8 a £ a S S a Q a 3 a cr rr cr IT cr cr cr cr cr rr rr rr rr IT rr rr rr cr DC 1rr tr rr cr K 1 X. rr rr [£ rr rr LT a rr O tr rr cr rr cr cr CE cr rr tr tr rr cr 1rr DC rr rr cr rr 0 CO rr tr rr cr cr CO a: tr cr rr rr rr 1rr rr DC cr r rr Groundwater Profiling Confirmation Samples —J

CO cooooroocoooooooooooooooooooooaooooo CT) ^ o CO CO CT) O) o o CL Q CO ' \ g I/) CL N a

=>=>=>-,=> ^OZ)Z)3z33tZ,30333z.3.Z13Z.Z>Z1 ^Z,3Z.. Z. 00 o o o o in o cr> oio o o oooooooooooooooocoooooo rt 5; in ! CO CN I CO o 1 iS CO Q. o CO

el 3 9 o (U OJ C D CC g 0 CT CC O Z <

DZ)3Z.3I2Z1 =IZ)3Z.33=.=l=,Z)Z)D3ziZ>Z.=)Z,33ZI=1 Z)Z,Z.3 CO ooooooooooooooooooooooooooooooooo oO) CO s CM o E o CO ~ re CO a) o a o Q 6 a V) 0 CL N Q ., o Q Q) d) - tr ce g o o- CC O 2: < ! E ^ —1 § E clt OO •tooooo-to oooooooooooooaooooooo raCT o o> „ LU CO in CN "- CN Ico o< ^ co o sfe

a. CM a CN l g CO O H Q O (D OJ g g g g- a: O z <

^3Z)333-,Z.3333D3=3=1 Z)Z)33=)=1 Z 1 Z ) Z.3zl = 1 Z3Z,=..=1 o CO cooooooinooaooooooooooooooooooooooo CN CM Lf~) CM T? OJ CO o CD in a. a CN CO 5 CO (/) u CL O N a O Q) > C 3 > 0 CT ce (D -z. <

5

T3 c 3o o co

1U ct ^raoroojajdjo1 gi g c » g 1 £ I ££ « o£ 5 1 1 1 1 1 1 1 1 | § ~ 1 §1 11|l § l| 1 a « 1 s^ll a. cu 0 ,™ '5. "S — ulpljul'o'o'o'o'o C m -C* ^C'S^EcC-0 ^*^ ^ c S ^* 1* ^ ^ 51 *~ /^ CO ^ x o l i x ­ <1 oo tT Q> c5s 'S'i'3 ro c =T CO CO ssia o CN

Z) Z> Z) Z) Z) Z) Z) Z)IZ) Z) Z> 00 ToT oooo|o|ooa o jo a ooolo ooo o O> o CO

81

3 3 313 333 o o o oo o o lo I

9 Xl i a o c cc,_ Q. 2 ct CD fe E 3 33 3 -s ro OOOOOO(NO o|o olo 010

O

ii raat cr

N Q 1 Q ­i f § ce O u- <

3333333 3|3 ID 3|3 3333 13 »> oqoq|ono[a>qooooo|oooooooooooooocnoo 3 ce ^ CE "o OJ W oi w ^ "5 o c Q. z ra Ql Z) I _2 O t •5 tsl Q E CC

. 01 9 o 1 . .n c o o oo E T o O 5 £ 0 Q Q o o . '•2 » m 3 E.1 E O I O >» ^ I ™ -!J "m ra a) : Z3'Z) Z):zi:z);z)'Z):Zil Z):z) ID z)iZ)'Z) zi:z> D ZJZ>:Z>'-TJ Z) Z3:z>'* —) CO ^rioo oic^iOir^-'OiO oio'O'O o o:co:o o OiO 010:0,0 o O:OCN ooo oico o S : 0>; "! . : ' i ' i . ' ' ! i : : 9 ^ ' CD T=- 0) ' 1 CN : O i . : , j , 1 1 i ' ; ' j i , £9' Q CO i • 1 I : : ; , | ' 1 : : 5 ™ . ; ; ; ! i ! 1 i ! CD g! § ' i ! I : ' : i i ' . i l l : 1 ! ' Nl ! Q o i i (U OJ I',.'. ' : i i ' Q 1 > CD ix ;> oo- i , i : ' ' : . i i : i 1 tr O 2: l< : ! , | 1 :

, : • l^>'-3': 1 —3 ! ~3 '. ' '. zi iz> Iz) :z> !zi :Z) •-, 'Zi zi.ziiZJizi z> ziiz) Z)iz> Z)! z>;zi|Z) zi z>;z> ziizi z>;zi zi'zi.zii. .z> CO OOIO OOiOi^'O O OiOiO O O Oo:o O O:O!O O,OO;o:o OIO OO:OIOiO (£> g 1 . 1 : ' , , . . . ' ' ' CN CN i ™ : ! : (0 i ^ i ' : ' • 1 ' ; ' 1 ,

CD Is* IT) CD : ! . i 1 tN E «? 9 S g "? CD:5I 2> ! II W 9 :Z)0 2 Z.:Z) 3 3 i ZI 1 3 ' => 1 =, > Z, Z. Z) Zi Z. ; 3 ' Z> 3 Z. , Z) i Z) Z> Z) Z> Z> 3 3 Z> .11 00 oiioiO'O.o o o o o o 0:0 o oo a:o o oio;o o 00:0:0 oo o oooo c S § § : : ' • *" rf ' O 3 ^ a S § ' CO 1 : ^ 9­ .a: 1 i '' '• ID g 11 in g CD o E o .9­ £iz> S9 Wo Q o ce Mm ?!?' I"1" N a ° ° a:-; -o « —) ~3 —3 —3 ' • —> ~D ^l^.O O ID ZD O Z) IDO ^ ^ ZD ^ 13 Z3 ID D , 13 Z)=) ZVID I3:iDiZ3;ZD 3 .3 . « =3 CO cooo:oooooooooooooooooooooooooooooo => ce y? o CN §'S

m o ct y Q : : ' § g: CD . CD (H LO i O i ,1 ** N Q QCL 9o ce: V'co ce >.in "-.' §s: =§' N.D Q ? Q -i 2 §: ce S

^ ; : • • • . . . • . ° ! ' ' , ! ' ' i :

•a : • : ! ' C • ! j D . , • ' ' • 1 a ,c : , • ' i • • ! ; i ci c/J LU I g'l g! . 1. g ^ « ' :|l , •!| ce U(oon:uiu : a>iii>:C p £ .H ,io£ <"i i o-i ; X L_ 1 C ! .yif5£;S:S:S§i2. I: g - Sigia. cj 0 ili1! llif.fiii .|i I : iil:S! ; lihil 1 |i'« O : tJo-CI-S-Cooioioiolc'ccNl B i ' 2£ £:.S!!-5:N;ralE£oS:a)i,.g ! . • g 8cd£:'1 1^ ce o: roS5!5:£!5 fcu o i ,;t5E (11 'd 1"^ 'C _C -C -^ f~ (~ lr- ' ^. in) QJ 1 •— Q r- "—1 1 1'OJ **,£} ^ C 1 n'CI^ ~^ 'CO O ' ^ Q. < . « .™ ' 'S.. U > Q.,Q. w '=;.s:.y | Hlrn H || |:| •|igigi| | gj? Illig %:•§ 8i| § co E Ii g!^ 2 xi-- olo E ; E S. " M 1 — i a. «:-. 'NCM.iQ a 9,9 Q|g '||;; | Sis EiE:|:|'&ioic5 fe.-sfltsfil'S™."^-*. CD aim ra , u i ™ | 3 3 -'- -J'-. - .]-s; -§ -5 . gra c CO ICO Q Q IS !Q > T- , ,- ; f- ; T- T- T- !T- T-'CN cNi4i<|caicQ CQ:CQ|O O : OlO,OiOr5ICi LUIS co!|-i(- )- ^ I- > c <

Q) ,

1 < I2 . P C Q. °

•sO uO 3 •* O _§ ' CO -> CL

Ice, 5 t

Q r,

o cc Ij OJ W •3 s, 2 "S t--OOlOOOCO'O O O OlO'O O O OIOIO O|O|O|O OlO O O S c

-5 E

N Q Q -i, Q£ 5 ceiO

co UJ X co E

u. IT 9 | t: N 3 u- , Q a.^i ^ g 9' * • ! J ! ! i : > T— ' a. i I . . | CD > 3 I/) ; N £ Q O ! i : ! : I 0) 1 Q • 2 ! or S a) S-i ! ! CCICD: ii. \ , : I ' i i ' I Mi : !j i i

< < ! < ZIZ ziz:z z:z;z z;z:z z :z z 'z z :z :z ;; ::z:z:z.ziz:z z z;z!z:ziz'z z

: : to i — i . i j \ ' CN IO

T- a. u) Q..2 9i3 =" 3 N p Q O 01 J. 2 S! or iS cu CTI or ICD u.

_^ ­, 3 3 3 3:-j'ZI3 3'3:-, 3'3i3 3:3 3'3:l3:z»:iD.r 3 izi'nirD.r) Z>:D:^ u'z*: => CD CO O 'O O ' !*•* O OlOCO O O i O O O ' O ', O C 10 o;o o;o o 0.0:0 0,000 1 :2>I5 8 8 O O O *~ • O O ! O CN O i O ! O ! O ' O O i O i C 8 iO:O!Q O O OlOjO O OiO tn^O to i i i • . ' ! 1 ! ! Co" >;

-• ' 3 i i • ' i I! 9 1 CD ; i 1 : ! 1 i 1 i i . : : ' i ; Q <-• % : i ii : :: i : i ' i1 •! ; j ; 1! :. !! |i ' '' 3iS; " V) : CD|>' 3 i i • • ' i i 1 a 1 i i ! ' ' 1 NiP O , O UJ 0!i 2 0) , ! i ' • ' ' ' ! • ; ar:S .cu O" «-b­ or 'CD a.

33 ^ -jO'Z =) 3 3 3 Z).D,=D ID ID 3 => ;33 3333 3.3 3 -, 3.3 3 . 3 CO Ol O O OCNO (NOOOOOO.OQOOO.CD oo oo oo o o cN'O o a o o h­ CN : — S i3 3 5: 0 I >— QN P

C^D 95 *§" (A I Q O i N;P

1Ul f^ OJ o : a) i c 2 -^ — 1 Comp ( o" £ ; a> o­ c c ' c ; c : c : ro 5 13 != • v- "m ! TJ 0) 1 O _i ro cu ; ro o ^ cj i a. J2 c cu 1 .2 • a. e i '~ c i t £ .£ .c :.c :.c : o c: t coi'a1^: y {UjOic. o: ai 5aji : 1 WJ o 'a)"cn'cj'c5i'aj a.i .y 2 Si^rn ; UJ oooooo^,!!)^­ 2 , 5 ! 3 S 5 g ! lii'l'siS: ii sl|'« c: ;r O f

Organi c o o oo^oo o1- ^' 1"S w"aj'/^2 Numbe r ^ -ci-c,.c £.£'2.c >.. o):" c ^ o p '" n'iiifiiigg! §; |.sii o o DUO o}= cox: c ^ ^ ^c c:­ I -Trichloroethan e Sample d ,2-Trichloroethan e Q;i5 S Q:Q:Q g:gi-S:°:Sii | |;S i-&'8 1 '1^,1.1 tiS'llSi^'T 5:o l< iS 1 5 o:oioiT-"«2'>-i£ £ IS !§ Ira i S .-=!>. CD — T- CN.CN CN CN CQiXlS: JJ| g OIO Ollj.S'j ; , 1 :.:c:2;2;J> .^ £ i «> • 42-l"S i"5 l^S ; S -M^^ 1,1,2,2-Tetrachloroethan i 1 1,1, 1 Duplicat e Descriptio n Matri x Dat e Volatil e Sampl e Sampl e Locatio n T->T-i»-'»-'T--T-.r\iirMixri 1 1 < <<<<<<<<<<<< 9 3 N p Q o "O

o U. 9 rl Q ' Q CC o CC g n CD 13 "^ 1 rN­ f.^ I j D °§ or g ? 3 an C3 iT <"

3 3 3 3 3 333 3 3 3 3 3 333333 3 3 3 3 3 3 33333 3 3 3 3 3 3 3 3 CO o O O O O in o o O in OO a o o o in o o in in O a a a o in in o o O O O O OO O O 3 or is 9 "u CN > OJ W gl O 91 fsj i Ql ^> ort g o cc CD > % 2 N p Q o i I Q -; — 3 or g a> cr I cc O U- <

5 o 3, M I Tl 3

cl rr_^ 1 | C S 0 c "o ^ o Q. c £ — _£;

05 _J X phenyl e Organi c i)Perylen e O f h Trichloropheno l Sample d 4-Tnchlorobenzen e 5 Dimethylpheno l Dichloropheno l Dinltrotoluen e 6-Trichloropheno l Dinltropheno l Dichlorobenzldln e CD 2-Dichlorobenzen e 3-Dlchlorobenzen e 2-oxybis(1-Chloropro | 4 4-Dichlorobenzen e 4 4 4 4-Dmitrotoluen e Methylpheno l Nitroanilm e Methylpheno l Nitroanilm e 6-Dimtro-2-methylph e Bromophenyl-phenyl e Chloroanllln e 1 1 Bis(2-Chloroethyl)ethe r Benzo(k)fluoranthen e 1 2 2 24 2 Descriptio n Matri x Duplicat e 2 Benzo(b)fluoranthen e Benzol g Dat e 2-Chloropheno l 2-Methy l naphthalen e 2 2 2-Nitropheno l 4-Chloropheny l 4 4 4-Nitropheno l Acenaphthen e Acenaphthylen e Sampl e Locatio n 3 Sampl e Numbe r [ 1 [ 2 | 2 [Semivolatil e | 2 | 2 6 |2-Chloronaphthalen e [Anthracen e (Benzo(a)anthracen e [Benzo(a)pyren e | |Bis(2-Chioroethoxy)Me t | |3-Nitroanilm e [ 4 [ 4 [4-Chloro-3-methylphen c | 4 zzzzzzzzzzzzzzzzzzzzzzzzzz CO en u­ 3 + (N O in T^­

u. ^

° CD! £ Nl -> u_ Q ni KI o t*­ § i §•'« QMl -,? °2 g§ CCiS cu o­ ceilD u- < | ! z z z'z zzzzzzzzzzzzzzzzzzzzzz CO sCD U­ ­ IN O in +

"r g 5 u >T^­ u_ QN £ ce ac • o - o c og ?­ ^Q. <" a. 2 N 1 Q 1 Q -, 2 ^ ce S i> o­ ce CD u- < 33=)=3r)3=3=)=)3=)Z)=iz)=3Z3=)=)=)=)nz)3=)r)r> CO I oooooooooaoooooooooooomooo en ^ 01s °^~ in g - f 11 - g 9 CD ii

Q o*­ cc1 Im > T— Q. CD1? 3 » QN ^P Q^ °a ce S m o­ ce CD LL <

333=33ZID=)Z)=l=l=)Z)=)=)=)nZ)Z)3=>Zin3Z)3 CO oooooaoaooaooooooooooomooo S 9 CM •»­ CD « in 5 0) « •o -^ »- 03 5 9 T­ N g? ceQ 5 >g T— *Q. C3 > 3 » N P Q 0 Q -, 2 2 ce S m o­ ce O u. <

O 1 (U 1 0)1 C c "Si Q) 1> ! ?r OJ in -s = -61 ^ E £ LU -Ca(tJ i ) oni oi-Sm 1i a>C -5tTJ , r-E co cc I X w C 11 lill 3: IJIgl e| li G> O •>. £ nl-5 c ojiJS! 3 rel-2 ra T3 a- a) u J3 ^ T3 p ro ^ § g Q. c 0 It fiMHi 1iHs.;isiii O z j E 2 oj < o> o <5 CL "ro !lilt!t!lt!l!ll!illlll!li s(l 1 ttaal* Ci>--e£-cci>'ogg3S§Q.5lQ.2c£Sl ra ra ra oj ra 3 W3rai^:-L_-S-y9i E^3aiajo(ij'OOirat;(jx:jr>< CO CO Q a 5 Q xiCQUOQQQQQQu.Luixxz:£Jf!zzzzQ-a.CLQ­ CO 3i3'3!3!3l3: ! -, 3 3 -3 • 3 i3;3!3: 3I3'3 =3 313 z:z,'z'z z:z:z;zz:z 'o in ico I-T i^-'cn ;TT i o ICN ICN ico iin in oico CN CN o co'coio r-- iCO ICO • O5 Li­ : cn cNicoico!Pci,2 W ^ i in 1 1^ c\i ~:t-oiT-^ co ci:f3 ci 0 ™ 04 co sis , i '° ,£j . ; ." ,?i ". ;S| in A-. i i . "' ; i u. PT [i w 3 U. £ i ! ! ' [ a A ^ | : ! j . • ; i | ii9 ^ i j ; ' i , i | : ; : . i i & T— ' Q. ! i 1 i ! ; ' O > ^ S2 i • ; • : : ! • N P D S ! \ i ; : ; | Q -i, S ^ a: Si ;.cu g-i >[ celO! :u- < , ; i i . i M

-3 3I3!3I3|3^> i-i'3J3: 13 ^33 1 333lr 3 3 :3 ziziziz z:z z'z.ziz r-^icoi^lcoicn CN oi-^t CNICJ> T-itn o coiCN T'O co colo r^-- co in en |u­ " ! tvi i ni ° ! P "> °^ • ^ i 03 CN (N i <2 CN' o,co2.micii9 c 3 ' ! I ° ° 5 i" :K CNI icn ' °:E 5 j i 1 C? 9 ; j i . CM ; • , T­ | i ! : ! " 1 : j U- :i ! ' ; ' : : ' 5 I'? i ! i A N i ; . ; , • ' ! 2* Ll_ Q p ,1! ce ! : ! ' ' ' 1 1 2 ' 9 : ^ 9 i =" S II NiP: ^ ' S Q -.1 2 " ce >i fu o­ ce O u. <

—3 ! =);3;z>i=3 I=J!Z)! ' '=3in; ;3 3 Z) Z3 : Di->iz> r3,:3;3 3 3i '3 3 -i CO micoi^iTricDiTroitDifNicoimiin o CN CNICOIO;CO in o ' r* ^ i CN i in T- CN T- Y^r i co i in in o i Ojcoicol |0 dig Wi^,^ -|N,gJ o CN^ICO' ^ °;<."i O CO "" o | ^- 2!°' 'i^io . 5 § 9 ! CN v- ^ ! i ^ ' i ^ ; •' • CN I CO: b *" ­ • i ^ : ! ' i 1 P ' l i i | ' ! r> ' 5 ' i i i i ' ] 9 ; S : i ; '§ 1 • 1 ! i ! ! ; i i t-p N a i i i ' • ! at : : " a ,-: £ i l l : ' ] i : i 0| 0= 1 ' i i 1 ; lea aO §+ 1• ' 3o- 1L ig, ; ' N P Q! 0 : i cae $-i , 2- in T- • o , T- ^ (N t— ' CNI 0'0'm " ° fM' S fM

1­ o t? ^•1 N o > a 3 P ^ | T3 g;9: ^ : . ,' : : • , • CJ 5 ' 3 w O N P ' Q 8 , . : a -i, 2 § ce is . <" o­ ccio: il <

[ ! • ' : : i ; i

i ' ' ' J i ! : ! i . i 3 "O ' ! i ' ' i ' : C s C0:-o| : : 1 1 ' & E: £ : U) *u) . . p!E i 'Ej ' ;§ <$, : £:e >- 'p'"raiz c: o $ 2" § iz io o i — i o i .r ^ i .2 .£ \ & i i £ i 3 o i o o

C/J CO id Id 5 Q

oL 2

< < i- < —3 —) • -53^33^-)Z^^^333OOr)ZlZI3^OZ)33^3333^D-)^ ~, °3 »- Q a 010 ar^- ooaoooooooaooooooooooooooa S 0) *-OOOlOOT - OOOOOOOOOOOOIOOQOOOOOOOOOOO Z «> i (D T~ r-j £ in S ° CD i SI £NIj (- ^ii°) ce 5 o i- ce CD z <

ul T3 c o S~' (Daja)C 2 ­c 2 o^ ^ Q. X Hf'olSg^SSS. I |l oi S. S I' g § cg£gj:^:jij:£o c c oj-o-Cu o ^ § g Q. C O U ™J § Sll 1 &„ u £ § JlsSig |i§gg f 8f|« Z ° E 2 u o ^ 3 s ° ° ° oo o§ g N 1 § f ,§ 2| 5 i 1 | 1 S H § §S^° z o '-'--^'-'-"it-"^^-"T-rI<(NTr < >- O < CO If z .0 £T K Q N a fNJ O gl9 \- g 5 o 9! CN or cr 9 S (— S H- O CN CM co E 5 c O w 1 i .3 i= ro ro OT C CN O So O CN p Ol 8 g E | t CN S g ^ o LL­ IH 5 1 ^ OJ g'« iQ TJ E2 z a 01 1 ° £ o S 2 5 I 1 0 Q2 in£ — cu & = 1 ro 0) cr « < 0 g- < x w ' g ' 3 a (1 •o o 5 o Q. g c Ul

jSemivolatile Organic i 1 0 3 ZiZtZ

2,4-Tnchlorobenzene 1010

1 n 1 ,2-Dichlorobenzene ' ^ - 3-Dichlorobenzene ^-CNCNCNCNCN"lcN"cNCNICNICNtfMCNCNCNC D o z

4-Dichlorobenzene olin r>]3 1 zlz ro 2'-oxybis(1-Chloropro| c i |

4,5-Tnchlorophenol z Z>Z>D3Z>IDZ>3DZ>Z>:D3Z>3 oooinooooooinooinin 4,6-Trichlorophenol 4-Dichlorophenol Oaaai;cZ'5'ffi.b|.i=i9-a - t-|i ,CCCU• ­ c'o. : C-5 ?• "g 5J ra S -z.-z.-z.-z.-z. S "a. o f; 0) r ° -C E

4-Chlorophenyl-phenyle Z)

4-Methylphenol Z _ !Tt-oCl:D3z>z>r>=>nr> -3 -z. 2ro|ro2ooooo. C O 0 C f^SScroSc^ ,ooco)CDajcDaj!2 z ! |ICU CDIC >* 1 « 1 0) 0) 0) Sf ZiZ c 1 I ' CU 4)1 crout 0,1 C ^L z -C ziz ^ c fe t 31 — Ji 0­ ., S U C zlz CU £. c ~i = - S. >• ^­ S. * i f I JZ "cu ° c CJ g 5 OD s(2-Chloroethyl)ether o n z < TJ — •55 a O ^: iii QJ § ro W -&• f» E ro I LU c/> h- X it C3 r o Q) CO 'o

o b

•* O ra ' CD 11 ox E2

[ zz'zz^zzszz^^sz'z'zsr^^z^zzzzz lei (N O) ° Si I

5° *> D S ^ <•> 2 cr: > o i cr cr O Z <

3=3^=)0=)=>=)0=3=3^Z3^Z)I3D=)=3^D^=3=)=)D 00 ooooooooooooooooooaooomooo 9 a

(— CM

9 i § Q|^ g » OZ. > o cr K O 2 <

—m Caj->, ffl br­ cc 2 «1 SUE .. S S S ,, ^ 2§--5. o X ._ c S:ro ™jra£ - S -5 9- c — c i h­ ^ 0) O •5. j: ral-sc £ ^5 yraSraTj Q.IU 5, co u -Q ^ TD S 2 Slic^^o. S3S.5" ^-S.^o'g.g ic ro8 CDQ . c o»_ z _j E 2 o f£..it£iiu Jlil--^iili§| 4) QJ " Q. ^5 i< is tta 1I tg|l8«'?||iiiisiii,illll|lli i nj ra ro CD ra D CO 00 Q Q S Q 5cooo5DQi5DQCLirxxxx£j2lzzzza!££[£' c < i IQ. I2 oLI

O

I s E i ^j -> ->

g 9 u i 3 II M p— O 3c? r> OJ O T3 ' K S> 00­ OJ CC 0:0 z < O

^> —) "HJ <" 333333 ^33 3 3 313 3 3 3 3 -j 3 33 33 3 -> -1 LOCO-«T'-cn^ro*-tN'^-a) inio CN CNICO o co co o Is- r^ co o c CN | Z ™ OJICN co->r0 oP^^-

§2 i Ww I ^*~ ooC 3­ tr O 2 <

1 i

1 l

O -o * g, M E §

LU >, Q | « c | cc 2 SQzra_ -gEcn i_ C < 2 F « 5 - coco-a ^ Q) O *^ 1 1 CO o -Q -^ T3 -J p ra QJ — | o|^|° 1^| UJ t l°|i ° I ttf III lil'iiflif^, JliJlS.iiL I 3 CO CO Q Q 5 Q £llillilil.i < CQIO ~ "" a. c/i l— t— il— Surface Water Samples Surface water samples collected during groundwater profiling 3 3 -> 3 1 ID —5 -3 O 33333 3'3 333 3'3 3 3 33333-^33 ^r o o i n *— o O O O OOOOOOOOOOOIOIOO ooooacNoonto o™ 5 cS ,_ (O !~ o ^ i

tf\g 1LJ U) °? ce 3 Nl rr CM Q ,

333333 333 3333333333-,3 3I3 33333333-^3 a 10 ia 10 a 10 a o o a o o oio oio o o o CNIO oio OOOOOOOOr-O §!­ 1 *'oi cei ce i g o "?l 1 °- a 1

1 7 * li ce g ~z 5­ ce co u. < a.8 2c

D 3 3 ^ =3 ID 333 33333333333333 33333333->3 CO O IO O O O O O O O oooooooooooooo OOOOOOOOCMO § E

'* o ce ce O ra ' co - g ^ N 2 Q ce *~ ^ i! §5 a W) 1 It g ce: °g n cr 1 « "J ce co ' iT <" lei —j —> —3 —5 I —J lei 333333 333 33333333333333 3333333333 T3 ^ O IO O O O O O O O aaoooooooooaoo OOOOOOOOOO ia- S21i i s g ­ co• ceg 3 ^ NI ce c, 2 Q < c ^ ce g oo­ ce co z <

^,33333 -i 3 3 33333333333333 33333333. 3 co o o o a o CO O O oaoaoooooaoooo ooooooooao •

g <

Q 5 £ | ce g oo­ ce co z <

3

•a 3 flj c c ac ra aj 01 UJ «i £ r Q. UJ o a) £ flj Oc o c aj S 2 ce 0] | O TO QJ (U 0) u c C§ ' 1'~~; «i— 1 1O .c a; OL •S -0 M 0 »_ c 3\ ^ vi^l a­ o o If IfiJI J C t, OJ-O-Cflj V ° E o a> " ^1. 13 ai c T =: -c -c -C |5 v g -§'£ E ° c ^'f •£ E 9 o — t- r< j 1- " Si 2 2£§aiooo55|OOoocn I 75 ^- CM" • co nj i ro ra a> ™ 3 "5 K --I •-! 'T. *~. "X 1,2-Dichloroethe n 1,2-Dichloroprop a c o ICO Q Q S Q 2-Butanon e cNi^r Surface Water Samples Surface water samples collected during aquifer test 3333333333333CCCC3CC3333333333333333333333 3 CO T-^T-I-^-^^^T-^T-.^^ in ^^^.^^^T _^^_T _^^^_^(N^^T -^,_^in,_ £ 0) i 3 E i 0:1iv. g ^_ O v) CO ! £ 0 °- 0) <0 Q ­> CD CC S o cri ccico z <

3 3]3 313 33333333 CC 1 3 3 DC 1 3 3333333333333333333 3l3 3 CO CO 01 o CN 1 cc Si cc CO g ^L co tOr 3w 1 N cr a, § Q a: g § g­ cc co z <

3333333333333CC33CC3333333333333333333333 3 CO i- T- T-I^- ^^^-r-^-r-^^^ cnini ^^^^^-^-^^-^-^^-^^-^-^-(NT-^^^^-^CO^ in en *7 en 4= £ o CN cc CO cc in g , ­ O to co CC 3 S 01

3333333333333CC33CC3333333333333333333333 3 CO 2 o> ^ CD a C; cc in cc ^ O u) 1 iCC 3 N cc <„ g Q CC 5 oo­ cc co z < —D 3333333333333CC33CC3333333333333333333333 3 CO T-T-T-T-T-T-T-T-T-T— T-T-T- iniO r-T-t-r-v-r-r--r-T-l— *— T-T-r-T— tN^-'-T-T— ^-T-CDr­ m CD V CD o CN cc in cc ^2 g ^L O (/) co CC 3 rv O °T

'? 0 ra

01 U 0 CO c c h- ° ra Q) 1 ° C i o" „, c^ g S. ^gf^ SlS g g. ra 5,2 S-reOroajajN^iufn^cc: o c(J: -g .co£ o 'So. o^o-cccS ECN craNN ra -co! , o §0.^ "" a 22 n r Eg2g5^-g^£g5o'g£ H "Sl| u -S'Z oj o 2 2 § 5 ^ 5!5 T-T-T-T-T-T-T-T-^-^r-r-T-cNCN-cf< CO 1 CO CO CO CD O O O oloiu o oQLLJScOHHKi:i:H> [Sampl e 5 ANALYTICAL RESUI 10 MCKIN or a or CO OL cx o T CO

[Sample Number 1 § co | S CH O CO (/) 3 ~Z- Sample Location oo­ CM Date Sampled CD Description S Matrix < § Duplicate Of 'c 3 'S 'c' _ c u OJ o [Volatile Organic (Low < 0 3

1 1 1-Trichloroethane 3 112 2 Tetrachloroethan [1 1 2-Tnchloroethane 3 3

1 1,1 Dichloroethane : 3 Z> 1 2 4-Tnchlorobenzene 13 a [1 2-Dibromo 3-chloropro C 1 2-Dibromoethane 3 1 2-Dichlorobenzene

1,2 Dichloroethane =1 1 2-Dichloropropane «- ,A QQ-g ii§si8iHiir figs 1 T-T- azjactscc^ziziziorj: S S o> 4 *- S N CM j= 1C m .2 ' | S S g CM XS o)i° IT * T- S iiiEii ­ < £ gjg Si | C01CQ E T- o| £ 1 *- ra miCDIOQIO £ §lo T- a, E.o.1 £ *- 1 g fc T- S - C T 1 JOOOOooQu 52SS2 aSooo^'-S 5 : ^s 2 S DO3Zi=13=)Z!=ir)DZl J r^ S 111 o 1 s ro o"BiocNlro f i!ll El*-* | | i , £1 at QJ u C£ O^ u> k 9 QJ -S | Ej P m 15 i 1 £ < ^ ° g Methylene E Chloride Styrene Tetrachloroethene =)

Toluene Zl

Total Xylenes 3 trans-1 2-Dichloroethene 3 [trans-1 3-Dichloropropen 0) CD

Trichloroethene *­ Vinyl Chloride Z) 3 Z ZiT T3 =3 sl la ~" "tj • _ 1 a I «I « o iS o O OJ a ra g E 7 § fe Q. S i 3 1 CD 9­ (fl UJ C IT ' c iiJ ™ _ 8 c •* 0) J | rc 2 o­ E < o X CO •a < tf o S I Surface Water Samples Additional surface water samples DI3^ZlI3II3LtID^I!)Z3ZDZ)a:^Z]IDZ)Z33333333333333333333 3 3 CN <­ g> CO *" in o C^ or co or C O g 0 CO or D N or O Q c ID or g 0 CT or "Z. *i

33^30:333333or333'3-_3333333333.33333 ^333 , —> CO o CO O5 S CO 0 ^ 0 CM to o CD- or or ,_ g CO CO si N 3 ~ Q CO cr g CL o:8 01 ^ W cr 1 D D or g "5 cr or CO Li_

33^^,30r333333or3333:3333333333 . 33333^,3333 f -1

$ o lo 1 00 0 S CO 1 CM 8 id C£ CL

CO CO (o N o Q or 01 or CO ce. Q. g 0U co rr Zl u N or *—^ o Q T3 or g OJ cr or CO u_

^333330:3333330:3333:D333333333-,333333333 3 . 3 CO CM *~ en o 0 CO CO in in CM or (ID or CO co 8 CO or o or OJ D c o: § o cr or co ~z.

5 o 3.

O Is 'c 01 O o CO h- c c O CO a ° 1 «,, S J= *i ' <1)* : ^-llja) oi il ss'lg. slilj i Jl SoSoSSooci^gg-o-g^o^ Of Of °'§3"§|l'§|o|-9||og§^ Numbe •^HiNh: "5'yt± -9^-i-S'5"S"§ i I s = 1 l Chlorid e MCKI N ANALYTICA L RESU TS^cMoiQQTfQDQQQQQB S '-g-i-s 1 | Viny Duplicat e Dat e Sample d Matri x Sampl e Locatio n [Trichloroethen e [Descriptio n | [Sampl e 1 Aquifer Test Groundwater Treatment Effluent Samples in 'o

c <

s-Q. ™2

to •£

I 8 o§ ­g§ 1 ca ~* 9- "" b= ll

"Z. ZIZ Z'Z ZZZZ2 CgO> S t) UJ « P ^S

cc < o a- cc U z < _oj o: "o • GJ ^2 S1 ? OOOOOOOOO OOIO OOOOOOOOOOOOOOOOOOOOOO LL CD oj C!

o: < 0,0­ ce u z <

UJ 01 CO 1 X

ra QJ « Q. c s j E 2 o o a a o E £i!' 1 CD 01 ™ "a. u_ E E £ UJ n ra ra u; .^ -; roirai-c.-c.c-c O) co Q Q 5 Q co'cDiCQ'aD UiO O'U'O O'Ola uJiS'co i- i- i- i= £ > 5 'o o z li 2 c &Q. 12 § E « m 2 c 8 13­ a- ^2 1 ca •> Q. at il

1 - i l l 1 3 313 3 3 313 3l3J3 31313 CCI3 3 CC 3 3131313 3 31313 3333333 3|3 33331 3l 3 CO S 1 a LL. 1 O} 1 ' 1 m LU | OJ I 1 LLI

* o O LL. i§ N ^ ,, a 0, Q 0 £§ ce CC < oo­ cc O z <

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<• z z

o S? I L"L OTCD UJ CN

Op,1 " < a O a. » N "H „. o Q O c ^ CC < oo- CC O Z <

in 3 ! ¥o IS l ^c i 01 0 0> C c o n » S ° g 1 S ^ ^ Q . o.t 2 Oicg §J

CO ijlj „ . ! j « § „ 1 1| i< fl i 1 1| « fi _i L- C X .aO —O -o 1 c ra 01 — § g a. c 0 oi-|!llll!l?lllilg o -g | | -g £ E1! | |L|,| Jg g CN I^ fj ^ jlis| f 2s js 'illg |f| fJ y 21 -g a|M « 2 s^ Z ­j £ 2 _aj o 01 ™ "5. "TO "o. a. '" z H y MCKI N

ANALYTICA L RESUL T 'Si^-iNCNlQDTrQQQQDDCD-g S'iu.o JJ g g g E-a-a o oio o ^- »- 2 T.I •c' £ ' 5 3 "S "" ' E E £ » — Q­ T T T N [ (B 1 <0 ^ 01 ™ 3 "5'- -'- - -' '<^'l^'<^CNrNrOTrCcpli:2 g g 2'2 2 2 ra raSSZS w w-5 £«'^-'S"o'o rain Viny l Chlorid e CO ICO Q Q SID >T-T-*-T-*-i-T-T->-T-T-T-T-tNrMT|-

£n <

ii

fr g § E Si — o C O o i

(^ ™ i ,-. , i ' -> -> -^ i —j *- LU 3 3'3 3131313 3J3J3 3 3 1 3 3 3131313 333 3 333333 313 3 3 3I3|3 3 3 3 3 |3 3 E ' CO a olo o oiinio oioiin o 010 o o oimioio in in O o o lo 10 in iin O O O O O O 0 0 o O IO IO O o 5 O § LL O 1 t3 UJ LU O I 1 to

*C O a -§ N LU § -> S­ cr < oo­ tr U z < QJ Qi O 333333333333333333333 3 333333 333333 3 3 3 3 333 1 " _ CO oooooinooainoaooaainooinin a o o o o in in O O O O O O O O O a O IO O *- ™ o "5 ro LL to 2 LU O1 , C 3 2 y< o<" " O LL « •a N 'V 0 E Q 6 £ ?j o K < oo- LL CC O 2 <

1 5 o

1r* ^_^ (/I 0) 3 i. 1 " ^ 2 _ a, £ ™,s 2 g g 2 i i - o g I It Metha n RESUL T i- C s-ssas^^igso^^-s -si 1 f QJ O ^"oSSoOo"o"^J -S^5j£o£o P XL S -Q i; -o 01^-a.o.a ' '='=Q.^-^-2^-c:c^:C(i)-^-9 T c ra o •*­ — _o o o o^3,.£_2o >• Q_ ooa-tud-cuccSc(U ^ 5 y "5. c O

| -3 E | o h,i)Perylen e ^tll'l^-iElllll> ' H _ — x < i^ii__:ss:oO'^I 2 l^fflo-- -^- O O lO 1 | ::i EFGWTA T MCKI N ANALYTICA L p4-QCplDI9tn(D|D|QQDQss^!'S~-='-r~'

ra ra 15 o ra ^ Nitroanihn e Bis(2-Chloroethoxy ) Benzo(b)fluoranthen e Benzo( g Benzo(k)fluoranthen e Bis(2-Chloroethyl)ethe r bis(2-Ethylhexyl)phthalat e Butylbenzylphthalat e Benzo(a)anthracen e Benzo(a)pyren e 4-Chloro-3-methylpheno l 4-Chlorophenyl-phenyleth e 4-Methylpheno l 4 Carbazol e Acenaphthylen e Anthracen e CO co Q Q 2 Q I/)T— T— ^— T- oJtMoj(NCNfN(Nr>jrMfN(Nr^(Nir>jirO(nTr 4-Chloroamlin e 4-Nitropheno l Acenaphthen e |4-Bromophenyl-phenyleth e | | 1

0 if ci.2 &1 § E II 1 8 2« O ra

i 1

! i i l 1 i i ^1 Z) O Z) Z)iZ>IZ> ZH^iZJjZ) ~ Z)lz).ZliZ) ZJ:Z) Z) i Z) ' Z) ' Z) : Z> O O O |O o 'oioio io ;o lo io io o :o io io ' o |o tin :o :o o o•* 9s! i ; [L O) j LJJ ^ 6 ^ s ' O'S. M ^ o a:6 £ 3 => or a: < oo­ or:O z < o ,wf Z) Z) Z) Z) z> z>;z> zi'Z) z>!zi z) :z>:zi :z> :z> iz> z)iz>.zi:z) zi z> CO O iO O o o 01010 o o a jo 10 i o 10 10 ,o o o:m o o o a S ' U. (O i | uj O I * 6'r,,1"1 i ' i < o i i

M "V' oi : I Q 6: £!§ \ or < o ; en i a: O z\< i

i i :

; 1 1 ; ' i ! a CD ! ! : c Z) nj : ••i o) I/) C i ! 1 0) EC o 1 o £ ra O .21.2 N ^ c O ja i= ,-0 ' ^9 c -^ ii^ll 2! 'U! ?-•HI co .J.1.9­ .if g ' o o "5 c lillill <^ 5 o!£| oo! S 2 5 si" Li =• = • g S J Hf iff fl Pyren e Di-n-octylphthalat e Di-n-Butylphthalat e Pentachloropheno l Phenanthren e Pheno l Chrysen e Q QlQlQ U-iU.il XII IT s^m \-z.\-z. -z. -z lX i o c Q. °

o i < S

t7 i

1 3,313 3;3i3' 3 3J3 31 ' 3l3i 333 3'3 3 s CO IO 1 00 1 TT CJ) 1 CD 1 T iO CO CN TT 1 CO IT) 1 O CD CN 1 O> O CO CO O r-- CO -*T U_ UJ UJ 1 CN ( CN 1 M IT) 1 6 s O £ « N "V o Q ^ a: tr < §1 tr CD Z <

33-^333 333 3 33 3333-,3 CO COCNT— r^inO'— cN^rococoo^-to^r o u, VM -^i^ ^ S^ O r- CO CD CN i Dj CNOCO^COO^CO01 !^­ CD UJ CN Csl A in <£ n Old »i 13 N O E Q O dJ Q) CL < 0 ^ CC O 2 <

1/1

I/I UJ Jj! ^ c X CJ o o ^ 4= "O E ra o «_ ^J s " Q. C O z I E >. ,E | l||- |E | ra ^ - E £ CD isz o "5. u_ UJ < 5 0 ro CO ^i.2^i S^'ra m i ra ' ra £ o o o (yi * ^ i y ^5 "5 1 -= o^ ro £ c/) 60 Q Q 2 Q IM Q y 5 Q s:;? 2'g 9 O Ol ce CC:S 8!g ? f (N OJI in m o 6 O O Cn •«T ~, • > CD °? CL ! S ol . CL -; S IN ' ' g 1 ,O O 51 Z S 0 ,<7 :pj O -i. o> . D

Sample Number 0 i S ' CD m O g : 8 1Sampl e Locatior Q:Q:5!Q CO ,™ - CO • CO 9} O) CO 0' CN 9? n rN ^ CO CO CN 0) E:2: m "iSiSiu Q., D 0) ~ q­ "C ,X.0 ' i o ! ! ' I ! i I| ! S! ' 1 C.O O , "Z. 2:< |i|! -Z. o C M o C OJ nil o C 0) : ; '. 5 i ' 4) i : < ' ' 1 4) ra 15 3! 0) °i cr 3 O"l : CP: !>-" I^M-l^ilillllllif'i-I^^^'^sisI'l^l.l!^-! Ol? Unjionjiojiojiojifljic: /%C'0)C' •O! 3; 3 c^:Z:g!££:£:£::o' 2|£io£:^§ X C ; O 3 ' C! ro!o o«"-'i"' pra: 1 ' OJ • i : ! ' ' (D:OO,O -,'3:3 ->'3i3:3!3i3:-)3!Q:!ce'ce:ci:,3'3!3;3;3:3:3;3 CO 3:3:3 •«tiOiO O!O. 3:3 O|O:o : OiO.O'DiO.m 2'o:oo'oo'o"!- T-'.T-^T-'.T-'.T-":--" : 3:z)'3:->.3: u 3 . 'I O o 1 3:3:3'3 .. . 3'3 3:3:3.-) OO.O'O:O:O:O OJI 5 l :in O!o:o:^ro o ' , : : i • S : ^;Sia.i :3,. 10 : : ' i ' ' 0 ; : inoo:o;o:o :cn Si ' 3 i O 3:3'3 3:3:3:3 :o »-~:IN ; Si , c ,3 10 O'OOO 13 010:00 3'3l3:30:3 OO'O 3'3'3 ni g: 1 j 3:g!g : u Z):z3 '3 ' i S. M -S! 2 1£":^; :2 i o OOOOOOOO 3 o.o i 1 S-i"5i"i '-) Z) n 0:0o '3 & 0:0:0 2 '3 n a> |:|;1'| -2 O:O 13 '3.3 30:3 Z)ID "§' ' :3 '3 J» C § o ' ! 3 O '. .3 . "flJ -C'.E S CM oj z> 3 ^ ' s 7. O g • SI 1 2 — Q..S­ S § &1 a 2 0 o 3 ' CO cf M ITJ 'E i= E c .a. Q. ce O . 8 . ^3=i=:^D^=)3533=)3 = = ^I 3^3 = 3 3 = 30303 = = . 3 CO cooooi-o^rooooaoooooc3OOOOOOOOOOOOOO O UO CD CO B 1 n o0]^tn Z'° 1 °8 1 5 ? 05; « isiia M o ora S> oc n­§ or O z <

^33 = D3-,3333333333:D=)3^^I3^=3=>=)=)^I3=)* n CN CeOn 1 co t o i a aooi^ooooQoaooocD o o a o 010 ooooooaoo COI CO ?O 8L O ! CN 1 r— E " 1 °8 g "• 05; § aMO • „,g 01§' or S oo­ a. 2 or O 2 <

D = 3 = = 3 = = 33^3 = 3. = n§ E 3b = -,z)-,33333zszi = z3-) : CO c o 010 ocoocoooooooooarNCDOOOOOOOOOCOOOOOO g ° ] CO 1 RC3i fco "§ CN

1 1 i1 55i to a O i 1 1 1 1 i IBQ o aori Ice 5« "s: 1§" § Nlid Q 0 Q • 2 « or > « a- or O u. <

BSZ^O^^^BDO^ID^.33 = 3 = 333 = 3-i3 = 3. 3 DOOOOOOOOOCOCOOO O S'o COOOOCOOCXDOOOOOOOOOO C rN ^ IT) d CO " ° CN

in9 QE n _ D 6 o5l a'i sn (Ml E " Q 0 ° or

^g ^E £ 3 S°K 5> 2a §a- cc O u_ < i I 3! c 3O a at a c o c LU 1 . i . 8 2 w C QJ C d) o °° cr O nonjtutuaiiuc 2 -C l| |i _ g | u | X O-Cn-CCCCCtU mi 'at *- C 1 CO OJ O c|2gS^5I§- 1 I .,-g ^a z: -o o C CO dl »­ O-g^-gooooScgc11 sllll? & 0 „£N ' -gg-1 |i^ 2= Jjo E9- S2 u° iiiiHis? i iMi a. •^^S^^ta-Solcil-M^lflc tt« = x H 75*—(NirMQQQQQ"3 5^5£ M £ £ £r.a I IS 1i" a S -I,!. l to --S-i-5 S c £ coic/l Q Ql5 D >!'- i-^- T- ^-" ^- ^ r-(NicNi4< mtm m m o J OIOIO1U o QlujiS co 1- 1- 1- is t- > ZTZTZK^O: Z.'Zr3.3'z! Z) Z) O 3 = Z> Z. 3 ZI Zi Z> Z! O 3 Z.^0 ZI'Z, _, iTro:oo:n'O:r-o.o:oa a o o o to o o 0,0 oo oo o oo (NO.O.O o : en g>, OI Si 5i SJ |: , ' ' ' • . • • ' : ' • ; : , ; ! • ; > CM i § 1 KI§ i i­

\ 1 : zi:zi:zi D ;z> izi : -> zi :z> io :zi izi ;zi :zi;z);zi Z) .zi :zi :3 izi 'z> :z> :znz> 3:=3:o:zi!3 3 . 'Z) oioioio oiO'^rioioiOiO o:oio:o'O O'o:o!O!o;a 01010 o oioiO'O o o :o G ! : 1^. ° ' 1 o:=>:3 ^ zi ,Z3 'Zi i=> 3 :z. z> :z> :z, '=) ZI § E CO 'OTlOIOlOlOiOlO O OiOlO'OlO O:O O O ' O ! O , O O O O OiOlOiOlO^OIO.O O :o II ! ; : : : ! ; "~ 1 8 5'0 i ! ' ' • ' \ It o O IT) ! CD : : : ; ' ; i : • ' ~> Q. 0- £"£ : i ' • • ' ! : i ; i ; BJ £ I1°s £!§ l(?! ; II n i ^ ' PvJ =: o . Q ; 1 ! , : . , i : ! Q i O CC - I" : 1 1 , 1 Jo §:^- §. W] Q! .IS •S4.Q o tj UJ Q,§ -'* OJ . ­ DC CD LL. , <

TO'ZD'Z) =3 =)'Zl =3 3.3 =) 3.=) =3 Z) Z) Z3 Z) Z5 3 Z3 D ID'ZI Z)'3 Z) ' Z) . Z) Z) Z3 D CO i co o o:o;a ooo o.o o o ooooooooaooaooo o o o o 0 0

"'§ z-o cf § Ei TT Q; O ' ' Z. ^ 6: ^ told O in i o i rL.^' N! /—ii O , C£ ! , ' tO i C£ ' i i • > t ' r^

; 1|! ll cciS 2 o-i ca\(D ti- 1

1 I 1 ' ! : : ! ' ^ i ! ^ i 01 , : • ! ' ' ' I : 1 • : , : • : : , QGJi ' ' . • ' ' ! ' ; ; ; ' i 1

O f cc o|-3;|i|i|:|'|j|:gj|j^ u,.-§il:|a:^ig!l!|:|^f'§ gi 1! S9 0­ _ '|— 'rN^i?— •<->loiuiol

—j =3 = =3 => 13 _, D tr o: 3 =3 Z) Z> =) D = =1 =3 Z> . D or cc r> n =; 3 3 ^ 3 03 r-~ O o O o O CO a o O O O O O O 0 O O O 0 O T o o o o o o o o IT) ^ ~ en oo ~~

(N 00 I CO (N ID

Q ^ g ™CO in CM (A

1c3 i OJ 0 X c

Com ) X .- c c/3 < OJ o U o .a ~ -o u. p ra o — 0) Pentanon e c O Chlorid e § a "3. c o OJ Dichloroprop e cr z 2 N Organi c Tetrachloroetha i

-3 E B a Dichloropropen e Q.

Tnchloroethan e c Tnchloroethan e 2 1 3 Chlorid e Xyltnt s Dichloroethan e Dichloroethen e Dichloroethan e Dichloropropan e flu 5 S 1CL Dichloroethen e

E E — u> -s 1 3 1 2 JZ m ra ra n ™ 3 12 1 Hexanon e Butanon e 1 Methy l 1 1 2 1 2 1 2 1 2 1 2 Bromodlchloromethan e Bromolor m Bromomethan e 4 Aceton e Methylen e Styren e Chloroethan e Chlorofor m Chloromethan e ci s Tota l tran s Carbo n Disulfld e Carbo n Tetrachlorld e Chlorobenzen e LU to ico Q Q 5 Q Toluen e | l 1 J 1 (Volatil e 1 | 1 [Benzen e |Dibromochloromethan e JTetrachloroethen e [Tnchloroethen e |Viny i 1 1 Aquifer Testing Groundwater Samples -z.-z.-z.-z.-z.-z.-z.

-z.-z.-z.-z.-z. -z.-z.-z.-z. -z.-z.-z.-z. -z-z.-z.-z.-z.-z.-z.-z.-z.-z.

1- O O 0 O

l 91 a It Qlr­ -iO

° \\ cc. S o n­ nc. O

en o o o rMOoaooooooooooooooQoorjoc:

§ ai

o g. LL <

_ D Ul LU COi CL X _ I—

CM o LO |1­

Dl^ a 9 a Q 3 o: §l> 111! •z~z.-zi-z.-z. -z.-z.-z.-z.-z.-z.-z.-z.-z.-z.-z.-z. -z.-z.-z.-z.-z.-z.-z.-z.-z.-z.-z. OJICOt. L

91 yl

SOI2 v~- 3Q.. !? N Q ol £ CE S 3! i o­1 orio u.

3333333333 313 o oia ooinoooinooooooiooOLninoQOQommooooQao 010 o 9

S 0) o E

— UJ 1m ^~ Q.I tf> I N ^ Ql; i-i'i, 21 ' CE S 4> o- IE - U- <' §1 =3333333333333 aoaoomaooLnooooooinooininooaoatnLnoaooQooooa

3 .£

^- Q.

NIP Ql QI-, IEI? £1 fi­ CC O ll. < i

2'jc _ £ . Slai o ^ », g S C - Q. _ r ^-r'2 > £ "5 £ 'o _ cn S E >• u S >• 2 UJ C ~~CD 0) o • - o o,§-f tl| ""5. c --- si O E 2 <

NNMNNCN(N rsi oj co i tD OIU III III a l/t -r- T- i- tN 1 fN tN (N 1 IN CN (Nl 1 CM 1 (N 1 (N 1 CM CO z z z z z z -z. z -z.-z.~z.-z.-z.-z. -z. < < •z. -z.-z.-z.-z.-z.-z. •z. 'z. CO en LL to ,_ O in 5

5 3'g ^i— 1 a. ---> U- aa: Qlr- C£ g° 9- » • 5 Q g Q 1 -> 3 § IT ? 01 g­ cr CD

z!z z z z z z z •z. -z. -z. ~z. -z. -z. •z z -z -z. z z z z z z z z 03 CJ) LU ,_ s O in g u_ g, o (D Q ? LL. a: CE o CDIg!g N 1- Q o

vJ o- E ex. g CT .= TO CE CD LL- <

D ZI D Zi D Z) Z) ^ ---> D -D -3 -D -3 ZI Z) ^3 Z) Z) 3 ZI 3 Zl Zl -D =3 CO Old O o o o o o O O O O 0 O o o O o o o o a in o O 0

T- g^ 9 CD N | Q or Q r- or g ° la §• « Nl P^ Q i -o ^ gg ^ cr CE CD u_

Zl Z) D Z) a Z! Z) ZI -D -D -D ^ 12 -D Z) 3 Z! Z) a z> n zi zi zi ~D ZJ 33 O O 0 a o o o o O O O O O O 0 O 0 0 o o o o in o o a

CO o fN 1— in ^ a CD 5 Q fi cc (E g! w CD g QD" N F­ Q ? i a: g 1 i­ (E CD U- <

c01 D £ OJ 1 (U I/) r— 0) is C UJ (0 re _1 Q. X

T3 propyla i a

n LU hJAnthrace i diphenylam i fN d i O f O Locatio n "o" EthylhexvOphth a Sample d octylphthalat e Butylphthalat e

n g n

TJ Nltros o Nltros o _C 11 Hexachloroethan e Butylbenzylphthalat e D i Dibenzo( a Dibenzofura n Diethylphthalat e Isophoron e Descriptio n Matri x Duplicat e bis( 2 Carbazol e Chrysen e D i Dimethylphthalat e Sampl e Dat e Fluoranthen e Fluoren e Hexachloiobenzen e Hexachlorobutadlen e N N Nitrobenzen e Pentachloropheno l Sampl e Numbe r Naphthalen e Phenanthren e Hexachlorocyclopenta t j 1 | 333333 ->33-,3 333 333 333 222 2222 2 I i Y CO inc >^T'-cji^j-ocNCNroininocorNCNOcocoo ^ CO CO U­ ^O1CNCOCO°O "°SS — »— mi^CIN N —5 ^OT-^^O^ g^ CO O 9 CN in1

O I 5

3. N 3 U­ Q Q ^ cc. \ ||2 = s g'g

-3 3 31313 3 -, -> 3|3I 3 33 3 313 333 ~z.-z.-z. •z. -z. •z. -z. 222 CO u. r^OOI^'fOCJilCNO'^'CNOlT— inOtDCN^TOCOCOlO r- co in C31 CO O r~ to "^mSlg^l— -"S^g^o-^'S^'ol CO fN o in

LJ_ i ° N 5 u_ cc -i o C£ O c 3 ^ i-> Q. ° o ? §• » |! ° =. 2 § or S 3i o- 11 u_ < 2 -E € 8 3 313 333 331 3 333 3 ' -> 3 333 3 3 ^ 3 -i 3 -* CO in I co TT -«r en i ^r o

o 5 1 1 £ N

Q^ ,- CCI i

5i° 0.1

N ? Q! i §5 Q -, T3 ^ SZ 5 01 D-l tr O U. < 1

33333^ ^33 3 333 333 3 -i 3 3 ^ 3 -i tr CO inr^^rcocncooincNCDininococNooococoo r>- •<*• r~ co CN r-- r— CM ~- cj] o in co otD ui 0 co aicNcoco °^r-{DT-tN^i-OT-^root; r^ 3) ^ ^ ~~ O CM^2 o ^~ tr 9 ' CN o°S ^ S c^S 0 i- in i- a ^~ CN in > 5 o O ^ IM Q §_ ^

5 H Q.I ,. 9 5 13 3 "O = § 5 9i o- tr O u- <

3 ^c s •o -n 3 V) (/> ail V) LU i, J2l c 1 CO ce c _l 1 D < X So s N ) _i Soli

r 1 I-

< (a co o 01 Oxyge n Tota l c O i a Ammoni a Numbe 2 u SE>, P E i = S |'p Nitrit e m Qualit y Ana l

Organi c Carb o I ll -^FEsili-iD sis,|-_ i 1 E Dissolve d

z o Sample d < 5 , 2*.a|lgi&isa5& 3. c " coio re (o-c o oc o^S|;g||«J o^JS1 ^! s'o «u-=M o Biochemica l Nitroge n Phosphoru s Sulfat e Tota l Chemica l Oxyge n Thalliu Alkalinit y Nitrat e Tota l Tota l Suspende d Dat e Vanadiu m Zin c

Sampl e Locatio n Sl< < < ID £D O O O OIO ±: —J S 2'5 Z Q. (/] CO CO Sampl e |Wate r ao. 2c

o E — 03

a «j 1 CO ~" 9­ - t= Is ox Ec­

< <<<<<<<<<< < < < < < < < < < < < < < < <<<<<<< < < -z. 2222222222 2 2 2 2 22 2 2 2 222 2 2 222222 2 2 2 u_ CO 1 5? ' CM ji O fj L?l 1 Ll_ | fN O O s-^ U^) M ^f— a °cu Q or 5 § cr cc O 2 < -) < —> _ —s =3=>rDD=>-^2=:Z)=> D 3 3 =3 3 => :D =J 3 D 3 =1 3 3 3 3 3 3 3 ZJ 3 3 CO ' oooor-~ aoo 0 0 O o o OOO o a o o o a o 0 CM j) - § OOOOT- aoo o o 8 0 § 0 O 8 8 § O O O g o o o o o o o g o a 01 ul CN § in CN g O CD i § fvl c_ o T

I tf) •a c o < O I ^ 2 w (U I C "^

a: Com ) o rein) o ajid; 0} c Sc'ccccci X -H-^njajroajaja.

Q. -5. 5 >< a 1-Tnchloroethan e < 5 CM_icCDIX aim « ^'Ji!^ Dibromochloromethan e 1 Bromodlchloromethan e Ethylbenzen e Methylen e Chlorid Styren e Tota l Bromomethan e Volatil e Organi c 4-Methyl-2-Pentanon e Bromofor m Carbo n Chloromethan e cis-1, 3 Tetrachloroethen e Toluen e trans- 1 Aceton e c/5 ic/3 O Qi2 1Q Benzen e Carbo n Tetrachlorld e Chlorobenzen e Chloroethan e Chlorofor m [Trichloroethen e (Viny l | 1 |

§O H5 « 3 a S a: 5 5 §• 120 2 < —i 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3333333 333 3 3 3 3 ^ O 0 O O O in O Q O in O o O O O in O O in in a O O o o in in a o Q 0 O O o 0 O O CM

5 O

M •o i C

1 f aj aj c > Z) I/) C < O 1 ui |-' IT

w C '3 i tu o & ~ -o Organi c c ro ID -^ 0 CM i 8 o. c O (U O OPerylen e

2 -3 E 2 u .C h ro CL 1U QJ Q. ^5 Trichlorobenzen e c

Trichloropheno l o •5. "5. <" ^ a a Q 5-Trichloropheno l 6 E E £ M>- a Dmitrotoluen e 2-Dichlorobenzen e 2'-oxybis(1-Chloroprop a 2 4 (6 Nitroanilm e 4-Dichlorobenzen e Nitroanilm e nj i ra i ra i oj ™ 5 Chloronaphthalen e 6-Dmitrotoluen e Benzo(d)dnthracen e Benzo(b)fluoranthen e Benzo(k)fluoranthen e Bis(2-Chloroethoxy)Meth a 1 4-Chlorophenyl-phenylet h Benzo(a)pyren e Bis(2-Chloroethyl)ethe r 2-Chloropheno l 4-Methylpheno l 4-Nittopheno l Acenaphthylen e Ul Itn Q Q 5 Q 2-Methylnaphthalen e rg 4 Acenaphthen e Anthracen e 1 M |Semivolatil e | 1 |l,3-Dichlorobenzen e p [2, 4 |2, 4 |2,4-Dichloropheno l |2,4-Dimethylpheno l |2,4-Dmitropheno l J 2 J 2 |2-Methylpheno l |3,3'-Dichlorobenzidm e | 3 |4-Bromophenyl-phenylet h |4-Chloro- 3 methylpheno l |4-Chloroamlin e |Benzo( g |2, 4 |2-Nitroanilm e > < I— o or LU 10 D orio §'§ 13 5° F— 5 O or or rsl §° F­ O CN IL fN 5 L r-j [N > §

Sample Number ? Sample O 1 Location in <^l 01 in r*j is Date Sampled CO 9! 0 z z < o 0 CT cr Description < o o Matrix « Duplicate Of \ £ LU z. o 3 z rN^ £ (A >, 01 ra rc 0) =) O Z (11 3 Butylbenzylphthalati Z Carbazole O o =1 -z. -z.

Chrysene r> Di n Butylphthalate -z. o D JDi n octylphthalate ~D i 0 u c

Dibenzo(a h)Anthra ~3 Dibenzofuran 0 -z. Zl •z. O U 0 Diethylphthalate -z. O

Dimethylphthalate 0

Fluoranthene D O

Fluorene Z. 3 Hexachlorobenzene z

Hexachlorobutadlen0) XX£J5ZZZZQ. if 5 •31 =)3=3D=1Z3Z1Z)= zzzzzzzz S| oooooooo (UajT3O*-m-5SQJ xix li^sifisi Igl " QJ 01 c 1 ' I0 ra c := g c tillil i ° -a u EC °-zz a. c If i 01 -c o3 a.:: 1 J= E c m z ) -z.-z.-z. =) a 3 Phenanthrene o

Phenol =3 Pyrene Z TJ •5 O i­ a? X _j to •o « E S •I• g

o i < CQ

; ! ' : : ' I T • ­i ' . • • : ' :-> !<:<< i3 ;D : ­j i Z) . 3 :O ! Zl 3 ; Z) 1 3 ! Z) :T Z) '2!:2.z:z:z!2E:2,2i2!Z

fN OS 1 '~l COI :CN| ^jjOl pj, ^j! •" O \ (N •A . in : !i CN 1 I i;2:

—i —i =3 =, a 3. o:^ in:coi^ti >— cniTT'oiT— rsi^r'Oi IDIOCNCN to o c^coiO:^ r^d co CN into T- »— 01 coio r^. o <= 1 a : : OT 10 0 2 ™ 9 1 o> .C M in :rr • oici .P i- ^- «r'O rg S ' "~- o CM °> r> • o "^ ' <•> rsi b aotNi2c > ^ ' CN :«' S; ^' go: ^; F;: a T- S LD ' §2F— ' CN :I i 9 5! 3

1 : 9 i c: 3 : : QL _» ' o ; CTI IE O ' z:<

1 : ; i ! i i

1 ! ' 1 1 i ' ' • ' ' 5 -a' i ; ] ; ' : : • S c : . ^. n: ' T3 ! M P • C 1 i , Z> l/) » ^ 1 1 ! \ \ m • .g 111 I ; ; ' ; ! ^ , c : ' : : 0: 0 . f ii!?ii! ! IliS : : 3 U -a : -j= ­o 5" ! ' • : : ' ' 2" Q g-S'E:Hi "S '-a

I; H "5J c: O S ! 1 Sio-=:|i|! ggjS. 2 j EI-2: - U( c;£i : : iiS 1 Sip, Ei O >., g "ra 2; " ° ™ 2 ! 3 _a; i _oj j™ | Si 75 w>'C'oi c' ^ ^ E -— v_. wic ^ " .2.§: c : E ! 2 : c — ''Hi'o'o S'S'o Si 15 T5;"S o c w i oo : Q ; Q : 5 1 Q Iilil III lisilJililiiilll Jill liiii IJi 5 !—• ­2 .•=:.•=: j: 3 : 3 ! 'o 'o Surface Water Samples Surface water samples collected during groundwater profiling —; — —, —1 -> D :D -j -i ^ =3O^)Z)z;^^ozioz3ZirDi3z:Dr3DO — ^ —.^ D v CM T% ^•oon^~oooooooooooooooooooooooc JOom^D 9 S •»- ^ E * or rv, ^o I 5 g t/1 t ^™* *" I "•" 01 31 »sj I rv O I i~\ i OJ 1 Q) i = > c 3 01 1 5 O CT! Oil C/3 Z

33 = 3333333333333333^33333333333^3 CO o aio ooooaooooooaoooocNOOoooooooooT-o

CN V 1

Oil oil 5! o "? 1 °- gl- QOj

NCO °i Q3 »o Q . 2I § ce 5 s! 5- o c Lt C/3 UL < a. 2

3333333333333333333333333333333^3 CO oooaooooaooooooooaooaooooocoooorNo

^ o a: cr § CD - 0)| a. o N i 3 E S. 9­ il |s l Q. 3­ M CC Q 9 ct 1 5 "^ o- a: co (L <\ la -i —> —> —) —> _^

^ 30 oooaaoaoaoaooooooaaoQOooooooooaocD 9 2 o ^ Q- ^ (0 =) <£ la is00 CC 3 N IT „, g S 5 i g. CC CO Z

33 ooooooacooooaooooooooooaoooaooaoooo O —• ro CO S

In co » .CO g

ce 5 oo­ ce co z <

3 3 i

Q. C C CO £ 2 a). g c'£ Q.I 111 O «-'-'­" T-^-"--'-"'-"r^rgi- Surface Water Samples Surface water samples collected during aquifer test ANALYTICAL RES —V l _1 h­ (/) MCKIN cr 1 g cr CD cr cr N CL O r- cr cr Q N CO g cr (X cr Q N g cr cr o cr IT Q cr cr o in cr cr Q N CO o CO (Sample Numbe r cr o n CO -r S CO ;> / C CO a tr tr g CO g 5 <* c f— O ,_ 5 "- T^ g 0cr O ! CO g s cr cr: o ,_ t 0 LO cr O T_ CO £ o y C r UJ Ul , a; a, (/i O Z< 3 n 3 3 Z< o o Z< Z< 3 5cr

Sample Locatio n g CO g 3 ri OJ CO in r ^ to S in C! 03 LO 0) i JD 3) en n Date Sampled j -J o­ u, U

Description £ g < S S « g. §• t/

Matrix j Duplicate Of >^'---'- — 5 'c "c H£^=§go-gS5N D>_ora_g 2.* 5o-So££o(r,£S£SS§ ,*_c'— c o Oo)£oj 01 ICOJC raoraajoiN^oojCcj^cc 3333333333333CT33CC3333333333333333333Z 3333333333333£r33CT3333333333333333333Z 3333333333333CT33Cr3333333333333333333 •-*---••-''-'-•'-'-•'-••-••-••-••- 3333333333333crCC3ir3333333333333333333: 3333333333333CC33cr3333333333333333333Z : c -m o ^*cc^r~C^cra^^ 4) S k -'D^J'- — '- oo 1 1 C — _OoooooOO & ° tU '-•-•-'-'- , < U^^JQ.^^ <1> = ., S.NN O o 1 «­ ) - 133 ) ) 313 3 3 *- 3 *- OJ

trans 1 2-Dichloroethe n C 13 ^- T- 3 3 3 trans 1 3 Dichloroprop e 3 CO Trichloroethene CO j t­ Vinyl Chloride r­ < z J2 _ i y 5 ALYTICAL RESUI :KIN CO 2 - CX y W CO g QC o cr 2 ra £ CL O Q § 8 c o ^ ° ra E ico « QJ > co ° ^ :> Q- c <­ 5 1 i ra . M § Q Q. ^ z< c 2 oj JT E2 ocr a, ™ "O i» O ••­ D- o cO — ^ 2Q =.Q. S w « y i 3 "^ "o*~'~^'"' I 5 ilf,I.,.l!»g;«g'gl (_5 D_l 01 l|J|f sj U o 01 c 2 ' IU l,o i i'S'i'S — •^•^OJ^'-T-^T--^ 1 = |o oI <1> | " § |i|| n i I- if CD 0 U foethene v- > :hlonde ID Z •a 3 *­ _j GJ o o aJ ul a: ra w « c C CO LU CO X ^l CO ^ Surface Water Samples Additional surface water samples 1 —> —5

CO CO 92 LO a CM or 3 cr C O g r-L "P'or 3 ISJ o CJ I CU I a i C; 3 tr g o cr at CO Z <

3,3 -,-,3*3 = 3333*33333333333333. 33333 ^333. -, 0CO 1 CO 01 ^ ° 5! CM aCO CD cr or T_ g CO CO 1

CL Q' cr Q CO CO g a. w CO cr N Q S a ' "° T 1 a 2 o­ cr CO U. < ~* ~^ 1 CO 92 CO 1 O O 1 I ^ O LO 1 1 | § CM CD i 1 cS or r- g CO CO CO Ni Q cr or ex CO or g CD a. CO ^ W) N d 0 Q ^ Or g 11 or U. <

^33333CC333Z333Dr33333333333333-i3333333333. 3 CO J) n CO 0 0 % LO or (D or n in o

0 3

0

ll

CO C C 3' c, 2.1 0) ^ lli.ii o J:L2 ' s« ss'g § ii « I'i'o i i „ O f Numbe r ,3-Dichloroprop e 1 ,2-Dichloroethe n Xylene s Sampled MCKI N ANALYTICA L RES l •^,^-:W^-"Ti-AcNirNiic-t Matri x Duplicat e Descriptio n Toluen e Tota l trans- 1 trans- 1 Trichloroethen e Viny l Chlorid e Sampl e Locatio n >T-*-^-T-^-^-^-^-^^-^-^-^-"fM f tMi V

^ Ti £ 3, LU "' U — ~" < 0 Q ~ O LL ^ N "" , S Q 0 ^ § cc < oo­ cc O z <

-1 ­ Z)Z1=:=)=)=3=JZ)I3ID3 m ^ oooaooooocoooooooaaooao ooooooooooo o -" LL -0 LU r-< O ^ •f O

N m .. g Q 0 £ § (T < oo- CC. O Z <

5 CD 2,

•D I/) c O 0) 0) £L c c in^ LU i!" §­ olfloo.00,^1 § 1 3 to _l 1 1 13 "- "5! "o a> o i ^ c o-Co-^ - -'-^' ^i ^ o X OJ O o E o S ° a) -Q ^: T3 c ra 01 — Illlifilll i jliig |1 1 g'g I S «|« § « Q. C O uSo;, o cQ=^ Z -J E 2 01 6€j3..g s SSS S § §2 s'gf g,s gS gf ai^'^^ — • c -c - c c c>-o'c'50 E^'oi0 E oi o) 1? "Q- TS = ^ ^;^ s s as a |||,| s I 1I I'J § § 1,n 1| §1 g| gl- IS ANALYTIC A MCKI N c c a; in £ "3. a\a a *> £ 2 •5*-<-T ---.- a Q 5 a o Q liJ Slcn 1— I— t— i h- > Q- 2

^ I 3 3 313 33333 3 313 30:330:33 3 =3 31313 Z)I3I3=3Z:r>r>^ Z31Z3 D Z) Z) 13 1 ID 3 3 •^ 2 L0L 0<51 UJ ™ 0 „. "> < 0 O LL » N ^ Q O c ^ a: < oo - o:O z < <

^1^ \ 1 O ' 15 1 i 1 c/1 (J c0) t- § (0 1 01 g g- 1 1 | 0) i } fa |22^ .2 3! S S u H l < c "(5 a — H'o2oggooSl-gS §--g-§111

: MCKI N ANALYTICA L RESU E I'5|S §i§ S 5'-'- 2, i-£2 5 ™ Til S gl-S ">• 2 "'SlraSSSS o » -e'5 »>!>-a;oo i Sic £ COIU5 O Q S D mimiouiGioicjioiu 3 a ujiS'co i— i— t- ii i—> 55 E

— ro

O

•s t p o E

-, _, Dn=.333D=)=)3=lD=l333=,^= )33 c oiaooo^aoaunooo OOOLDOOIDIO — CD T 8 ooooaiDinooooooooooooo o "5 LL O) IS LLJ

D=3DOn^=)a=;Z)nZ3=}^r3=)=3=3=I=!r) =}D=30=3DD=ii:zio=j=D=:D=}=)r;^=3 ro ^ oooooLnoooinooaoooLnooLnin oooooLninoooooooaooooo 0 ^ UJ C^ ^ 1 "">

1 Ul11

I3 to c" 'aT t_ u. ^ h- _l jc __ x: J5 a> D 1 1' § U) 0 « | «,| J? UJ t ° t «ls 1 a: 1" •§. S '"l^c^—f^S to < X 0 S E ^ |||||I|||||| § | o| o _.?!,„!;1 1_ «i i'glfflffl C c ra o »­ B iil»ts 2 "7? ^!cSS-° c cS ^-s-^— o o "^L "=c. c • £ S c « g O^^^Q >*] f-^u E c c c *- •- ? ?* " "^ o ^ g i"E Il« i" x 3 < EESSi^. ITIMMM^^? 1> ™ ^ •^ ^^iiOOCQJUGJdJDiG — WinCO co co Q Q 5 'Q co^^'-'-rgcNrgtNrarvjfvirNifNrNjrjojrMrvjrofnTr Tr-TT^rrr-Z)Z»OO=3 la •q- " OIOIQ 010 a 010 a o o o oic3000001000 0 o ^ LL. Ol IS LU Ci •

< O O LL. «

Q CJ 2 § CC < o cr

333333333333 3 =)Z3DZ3i3=3^r)Z)r: ooooooooooooo cjooooomao o om S^ LL. -3 LU <~' 3 ^ <.y O<*> On. i> N "H o Q 0 1 § o: < oo­ ce O 2 < 1

1

LO (U _1 I C c U 1 0) 3 c ' TJ ; gl a> 2 £ ">< E R E ^ c **! a| IHgl; lit l X V O 1 r- JI -Co p "ra CD — 111=1'!!2 £[£• gra|S. |slfl| o^ o cf 9- a, ?! g- c < 3 Q.Q.I ^^,^: QJI o o o o ^ . -5.1 ™. = 2'f; £ oj 5 o o o ^ C 0 0 «'S 0 £ (b 01 ^ Q- ra ^2 W'« ™ C^T; o 9 2!2£^ " rao « u_ LU MCKI N ANALYTICA L i-jl'l -§.1 1 S S I ^Hl"Slfii:iii!l £ 5 -e -9 Si §31 3 g S Si 2 i-c o, « •= i o jc j: >, IJ 1 s 1 do a a Q Q QIQIU.ILL. x x x x ^ J2'z ~z. 'z. •z. a. a. Q-.Q. in 'S

0"5 Ol I Tf O CO CN I I in i o to CM 01 a n co o i coi-^r oj^noi n f^ , to a ^ , o """ 01° ft ° "" "~ y "• S£ * N m 3 Q O * % cr < o 3­ cc O z < !l in o>l'­ in r-oi S -»i9cN ^, 2"o O „ u' < o C) u. ^

KJ ^ O ^-\ I \ 3J 11 Q U C 3 C£ I < O CT or O z <

D i/l LU cr 03 ^1 X o 3 8 "5. c z ­j E 2 ii o ID ^ "a. tf a. Q. <" 5 a a wic ^ a iy £ E 2 Jo ~ "5. 1 E i S !•!,§ 1 ro ra ro o " CO

DATA POINT COORDINATES AND ELEVATIONS EXISTING MONITORING WELL CHART ELEV. 0 DESCRIPTION NORTHING EASTING GROUND TOP OF ELEV. O PVC INSERT ELEV. CASING MW204A N 384493.0128 E 2923124.5590 96.18 98.50 98.51 MW204B N 384497.4458 E 2923122.1708 96.28 98.18 97.98 119.78 (2' PVC) MW801A N 384400.0405 E 2922619.2999 116.19 1 20.24 119.89 (3/4- PVC) UW801B N 384399.5826 E 2922626.1694 115.06 118.99 117.96 MW801C N 384403.8153 E 2922625.1143 115.14 119.54 118.75 (2~

TEJRA TECH NUS MONITORING WELL CHART ELEV. 0 DESCRIPTION NORTHING EASTING GROUND TOP OF ELEV. O 2" PVC INSERT ELEV. CASING MW-01 N 383527.6825 E 2922805.8061 89.61 91.92 91.66 MW-02 N 383488.6922 E 2922811.4830 89.74 92.13 92.02 MW-03 N 383694.7019 E 2922806.3100 91.01 93.06 92.70

TETRA TECH NUS, INC. McKIN SITE - GRAY, MAINE OGST Associates, Inc. SAMPLING CHARTS 343 Goetiam Road • South Portland. ME 04106

;:~::c:.;'-3 5-16-913 -132-37 -<- ES~ OBSERVATION WELL CHART ELEV. O DESCRIPTION NORTHING EASTING GROUND TOP OF ELEV. O INSERT ELEV. CASING TW-01 N 383549.6937 E 2922792.1605 90.22 91.69 NO INSERT

DPT WELL CHART ELEV. 0 DESCRIPTION NORTHING EASTING GROUND TOP OF ELEV. CASING DP 1-0 N 383349.2424 E 2922778.2126 94.35 96.37 DP 1-80 N 383430.4632 E 2922805.5060 91.15 92.7b DP 1-95 N 383437.9270 E 2922811.1436 89.84 91.16 DP1-160 N 383502.6104 E 2922806.7510 89.65 92.22 DP 1-240 N 383575.2220 E 2922790.8274 90.11 93.23 DP 1-320 N 383648.7481 E 2922788.8338 91.70 92.88 DP 1-400 N 383727.5676 E 2922806.1671 90.70 93.22 DP-BS N 383775.9961 E 2922847.4451 90.66 93.10 DP1-196 N 383535.4964 E 2922792.6282 90.59 93.01 DPI -150 N 383492.4155 E 2922846.0996 90.96 j 92.09 DP2-166 N 383499.0107 E 2922846.8992 90.92 92.93 DP2-216 N 383553.4859 E 2922869.7801 90.18 92.23 DP2-282 N 383627.9389 E 2922859.4215 92.68 93.82 DP1-274 N 383607.5940 E 2922797.6556 91.19 93.25 DPI -560 N 383868.7223 E 2922871.3641 93.38 94.42

TETRA TECH NUS, INC. McKIN SITE - GRAY, MAINE O€QT Associates, Inc. SAMPLING CHARTS 343 Gorham Road • South Portland. ME 04106

332C1C1.3VG b-16-vS ~'2£'3'7rr' SURFACE WATER SAMPLING CHART

DESCRIPTION NORTHING EASTING

RR05 N 383481.9690 E 2922863.6890 RR02 N 383329.9639 E 2923286.1149 RR01 N 383378.6866 E 2923492.2887 BSS N 383754.3390 E 2922862.1990 BSE N 383757.2660 E 2922875.5660 RR08 N 383791.5710 E 2922900.3610 BSN N 383786.5400 E 2922854.9700 BSD N 383824.4610 E 2922865.8240 RR10 N 384117.8740 E 2923040.2300

PIEZOMETER CHART ELEV. 0 DESCRIPTION NORTHING EASTING GROUND TOP OF ELEV. CASING PZ-01 N 383397.3385 E 2922879.8006 85.56 91.35 PZ-02 N 383476.9461 E 2922861.3692 86.96 91.73 PZ-03 N 383702.7960 E 2922873.3932 86.58 94.03 PZ-BS N 383783.6672 E 2922851.2669 85.83 93.28

TETRA TECH NUS, INC. McKIN SITE - GRAY, MAINE O€S8T Associates, inc. SAMPLING CHARTS 343 Gortiam Rood • South Portland, ME 04106 APPENDIX F

GROUNDWATER INVESTIGATION AND AQUIFER TEST ANALYSIS APPENDIX F GROUNDWATER INVESTIGATION AND AQUIFER TEST ANALYSIS ROYAL RIVER DISCHARGE ZONE Me Kin Superfund Site, Gray, Maine

INTRODUCTION

Tetra Tech NUS, Inc. (TtNUS) performed a focused groundwater investigation for the United States Environmental Protection Agency (EPA) to support a Feasibility Study (FS) for the Royal River Discharge Zone (RRDZ) portion of the McKin Superfund Site ("the site") located in Gray, Maine. The location of the RRDZ portion of the site is shown on Figure F-1 along with sampling locations

The objective of the investigation was to evaluate the extent of groundwater contamination in the surficial sand and gravel aquifer, and the aquifer's hydraulic characteristics to evaluate potential remediation alternatives. The investigation focused on the RRDZ historical water quality data, which indicated volatile organic compounds (VOCs), primarily tnchloroethene (TCE), was discharged to the Royal River at levels exceeding the State of Maine surface water quality standards for TCE (2.7 micrograms per liter [ug/L]).

The scope of the investigation included conducting a direct push groundwater quality survey, advancing soil borings, installing a test well and three monitoring wells, advancing four piezometers; and testing the aquifer The aquifer testing consisted of short-term specific capacity tests; a 72-hour, and a continuous rate drawdown test. The following sections present a description of the investigation, followed by the results.

TCE Groundwater Profiling Study

TtNUS directed a direct push groundwater quality survey to profile the contaminant plume along the west side of the Royal River flood plain. The survey was performed by MyKroWaters, Inc., between March 25 and April 2, 1998, under the direction of TtNUS.

F-1

U UL U ­ LJ ID LJ U. u­ 5; a o ­ a u a i- Li-O LJ Q a LJ LJ CtQi >-­ CH Qi i— Cl CK CK CL Q_ C/)-^ LJ

00 O O _ I I I i o a: M ­ CL 5 •— CL I a

••f The location of the well points are shown on Figures F-1 (plan view) and F-2 (profile). MicroWater's logs are provided in Appendix A.

Fifteen well points were advanced during the survey to evaluate the vertical and horizontal distribution of TCE contamination m groundwater within the confined sand and gravel aquifer. Each well point was advanced using a tower-mounted, high-frequency, percussion hammer mounted on a six-wheel all-terrain vehicle. The lower 5-foot portion of the lead pipe of each well point was machine-slotted (three rows of slots, 1-inch long, 0.015-inch openings) and fitted with a conical-shaped steel tip connected to the end of the drive point with an 0-rmg. Each well point was advanced in 10 foot increments and a sample was collected until refusal was encountered. At each sampling interval, a peristaltic pump was used to evacuate the drive casing and collect a groundwater sample.

Groundwater samples collected during profiling were field-screened for TCE using a portable gas chromatograph (GO or shipped to EPA laboratories in Lexington, Massachusetts (samples collected on April 1 and 2, 1998). Throughout the sampling program, a subset of samples was collected for analysis using GC/MS methods through the EPA's Contract Laboratory Program (CLP) A summary of the GC results and CLP results for TCE are presented on Figure F-2 (profile). The portable GC results are tabulated in Appendix B. The CLP results are provided in Appendix D.

Advancement of Soil Borings

TtNUS directed the advancement of four soil borings, one 4-inch ID test well, and three 2-inch ID monitoring wells to evaluate the aquifer characteristics at the RRDZ. The drilling and well completion was performed by D.L. Maher, Inc. between April 24 and May 12, 1998, under the direction of TtNUS. The locations of borings are shown on Figure F-1. Boring logs are presented with the well construction diagrams in Appendix C.

Soil samples were collected from 24-inch long split-spoon samplers during the advancement of boreholes for wells MW-1, MW-2 and MW-3. Blow counts were recorded

F-3 oo 00 O o <

LU (T Z) O

o

oo s?x o . o'­ o LO <*0 •2 ^ • ^

LU

C O a: LJ a. 8 m LJ ^0 ofil/ 02 2 . I => < QL O LJ O CO-MW

CO

O : r*1 C71 °oi -5rt CO K) q, Tti 01 O '<*> <£ JS ^ ja ja =a »a2 O z O n Ld z: O en a s

V, UJ '<*> S i­ \ i ^ CO CD OQ on CO CD - ton a '<*) £; JS ^ oo u 2: z a: •i a. ID LJ a HI « o o

IS1 LO-Mr ui a z z CL r« ^i LJ a UL U. LJ tt: a to LJ 1 z u z a 00 IO O) —I I LJ - to oIo LDa a u z ~ Q- K 1-1 o: LJ U 01 a CD LJ a z CL 1-1 z

~ 1 I 1 I I I I I I I I 1 I ooooooooooooo

ELEVATION (EEET) for every 6-inch advance of the sampler as a measure of material density. Soil samples were visually classified and total VOCs were measured in the jar headspace of soil sample jars.

The results of the soil boring program are shown on Figure F-2. A summary of the stratigraphy follows (from top to bottom):

Silt/Clay (Presumpscot Formation) ranges from 7 feet (MW-3) to 23 feet (MW-2) thick. Primarily wet, silt with less than 30 percent clay, and trace fine sand. Upper portion (MW­ 1 A: 4 to 9 feet below ground surface (bgs)) is dark brown and contains organic matter. Lower portion is gray and shows high plasticity (MW-1). Consistent with surficial geologic mapping (Thompson, 1976).

Sand/Gravel (Glacial Outwash) approximately 87 feet thick (MW-1). Generally fine to coarse sand with fine gravel, coarsening downward. Upper portion consists of fine to medium sand (MW-3: 7-21 ft bgs), followed by fine to coarse sand with trace gravel (MW­ 3: 21-36 ft bgs); and medium to coarse sand with fine gravel (MW-3 36-48 ft). Consistent with regional stratigraphy (Thompson, 1976).

Bedrock (Sebago Granite) approximately 101 feet bgs (MW-1D). Consists of feldspar, quartz, muscovite, and biotite, which is consistent with muscovite-biotite granite mapped in the vicinity of the site (Creasy and Robinson, 1997).

Test Well and Monitoring Well Completion

Test well TW-1 was installed to a depth of approximately 59 feet bgs. The TW-1 boring was advanced with a 5-inch ID steel casing using drive and wash techniques. TW-1 was installed with approximately 29 feet of exposed stainless steel well screen with 0.040-inch wire-wrap vee-slot openings and connected to 5-inch ID, steel flush-joint

F-5 casing. The well has a nominal 4-inch diameter screen section, installed without sand pack inside a 5-inch inner diameter flush-joint steel casing. Due to the method of installation, no gravel pack was installed; instead, the well was naturally developed by surging and pumping. The location of borings/wells are shown on Figures F-1 (plan view) and F-2 (profile). Well construction details are provided with the boring logs in Appendix C.

Monitoring wells MW-1 through MW-3 were installed to approximately 50 feet. Each borehole was advanced using 4-inch flush-joint steel casing to approximately 50 feet bgs. Each of the monitoring wells were constructed with 2-inch ID, flush-treaded, Schedule 40, PVC well casing and 10-foot-long section of 0.020-inch machine slotted well screen equipped with a flush-coupled, PVC plug. The screen was centered in the boring using centralizers at the top and bottom of the screened interval, and the annular space was backfilled with clean Morie #1 sand. A 1 to 2-foot bentonite chip seal was placed above the sand pack, and the annular space filled with bentonite grout (MW-2) or cement­ bentonite grout (MW-1, MW-3).

Soil samples were collected for grain size analysis at MW-1 (39-41 feet bgs, 61-63 feet bgs) and at MW-2 (34-36 feet bgs) to select TW-l's well screen, and to check of the quality of the field visual soil classifications. The results of the analysis supported a 40 slot (0.040-inch openings) size for the well screen. The grain size analyses were consistent with the visual classification of the soil samples. The grain size analysis is presented in Appendix C.

Aquifer testing included short-term constant-rate pumping tests in MW-1 and MW-2, and a 72-hour constant-rate test in TW-1. Constant-rate tests provide data on overall aquifer properties, and short-term tests yield data for relatively local aquifer characteristics.

All tests were conducted by pumping groundwater from the test well or monitoring well at a controlled rate, treating the water by carbon adsorption, and discharging the treated

F-6 water to the Royal River. The treatment train consisted of four parallel 200-pound drums of granular activated carbon to handle the 40 gallon-per-minute design flow. Each drum was followed by a second drum in series to provide redundancy and provide increased residence times for short-term flows above 40 gallons per minute. After the second drum, each of the four flows was recombined to a single 2-inch collapsible hose and discharged to the Royal River. The resulting addition of water did not result in any observable increase in flow or hydraulic head in the river.

Short-Term Drawdown Tests

Short-term drawdown tests were conducted at MW-1 (May 15, 1998) and at MW-2 (May 20, 1998) in conjunction with well development.

• MW-1 was pumped at an average rate of 48 gallons per minute (gpm). The static depth to groundwater was 1.01 feet below the top of the well casing (btoc). The groundwater level was 2.38 feet btoc after 248 minutes of pumping. The drawdown was 1.37 feet. Based on these data, the specific capacity of the well is equal to 35 gpm/ft of drawdown. The test lasted approximately 4 hours.

• MW-2 was pumped at an average rate of 61 gpm. The static depth to groundwater was 1.22 feet btoc. The groundwater level stabilized at 3.03 feet btoc after 168 minutes of pumping. The drawdown was 1.81 feet. Based on these data, the specific capacity of the well is equal to 33.7 gpm/ft of drawdown. The test lasted approximately 3.5 hours.

Continuous-Rate Drawdown Test

A 72-hour constant-rate drawdown test started at 11:00 AM on May 26, 1998 and continued through 1 1:00 AM on May 29, 1998; the recovery test continued through 3:30

F-7 PM on May 29, 1998. Groundwater was pumped from TW-1 using a submersible pump. Cumulative flow measurements using a mechanical flow meter were recorded routinely throughout the test to monitor and adjust the flow rate. One flow adjustment was required, at approximately 100 minutes after the start of the test, when the inlet pressure at the treatment system bag filter increased due to sediment accumulation. An alternate bag filter was switched into the system, and the flow stabilized with only a small deviation. The average flow for the test was 31 gallons per minute (4.2 cubic feet per minute), with less than 1.5 gpm (4.9 percent) variation during the test (excluding some initial transients in the first 20 minutes).

During the test, water levels were measured with transducers connected to individual data loggers placed in the test well and the newly completed monitoring wells. The time-water level data were downloaded to a laptop computer for reduction and determination of aquifer characteristics. In addition, water levels were measured in the same wells, drive points, piezometers, and existing monitoring wells during the test. Drawdown was measured continuously by a transducer connected to a data logger and manual measurements were made to check against the data recorded by the data logger. The pump test was conducted during a low flow period for the Royal River, with the river levels 1.57 ft below the harmonic mean stage, based on daily stage measurements for the period February 14, 1998 through July 7, 1998 provided by Sevee & Maher Engineers, Inc. (SME).

The time-water level data was downloaded from the data loggers into a spreadsheet and corrected for barometric pressure changes. Barometric pressure corrections were derived from hourly barometric pressure readings at the Portland International Airport in North Portland, approximately 10 miles from the site. The pressure at any given time was estimated by linear interpolation between the two surrounding hourly measurements. Thus, the pressure correction for a given test was obtained by subtracting the barometric pressure estimate at the time of the measurement from the pressure estimate at the start of the test.

F-8 In general, the drawdown appeared consistent with the Theis curve for predicting drawdown in a confined aquifer. Some well casing storage was apparent during the earliest portion of the test. Maximum drawdown in the test well during pumping was 0.82 feet.

Data were not corrected for casing storage because these effects are negligible after the first few minutes of pumping. Induced recharge from the river is not expected have a significant effect on the test results because the water level in the pumping well was never lower than the water level in the river. No correction for precipitation was necessary because there was no significant precipitation during the test.

The corrected time-drawdown data and well geometry data were entered into a computer application (AQTESOLV, Version 2.01) to determine the aquifer characteristics transmissivity (T) and storativity (S). The Theis (1935) equation for unsteady flow was selected to analyze the corrected drawdown data in wells MW-1, MW-2 and MW-3 to determine T and S. The corrected time-drawdown graphs and calculation summaries are presented in Appendix G.

Aquifer Characteristics

The aquifer characteristics for the drawdown of TW-1 are summarized on Table F-1. The analysis of the time-drawdown data indicated T ranged from 25,810 ft2/day (MW-1) to 29,900 ft2/day (MW-3). The transmissivity (T) divided by the aquifer thickness (b) equals the horizontal hydraulic conductivity (Kh). The aquifer thickness is 87 feet (MW-1). Therefore, the horizontal hydraulic conductivity is calculated to be 300 ft/day, which is within the range for sand and sand/gravel aquifers (Freeze & Cherry, 1979). Storativity (S) values range from approximately 2x10-4 (MW-2) to 9 x 10-3 (MW-3), which are within the range (10-3 to 10-5) that is typical for confined aquifers (Freeze and Cherry, 1979).

F-9 CAPTURE ZONE ANALYSIS

The analysis consisted of calculating the TCE loading to the Royal River and estimating of the number of wells, pumping rates, and well spacing necessary to capture sufficient contaminated groundwater to reduce the flux of TCE to the Royal River to below the Ambient Water Quality Concentration (AWQC) (2.7 micrograms per liter (ug/l)). Calculations are presented in Appendix H.

TCE Flux to the Royal River

Since the plume profiling data points were concentrated in the high TCE concentration section of the plume and did not extend across the entire plume width, the total groundwater plume TCE mass flux through the RRDZ groundwater system cannot be quantified with the available data. However, the flux through the most concentrated section of the plume (TCE concentrations of 300 mg/L or greater as shown on Figure F-2) can be estimated. Using the hydraulic conductivity, gradients, and the cross-sectional area for the section the TCE plume greater than 300 mg/L, the TCE mass flux through the RRDZ is calculated to be at least 1.73 kg/day (calculations are presented in Appendix H). This is a under estimation of the total TCE flux as the calculation does not include the portion of the plume at concentrations less than 300 mg/L TCE. In comparison, the TCE mass flux to the river from groundwater determined by the McKin Mediation Technical Subcommittee is 1.5 kg/day, based on Royal River data reported by SME, prior to the RRDZ study. The difference between the two estimates is significant. The unaccounted for mass is assumed to discharge to the Royal River both upstream and potentially downstream of SW-1.

The total recovery well flow rate necessary to remove TCE-contaminated groundwater is calculated to be 480 gpm. The 480 gpm was calculated to be the specific discharge passing through an area within the 300 ug/l TCE contour on the profile (Figure F-2).

F-10 Table F-1 Aquifer Characteristics TW-1 Aquifer Test Royal River Discharge Zone McKin Superfund Site Gray, Maine

Observation Transmissivity Stprativity Well (ft2/day) (unitless)

MW-1 25,810 403E-04 JVIW-2 27,780 1 95E-04 MW-3 29,900 9 44E-03

Note All transmissivity and storativity values were determined using the Theis Method in AQTESOLV, Version 2 01 (1995)

Reference Duffield, G M 1995 AQTESOLV Aquifer Test Solver Version 2 01 Geraghty & Miller, Inc Millersville, Maryland

F-11 Groundwater Interception (with Reinjection) Alternative

For cost estimation purposes, this alternative assumes that 480 gpm will extracted, treated, and reinjected back into the aquifer. The position of the eight extraction wells is shifted to the south about 50 ft. relative to that presented in the groundwater extraction alternative. In addition, a line of eight reinjection wells would be positioned along the flood plain of the river starting at Boiling Springs. The well spacing of both the extraction and injection wells was calculated based on a capture zone analysis, presented in the groundwater extraction alternative. The capture zone for the 16-well system is delineated on Figure F-4.

Cover Boiling Springs/Ground water Interception Alternative

For cost estimation purposes, this alternative assumes that 480 gpm will extracted, treated, and discharged to the Royal River. This alternative assumes that Boiling Springs will be covered. A line of eight extraction wells would be located along the profile line (Figure F-3) to the 300 ug/l TCE contour. The well spacing was calculated based on a capture zone analysis (Bear, 1979) using aquifer characteristics determined during this investigation. The results of the capture zone analysis indicated that eight extraction wells, spaced 46 feet apart, pumping at a rate of 60 gpm each were necessary to prevent exceedance of the AWQC limit for TCE in the Royal River. The well spacing is conservative because well interference was not taken into account. The capture zone for the eight-well system is delineated on Figure F-3.

WATER QUALITY SAMPLING AND ANALYSIS

TtNUS collected both groundwater and surface water samples during the implementation

F-12

of this investigation. Groundwater samples were collected from selected drive points during the TCE groundwater profiling study for confirmation analysis of VOCs only. The CLP analytical results were similar to the GC field screening results, as shown on Figure F-2. The CLP results are summarized in Appendix D.

Groundwater

Groundwater samples were collected from TW-1 at the beginning of the 72-hour test (elapsed time 75 minutes) and at the end (elapsed time 71 hours 10 minutes) for analysis of VOCs, semivolatile organic compounds (SVOCs), metals (total and dissolved), and general water quality parameters (biological oxygen demand, chemical oxygen demand, total organic carbon, total suspended solids, hardness, pH, ammonia nitrogen, sulfate, nitrate/nitrite, total phosphorous, alkalinity and total dissolved solids). In addition, groundwater samples were collected from the treatment system effluent at the beginning of the 72 hour test (elapsed time 105 minutes) and at the end (elapsed time 71 hours 35 minutes) for analysis of VOCs, SVOCs and metals (total and dissolved).

Surface Water

Surface water samples were collected prior to, during, and after completion of the 72-hour test at the Royal River (location RR01) for analysis of VOCs only. Additional surface water samples were collected for VOC confirmation from the Royal River (RR01 and RR07 locations).

Boiling Springs (location BSS) was sampled for confirmation of VOCs during groundwater profiling on March 27, 1998. In addition, on June 25, 1998 a surface seep (location RR06), located along the west bank of the Royal River Flood plain, was sampled for confirmation of VOCs. The analytical results are provided in Appendix D.

F-15 REFERENCES

Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill Book Company.

Creasy, J.W., Robinson, A.C., 1997, Bedrock Geology of the Gray 7.5 Minute Quadrangle, Cumberland County, Maine. Maine Geological Survey Open-File No. 97-3.

Driscoll, F. G., 1986. Groundwater and Wells. Johnson Division.

Freeze, R.A., and J. A. Cherry, 1979. Groundwater. Prentice-Hall, Inc.

Geraghty & Miller, Inc., 1995, AQTESOLV Aquifer Test Solver Version 2.01. February 1995.

Kruseman G.P., and N.A. de Bidder. 1990. Analysis and evaluation of pumping test data (second edition). International Institute fir Land Reclamation and Improvement, Publication 47. Wagenmgen, The Netherlands.

Thompson, W.B., 1976, Reconnaissance Surficial Geology of the Gray Quadrangle, Maine Maine Geological Survey, Open-File No. 76-45.

F-16 APPENDIX G

AQUIFER TEST CALCULATIONS Theis (Confined Aquifer) Partially Penetrating Well(s)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES Estimate T = 2.5811E+004 ft"2/day S = 4.0309E-004

DATA SET: MU1DATA.DAT 1. IIUJI 08/12/98 AQUIFER MODEL: Conf ined SOLUTION METHOD: Theis PROJECT DATA: test date: 5/26/98 test uell: TU-1 obs. uell: MU-1 Q.I TEST DATA: 1 Q = 31. gal/nin «i, o r = 25. ft rc= 0.33 ft ru= 0.42 ft b = 78. ft Pumping Uell Screen Depth: top = 29.08 ft bot.= 58.75 ft Obs. Uell Screen Depth: top =41. ft 0.01 1 1 mill i 1 1 mill i i mini bot.= 51. ft Q.Ql 0.1 1. 10. 100. 1000. 10000. PARAMETER ESTIMATES: Time (ruin) T = 2.58IE+04 ftz/day S = 0.0004031 AQTESOLV RESULTS Version 2.12 Developed by Glenn M. Duffield, HydroSOLVE, Inc. (c) 1988-1996 Geraghty & Miller, Inc. 08/12/98 12:05:28

TEST DESCRIPTION Data set MW1DATA.DAT Output file MW1VIS.OUT Data set title MW-1 Drawdown, Theis Confined Company Tetra Tech NUS Project 7793 Client EPA Location McKin Company Site Test date 5/26/98 Test well TW-1 Obs. well MW-l Units of Measurement Length ft Time min Pumping rate.... gal/min Pumping Well Data Well No. 1 Well identification TW-1 X location 0 Y location 0 Casing radius 0.33 Wellbore radius 0.42 Depth to top of well screen 29.08 Depth to bottom of well screen... 58.75 Number of pumping periods 1 Period Pumping Rate 1 31 Observation Well/Piezometer Data Well identification MW-1 X location 25 Y location 0 Distance from pumping well #1.... 25 Depth to top of well screen 41 Depth to bottom of well screen... 51 No. of observations 362 Aquifer Data Saturated thickness 78 Hyd. conductivity ratio (Kz/Kr).. 1

ANALYTICAL METHOD DATA SET: i. MU2DATA.DAT r- i 11 mill i 11 mill i i mini i i mini i i mini i i mm 08/12/98 AQUIFER MODEL: Conf ined SOLUTION METHOD: The is Q.I PROJECT DATA: test date: 5/26x38 test uell: TU-1 c obs. uell: NU-2 o TS TEST DATA: Q = 31. gal/min r = 65. ft 0.01 rc= 0.33 ft ru= 0.42 ft b = 78. ft Pumping Uell Screen Depth: top = 29.08 ft bot.= 58.75 ft Obs. Uell Screen Depth: top =40. ft 0.QQ1 bot.= 50. ft 0.01 0.1 1. 10. 100. 1000. 10000. PARAMETER ESTIMATES: Time (min) T = 2.778E+04 ftz/day S = 0.0001951 AQTESOLV RESULTS Version 2.12 Developed by Glenn M. Duffield, HydroSOLVE, Inc. (c) 1988-1996 Geraghty & Miller, Inc. 08/12/98 12:20:00

TEST DESCRIPTION Data set MW2DATA.DAT Output file MW2VIS.OUT Data set title MW-2 Drawdown, Theis Confined Company Tetra Tech NUS Project 7793 Client EPA Location McKin Company Site Test date 5/26/98 Test well TW-1 Obs. well MW-2 Units of Measurement Length ft Time min Pumping rate.... gal/min Pumping Well Data Well No. 1 Well identification TW-1 X location 0 Y location 0 Casing radius 0.33 Wellbore radius 0.42 Depth to top of well screen 29.08 Depth to bottom of well screen... 58.75 Number of pumping periods 1 Period Pumping Rate 1 31 Observation Well/Piezometer Data Well identification MW-2 X location 65 Y location 0 Distance from pumping well #1.... 65 Depth to top of well screen 40 Depth to bottom of well screen... 50 No. of observations 363 Aquifer Data Saturated thickness 78 Hyd. conductivity ratio (Kz/Kr).. 1

ANALYTICAL METHOD DATA SET: 1. MU3DATA.DAT 08x12/98 AQUIFER MODEL: Conf ined SOLUTION METHOD: The is

0.1 ­ PROJECT DATA: test date: 5/26/98 test well: TU-1 obs. well: nU-3 O TEST DATA: Q = 31. gal/min 0 r = 144. ft 0.01 — rc= 0.33 ft rw= 0.42 ft b = 78. ft Punping Uell Screen Depth: top = 29.08 ft bot.= 58.75 ft Obs. Uell Screen Depth: top =41. ft 0.001 bot.= 51. ft 0.01 0.1 1. 10. 100. 1000. 10000. PARAMETER ESTIMATES: Tine (min) T = 2.99E+04 ft2/day S = 0.009442 Mw3v.out

AQTESOLV RESULTS

Version 2.12

Developed by Glenn M. Duffield, HydroSOLVE, Inc.

(c) 1988-1996 Geraghty & Miller, Inc.

08/12/98 15:45:01

TEST DESCRIPTION

Data set MW3DATA. DAT Output file MW3V.OUT Data set title MW-3 Drawdown, Theis Confined Company Tetra Tech NUS Project 7793 Client EPA Location McKin Company Site Test date 5/26/98 Test well TW-1 Obs. well MW-3

Units of Measurement Length ft Time min Pumping rate.... gal/min

Pumping Well Data Well No. 1 Well identification TW-1 X location 0 Y location 0 Casing radius 0.33 Wellbore radius 0.42 Depth to top of well screen 29.08 Depth to bottom of well screen... 58.75 Number of pumping periods 1 Period Pumping Rate

1 31

Page 1 MwSv.out

Observation Well/Piezometer Data Well identification MW-3 X location 144 Y location 0 Distance from pumping well #1.... 144 Depth to top of well screen 41 Depth to bottom of well screen... 51 No. of observations 363

Aquifer Data Saturated thickness 78 Hyd. conductivity ratio (Kz/Kr).. I

ANALYTICAL METHOD

Theis (Confined Aquifer) Partially Penetrating Well(s)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate T = 2.9901E+004 ftA2/day S = 9.4419E-003

Page 2 Elapsed Time-Drawdown Data TW-1 Aquifer Test May 26-28, 1998 McKm Company Site Gray. Maine MW-1 MW-2 MW-3 Elapsed Corrected Elapsed Corrected Elapsed Corrected Time Drawdown Time Drawdown Time Drawdown 0035 00140017 0035 0 0070017 0035 00050017 00717 0 0320034 00717 0 0070034 00717 0 0050034 011 0 0600051 011 00160051 011 0 0090051 01517 0 0690077 01517 00210077 0 1517 0 0050077 0 195 0 0740094 0195 0 0350094 0195 0 0050094 02417 0083012 02417 0 039012 02417 0 005012 029 00880145 029 00480145 029 00090145 03417 00920171 03417 00480171 03417 00090171 03967 00970196 03967 00530196 03967 00090196 0455 0 1010231 0455 0 0580231 0455 0 0090231 05167 0 1010265 05167 0 0580265 05167 0 0090265 05817 0 1060299 05817 0 0620299 05817 0 0140299 06517 0 1110333 06517 0 0620333 06517 00140333 0725 0 1110367 0725 0 0720367 0725 00140367 08034 0111041 08034 0 072041 08034 0014041 08867 01110453 08867 0 0720453 08867 0 0140453 0975 0 1150495 0975 0 0760495 0975 0 0090495 1 0684 01150546 1 0684 0 0760546 1 0684 00140546 1 1667 01150598 1 1667 0 0760598 1 1667 0 0140598 1 2717 01150649 1 2717 0 0810649 1 2717 0 0140649 1 3817 0 1200709 1 3817 0 0810709 1 3817 0 0140709 1 4984 0 1200768 1 4984 0 0850768 1 4984 0 0140768 1 6234 0 1200828 1 6234 0 0850828 1 6234 0 0140828 1 755 0 1200897 1 755 00810897 1 755 00140897 1 895 0 1200965 1 895 0 0850965 1 895 00140965 20434 0 1251042 20434 0 0901042 20434 00181042 22 01251127 22 00851127 22 00141127 23667 01251212 23667 00901212 23667 00141212 25434 0 1251298 25434 0 0901298 25434 00141298 273 0 1251392 273 00901392 273 00141392 29284 0 1291494 29284 0 0901494 29284 00141494 3 1384 0 1291605 3 1384 0 0901605 3 1384 00181605 336 0 1291716 336 00951716 336 00181716 3595 0 1291836 3595 00951836 3595 00141836 3 8434 1 01291964 38434 00951964 38434 00181964 41067 0 12921 4 1067 0 09521 4 1067 001821 43867 0 1342246 43867 0 0992246 43867 00182246 46834 0 1342399 46834 0 0952399 46834 00182399 49967 0 1342553 49967 0 0992553 49967 00182553 53284 0 1342724 5 3284 0 0992724 53284 00182724 568 0 1342903 568 0 0992903 568 00182903 60534 0 1343099 60534 0 1043099 60534 0 0233099 64484 0 1343304 64484 0 0993304 64484 0 0233304 68667 0 1343518 68667 00993518 68667 00183518 731 0 134374 731 0 104374 731 0 023374 778 0 1383979 778 0 1043979 778 0 0233979 82784 0 1384235 82784 0 1044235 82784 0 0234235 8805 0 1384508 8805 0 1084508 8805 0 0234508 93634 0 138479 93634 0 104479 93634 0018479 9955 0 1435098 9955 0 1045098 9955 0 0235098 105817 0 1345422 105817 0 1045422 105817 0 0235422 11 245 0 1385755 11 245 0 1085755 11 245 0 0235755

8/12/98 8 40 AM Pagel of 10 Elapsed Time-Drawdown Data TW-1 Aquifer Test May 26-28, 1998 McKm Company Site Gray, Maine MW-1 MW-2 MW-3 Elapsed Corrected Elapsed Corrected Elapsed Corrected Time Drawdown Tim e Drawdown Tim e Drawdown 11 9484 0 1386122 11 9484 0 1086122 1 1 9484 0 0236122 12 6934 0 1386498 126934 0 1086498 126934 0 0236498 134834 0 1436908 134834 0 1086908 134834 0 0236908 1432 0 1437335 1432 0 1087335 1432 0 0287335 15205 0 1437787 15205 0 1087787 15205 0 0237787 16 1434 0 1438265 16 1434 0113826 5 16 1434 0 0288265 17 1367 0 1488778 17 1367 0113877 8 17 1367 0 0238778 18 19 0 1439316 1819 0113931 6 1819 0 0239316 19305 0 1419888 19305 0 1139888 19305 0 0289888 20 4867 0 1420494 20 4867 0 1070494 20 4867 0 0290494 21 7384 0142113 4 21 7384 0 1121134 21 7384 0024113 4 23 0634 0 1461809 23 0634 0 1071809 23 0634 0024180 9 24 4684 0 1462535 24 4684 0 1122535 24 4684 0 0242535 25 9567 0 1463295 25 9567 0 1123295 25 9567 0 0293295 275317 0 1464106 275317! 0 1124106 275317 0029410 6 292 0 146496 292 0116496 29 2 0 029496 30 9684 0 1515865 30 9684 0 1165865 30 9684 0 0335865 328417 0 1516821 328417 0 1166821 328417 0 0296821 34825 0 1517837 34825 0 1167837 34825 0 0337837 36 9267 0151891 3 36 9267 0 1168913 36 9267 0033891 3 39 1534 0 1570057 391534 0 1220057 39 1534 0 0340057 41 5117 0157126 1 41 5117 01171261 41 5117 0039126 1 4401 0157254 2 4401 0 1222542 4401 0 0342542 46 6567 0 1593899 46 6567 0 1223899 46 6567 0 0393899 4946 0159533 4 4946! 0 1225334 4946 0 0395334 52 4284 0 1596854 52 4284 0 1226854 52 4284 0 0396854 55 5734 0 1598468 55 5734 0 1278468 55 5734 0 0398468 58905 0 1600175 58905 0 1280175 58905 00400175 62 4334 0 1597349 62 4334 0 1227349 62 4334 0 0397349 66 1717 0 1593524 66 1717 0 1223524 66 17171 00393524 701317 0 1629459 70 1317 0 1269459 701317 00389459 74325 0 1625173 74325 0 1265173 74325 00435173 78 7684 0 1670613 78 7684 0 1260613 787684 00430613 83475 0 1665798 83475 0 1295798 83475 0 0425798 8846 0 1660692 8846 0 1290692 8846 0 0460692 9374 0 1655278 9374 0 1245278 9374J 00415278 99 3334 0 159954 99 3334 0 127954 99 3334 0 040954 1052584 0 1693478 1052584 0 1273478 1052584 0 0353478 1 1 1 5334 0 172704 111 5334 0 126704 111 5334 0 029704 118 1817 0 1720226 1181817 01310226 118 1817 0 0340226 1252234 0 1721934 1252234 01351934 1252234 0034193 4 1326817 0 1775759 1326817 01355759 1326817 0 0435759 1405817 0 1829806 1405817 01409806 1405817 0 0399806 14895 0183409 3 14895 0 1414093 14895 0 0444093 1578151 0 1838635 157815 0 1418635 157815 0 0448635 167205 01843442 167205 0 1473442 1672051 00363442 1771517 0181854 17 7 1517 0 147854 1771517 0041854 1876884 0186970 1 1876884 0 1479701 1876884 0 0459701 198 8484 0190970 1 1988484 0 1519701 1988484 0 0509701 21067 0 1909701 21067 0 1569701 21067 0 0549701 223 1917 0 1959701 223 1917 0 1569701 223 1917 0 054970 1 236 4567 0 1959701 236 4567 0 1609701 236 4567 0 0549701

8/12/98 8 40 AM Page 2 of 10 Elapsed Time-Drawdown Data TW-1 Aquifer Test May 26-28, 1998 McKm Company Site Gray, Maine MW-1 MW-2 MW-3 Elapsed Corrected Elapsed Corrected Elapsed Corrected Time Drawdown Time Drawdown Time Drawdown 250 5067 0 1904023 250 5067 0 1604023 250 5067 0 0544023 26539 0 1996398 26539 0 1556398 26539 0 0586398 28039 0 1988713 28039 0 1638713 28039 00628713 29539 02021029 29539 0 1631029 29539 00661029 31039 0 2007726 31039 0 1617726 31039 0 0647726 32539 0 2042356 32539 0 1602356 32539 0 0682356 34039 0 2026987 34039 0 1 586987 34039 0 0666987 35539 02061617 35539 0 1621617 355 39 00651617 37039 0 2086248 37039 0 1646248 37039 0 0726248 38539 0 2070879 38539 0 1630879 38539 0 0760879 40039 02105509 40039 0 1665509 40039 0 0745509 41539 0209014 41539 0 170014 41539 0 073014 43039 02109152 43039 0 1679152 43039 00749152 44539 02136098 44539 0 1696098 44539 0 0776098 46039 02113044 46039 0 1723044 46039 0 0753044 47539 0217999 47539 0 169999 47539 0 076999 49039 02151317 49039 01671317 49039 00741317 505 39 1 02170578 50539 0 1680578 50539 0 0760578 52039 02139839 52039 0 1699839 52039 0 0779839 53539 02109101 53539 0 1669101 53539 00749101 55039 0212398 55039 0 164398 55039 0 076398 56539 02150926 56539 0 1670926 56539 0 0740926 58039 0 2127872 58039 0 1687872 58039 00817872 59539 02194818 59539 01714818 59539 00794818 61039 02221764 61039 01731764 61039 00811764 62539 0 223871 62539 0 175871 62539 0 083871 64039 02215655 64039 0 1685655 64039 0 0855655 65539 0 2192601 65539 0 1712601 65539 0 0832601 67039 02225166 67039 0 1745166 67039 00815166 68539 0 2209796 68539 0 1729796 685 39) 00799796 70039 02144427 70039 0 1714427 700 39 1 00784427 71539 02179057 71539 0 1699057 715391 00769057 73039 02219306 73039 0 1689306 73039 0 0759306 74539 02211622 74539 0 1721622 74539 0 0801622 76039 0 2203937 76039 0 1713937 76039 0 0883937 77539 02196252 77539 0 1666252 77539 0 0836252 79039! 02278567 79039 0 1698567 79039 0 0868567 80539 0 2220883 80539 0 1740883 80539 0 0860883 82039 02213198 82039 0 1783198 82039 00903198 83539 02255513 83539 0 1725513 83539 00845513 85039 0 2247829 85039 0 1717829 85039 0 0887829 86539 02240144 865 39i 0 1710144 86539 00830144 88039 0 2322459 880 39 1 01682459 88039 0 0822459 89539 0 2224775 89539 0 1694775 89539 00814775 91039 02211471 91039 0 1631471 91039 00851471 92539 02246102 92539 0 1666102 92539 00786102 94039 0 2230733 94039 0 1650733 94039 0 0820733 95539 02215363 95539 0 1635363 95539 0 0805363 97039 0 2245612 97039 0 1675612 97039 0 0835612 98539 0 2237927 98539 0 1617927 98539 0 0827927 100039 0 2230243 1000 39 0 1660243 100039 0 0780243 101539 0 2272558 101539 0 1652558 101539 00812558

8/12/98 8 40 AM Page 3 of 10 Elapsed Time-Drawdown Data TW-1 Aquifer Test May 26-28, 1998 McKin Company Site Gray, Maine MW-1 MW-2 MW-3 Elapsed Corrected Elapsed Corrected Elapsed Corrected Time Drawdown Time Drawdown Time Drawdown 1030 39 0 2203637 103039 0 1633637 103039 0 0843637 104539 0 2230583 104539 0 1610583 104539 0 0770583 106039 0 2207528 106039 0 1627528 106039 0 0797528 107539 02184474 107539 0 1604474 107539 0 0774474 109039 02212657 109039 0 1642657 109039 0 0812657 1105 39 02164972 110539 0 1634972 110539 0 0804972 112039 02197288 112039 0 1627288 112039 0 0837288 113539 0 2239603 113539 0 1659603 113539 0 0829603 115039 02231918 115039 0 1651918 115039 00871918 116539 0 2224233 116539 0 1644233 116539 0 0864233 118039 0 2216549 118039 0 1636549 118039 0 0856549 119539 02208864 1195 39 0 1588864 119539 0 0848864 1210391 02201179 121039 0 1621179 121039 00841179 1225391 02193495 1225 39 0 1523495 122539 0 0833495 124039 0218581 124039 0 165581 1240 39 0 082581 125539 02178125 1255391 0 1598125 1255 39 00818125 127039 0 2226059 127039! 0 1646059 1270 39 00816059 128539 0 2226059 128539 01646059 1285 39 00816059 130039 02176059 1300391 01596059 130039 00816059 131539 02176059 131539 0 1596059 131539 0 0766059 133039 02176059 133039 0 1596059 1330 39 0 0766059 134539 02176059 134539 0 1556059 134539 0 0766059 136039 0 2176059 136039 0 1596059 1360391 00766059 137539 0 2126059 137539 0 1596059 1375391 00726059 139039 02137296 139039 0 1607296 139039 0 0737296 140539 0 2202665 1405 39 0 1582665 140539 0 0842665 142039 02168034 1420 39 0 1598034 142039 0 0808034 1435 39 02183404 143539 0 1613404 143539 0 0783404 1450 39 02187536 145039 0 1617536 145039 0 0787536 146539 02147536 146539 0 1567536 146539 0 0787536 1480 39 02187536 148039 0 1567536 1480391 0 0737536 1495 39 02147536 149539 0 1617536 149539 00737536 151039 02153155 151039 0 1623155 151039 00743155 152539 0216084 152539 0 158084 152539 0 075084 154039 0 2168524 154039 0 1588524 154039 0 0758524 155539 0 2126209 155539 0 1596209 155539 00716209 157039 02133894 1570391 0 1513894 157039 0 0723894 158539 02101578 1585 39 0 1521578 158539 00731578 160039 02109263 1600 39 0 1529263 1600 39 0 0739263 161539 02156948 161539 01536948 161539 0 0706948 1630 39 02164632 163039 01544632 1630 39 00714632 1645 39 02132317 164539 01552317 1645 39 00722317 1660 39 02140002 166039 01510002 166039 00680002 167539 0 2097687 167539 01517687 167539 00687687 1690391 02055371 169039 0 1525371 169039 00695371 170539 02113056 170539 0 1533056 170539 00663056 1720 39 02120741 172039 0 1540741 172039 00710741 173539 02128425 173539 0 1548425 173539 00718425 175039 02191729 175039 0 1611729 175039 00731729 176539 02157098 176539 0 1577098 176539 0 0747098 178039 02172467 178039 0 1592467 178039 0 0762467 179539 02187837 179539 0 1657837 179539 0 0777837

8/12/98 8 40 AM Page 4 of 10 Elapsed Time-Drawdown Data TW-1 Aquifer Test May 26-28, 1998 McKin Company Site Gray. Maine MW-1 MW-2 MW-3 Elapsed Corrected Elapsed Corrected Elapsed Corrected Time Drawdown Time Drawdown Time Drawdown 181039 02217588 181039 0 1667588 181039 0 0837588 182539 0 2225272 182539 0 1625272 182539 0 0755272 184039 02192957 184039 0 1632957 184039 00712957 185539 0 2240642 185539 0 1600642 185539 00810642 187039 0 2242708 187039 0 1642708 187039 0 0812708 188539 0 2242708 188539 0 1692708 188539 00812708 190039 0 2242708 190039 0 1692708 190039 0 0812708 191539 0 2242708 191539 0 1692708 191539 0 0772708 1930 39 0 2242708 193039 0 1692708 193039 0 0812708 1945 39 0 2242708 194539 0 1692708 194539 0 0812708 196039 0 2242708 196039 0 1692708 196039 00812708 197539 0 2242708 197539 0 1692708 197539 00812708 199039 0 223709 199039 0 168709 199039 0 080709 2005 39 0 2229405 2005 39 0 1679405 2005 39 0 0799405 2020 39 0227172 2020 39 0176172 2020 39 0079172 2035 39 0 2264036 2035 39 0 1754036 2035 39 0 0874036 2050 39 02301969 2050 39 01801969 2050 39 00831969 2065 39 02301969 2065 39 0 1801969 2065 39 00871969 2080 39 02351969 2080 39 0 1841969 2080 39 00871969 2095 39 02351969 2095 39 0 1841969 2095 39 00921969 211039 02351969 211039 0 1841969 211039 00921969 2125 39 02351969 212539 0 1841969 212539 00921969 2140 39 02351969 214039 0 1841969 214039 00921969 2155 39 02351969 215539 01841969 215539 00921969 217039 0 2346351 2170 39 0 1836351 217039 0 0966351 218539 0 2338666 2185 39 01828666 218539 0 0908666 2200 39 0 2330982 2200 39 0 1820982 2200 39 0 0900982 2215 39 0 2373297 221539 01863297 221539 0 0943297 2230 39 0 2376849 2230 39 0 1866849 2230 39 0 0946849 2245 39 0 2384534 2245 39 0 1874534 2245 39 0 0954534 2260 39 02392218 2260 39 0 1882218 2260 39 00962218 2275 39 0 2399903 2275 39 0 1889903 2275 39 1 00969903 2290 39 02401969 2290 39 0 1941969 2290 39 1 00971969 2305 39 02401969 2305 39 0 1941969 2305 39 1 00971969 2320 39 02401969 2320 39 0 1891969 2320 39 00971969 2335 39 02401969 2335 39 0 1891969 2335 39 00971969 2350 39 02401969 2350 39 0 1941969 2350 39 0 1011969 2365 39 02401969 2365 39 0 1891969 2365 39 0 1011969 2380 39 02401969 2380 39 0 1891969 2380 39 00971969 2395 39 02401969 2395 39 0 1941969 2395 39 01011969 241039 0 2396351 241039 0 1886351 241039 0 1006351 2425 39 0 2388666 2425 39 0 1878666 2425 39 0 0998666 2440 39 0 2380982 2440 39 0 1920982 2440 39 0 0950982 2455 39 0 2373297 2455 39 0 1863297 2455 39 0 0983297 2470 39 02405612 2470 39 0 1905612 2470 39 00975612 2485 39 0 2397927 2485 39 0 1897927 2485 39 0 0967927 2500 39 0 2390243 2500 39 0 1890243 2500 39 0 1010243 251539 0 2382558 251539 0 1922558 251539 0 1002558 2530 39 0 2380492 2530 39 0 1880492 2530 39 0 0950492 2545 39 0 2380492 2545 39 0 1920492 2545 39 0 1000492 2560 39 0 2430492 2560 39 0 1880492 2560 39 0 1000492 2575 39 0 2430492 2575 39 0 1830492 2575 39 1 01000492

8/12/98 8 40 AM PageS of 10 Elapsed Time-Drawdown Data TW-1 Aquifer Test May 26-28, 1998 McKm Company Site Gray, Maine MW-1 MW-2 MW-3 Elapsed Corrected Elapsed Corrected Elapsed Corrected Time Drawdown Time Drawdown Time Drawdown 2590 39 0 2380492 2590 39 01780492 2590 39 0 1000492 2605 39 0 2430492 2605 39 0 1780492 2605 39 0 1000492 2620 39 0 2380492 2620 39 0 1780492 2620 39 0 1000492 2635 39 0 2380492 2635 39 0 1830492 2635 39 0 1000492 2650 39 0 2430492 2650 39 01830492 2650 39 0 1000492 2665 39 0 2430492 2665 39 0 1830492 2665 39 0 1000492 2680 39 0 2430492 2680 39 0 1830492 2680 39 0 1000492 2695 39 0 2430492 2695391 01830492 2695 39 0 1000492 271039 0 243611 271039 0 183611 271039 0 100611 2725 39 0 2393795 2725 39 0 1793795 2725 39 0 1013795 2740 39 0240148 2740 39 0 185148 274039 0102148 2755 39 02409164 2755 39 0 1859164 275539! 00979164 2770 39 0 2376849 2770 39 0 1866849 2770 39 01036849 2785 39 0 2424534 2785 39i 0 1824534 2785 39 0 0994534 2800 39 02432218 2800 39 0 1832218 2800 39 0 1002218 281539 0 2439903 2815 39 0 1889903 281539 0 1059903 2830 39 0 2453206 2830 39 0 1853206 2830 39 0 1023206 2845 39 0 2428576 2845 39 0 1868576 284539 01038576 2860 39 0 2443945 2860 39i 0 1883945 2860 39 0 1053945 2875 39 02459314 2875 39 0 1899314 2875 39 0 1069314 2890 39 0 2469065 2890 39 0 1909065 2890 39 0 1039065 2905 39 0 242675 2905 39 0 191675 2905 39 0104675 2920 39 0 2384435 2920 39 0 1884435 2920 39 0 1004435 2935 39 0 244212 2935 39 0 189212 2935 39 0 101212 2950 39 0 2399804 2950 39 0 1899804 2950 39 01019804 2965 39 0 2457489 2965 39 0 1907489 2965 39 0 1027489 2980 39 02465174 2980 39 0 1915174 2980 39 0 1035174 2995 39 0 2472858 2995 39 0 1872858 2995 39 0 0992858 301039! 02474925 301039 01924925 301039 01044925 3025 39 0 2474925 302539 01874925 3025 39 1 00994925 3040 39 0 2424925 3040 39 1 0 1874925 3040 39 0 0994925 3055 39 0 2424925 3055 39 0 1874925 3055 39 0 0994925 3070 39 0 2430543 3070 39 0 1880543 3070 39 0 1050543 3085 39 0 2438228 3085 39 0 1888228 3085 39 0 0968228 310039 02445912 310039 01895912 310039 0 1015912 311539 0 2453597 311539 01903597 311539 0 1023597 313039 0 24269 313039 0 18769 313039 0 09969 314539 0 244227 314539 0 193227 314539 0 101227 316039 0 2457639 316039 0 1947639 3160 39 0 1027639 3175 39 0 2473008 317539 0 1963008 317539 0 1043008 319039 0 248276 319039 0 193276 319039 0 105276 320539! 02440444 3205 39 0 1980444 3205 39 0 1010444 3220 39 02448129 3220 39 0 1948129 3220 39 01018129 3235 39 02505814 3235 39 0 1905814 3235 39 0 1025814 3250 39 0 245788 3250 39 0195788 3250 39 0102788 3265 39 0 245788 3265 39 0 195788 3265 39 0 102788 3280 39 0 245788 3280 39 0 195788 3280 39 0 102788 3295 39 0 245788 3295 39 0 195788 3295 39 0 107788 331039 0 245788 331039 0 195788 331039 0 102788 3325 39 0 250788 3325 39 0 199788 3325 39 0 107788 3340 39 0 250788 3340 39 0 199788 3340 39 0 107788 3355 39 0 250788 3355 39 0 204788 3355 39 0 107788

8/12/98 8 40 AM Page 6 of 10 Elapsed Time-Drawdown Data TW-1 Aquifer Test May 26-28, 1998 McKm Company Site Gray, Maine MW-1 MW-2 MW-3 Elapsed Corrected Elapsed Corrected Elapsed Corrected Time Drawdown Time Drawdown Time Drawdown 3370 39 0 2502262 3370 39 0 2042262 3370 39 0 1112262 3385 39 0 2534577 3385 39 0 2034577 3385 39 01104577 3400 39 0 2526892 3400 39 0 2026892 3400 39 0 1096892 3415 39 02519207 341539 02019207 341539 01089207 3430 39 02511523 3430 39 02011523 3430 39 01081523 3445 39 0 2503838 3445 39 0 2003838 3445 39 0 1073838 3460 39 02496153 3460 39 01996153 3460 39 0 1166153 3475 39 0 2538469 3475 39 0 2028469 3475 39 0 1158469 3490 39 0 2542021 3490 39 0 2032021 3490 39 0 1202021 3505 39 0 2549705 3505 39 02139705 3505 39 0 1209705 3520 39 0 260739 3520 39 0214739 3520 39 0121739 3535 39 02615075 3535 39 02155075 3535 39 0 1225075 3550 39 0 262276 3550 39 0211276 3550 39 0 119276 3565 39 0 2630444 3565 39 02120444 3565 39 0 1200444 3580 39 02638129 3580 39 02128129 3580 39 0 1208129 3595 39 02595814 3595 39 02135814 3595 39 0 1215814 361039 0 2603498 361039 0 2093498 361039 0 1223498 3625 39 02611183 3625 39 02151183 3625 39 01231183 3640 39 02618868 3640 39 02108868 3640 39 0 1238868 3655 39 0 2626552 3655 39 02116552 3655 39 0 1246552 3670 39 0 2634237 3670 39 02174237 3670 39 1 01254237 3685 39 02591922 3685 39 02181922 368539! 0 1211922 3700 39 0 2649607 3700 39 02139607 3700 39 0 1219607 371539 0 2657291 371539 02197291 371539 0 1227291 3730 39 02614976 3730 39 02154976 3730 39 0 1234976 3745 39 0 2622661 3745 39 02162661 3745 39 0 1242661 3760 39 0 2680345 3760 39 02170345 3760 39 0 1250345 3775 39 0 263803 3775 39 0213803 3775 39 0 125803 3790 39 02651333 3790 39 02191333 3790 39 0 1221333 3805 39 1 02666703 3805 39 02166703 3805 39 0 1236703 3820 39 02712072 3820 39 0 2222072 3820 39 0 1302072 3835 39 0 2677441 3835 39 02197441 3835 39 0 1267441 3850 39 02687192 3850 39 02207192 3850 39 0 1277192 3865 39 0 2694877 3865 39 02214877 3865 39 0 1284877 3880 39 0 2702562 388039| 02262562 3880 39 0 1292562 3895 39 02710247 3895 39 0 2230247 3895 39 0 1300247 391039 02672313 3910 39 02232313 391039 0 1262313 3925 39 02672313 3925 39 02232313 3925 39 0 1262313 3940 39 02712313 3940 39 02232313 3940 39 0 1302313 3955 39 02672313 3955 39 02232313 3955 39 0 1262313 3970 39 02712313 3970 39 02232313 3970 39 0 1302313 3985 39 02712313 3985 39 02272313 3985 39 0 1302313 4000 39 02712313 4000 39 02232313 4000 39 0 1262313 401539 02712313 401539 02272313 4015 39 0 1302313 4030 39 0 2767931 4030 39 0 2277931 4030 39 0 1307931 4045 39 0 2725616 4045 39 02245616 4045 39 0 1315616 4060 39 0 2733301 4060 39 0 2253301 4060 39 0 1323301 4075 39 0 2740985 4075 39 0 2300985 4075 39 0 1330985 4090 39 0 270867 4090 39 0 226867 4090 39 0 129867 410539 0 2756355 410539 0 2276355 4105391 0 1346355 412039 0 232404 4120391 0135404

8/12/98 8 40 AM Page 7 of 10 APPENDIX H

TCE LOADING AND CAPTURE ZONE CALCULATIONS Page 1 of 1

CALCULATION WORKSHEET

CLIENT: EPA JOB NUMBER: 7793

SUBJECT: McKin Site - Groundwater Hydraulic Gradient Calculations

BY: ^Z. DFC DATE: ^Z-^Ao CHECKED BY:

SUMMARY OF WELL SCREEN AND GROUNDWATER ELEVATION CALCULATIONS:

Elevation Depth to Depth to Elevation Elevation Depth to Elevation Ground Top of Top of Base of Top of Base of Ground Ground Location Elevation Well Casing Screen Screen Screen Screen Water Water Identification (ft-msl) (ft-msl) (ft-bgs) (ft-bgs) (ft-msl) (ft-msl) (ft-btoc) (ft-msl)

Shallow Portion

DP1-196 90.59 93.01 33 38 57.59 52.59 1.65 91.36 MW-3 91.01 92.7 41 51 50.01 40.01 0.59 92.11 DP2-150 90.96 92.09 25.5 30.5 65.46 60.46 1.77 90.32

Deep Portion

DP1-400 90.7 93.22 70 75 20.7 15.7 1.15 92.07 DP1-560 93.38 94.42 61.5 66.5 31.88 26.88 2.04 92.38 DP2-282 92.68 93.82 58.5 63.50 34.18 29.18 2.22 91.6

HYDRAULIC GRADIENT CALCULATIONS:

i = dh/dl dh dl i dh is the head drop between two adjacent potentiometric contours (Figures 4-1, 4-2) Shallow Portion 0.5 33 0.015 dl is the horizontal distance between two Deep Portion 0.25 60 0.004 adjacent potentiometric contours measured perpendicular to the contours. ABBREVIATIONS: ft = feet msl = mean sea level bgs = below ground surface btoc = below top of well casing

NOTES:

1. Well elevation survey performed by OEST Associates, Inc., June 1998. 2. Ground water levels were measured on May 13, 1998, between 3 and 5 PM Page 1 of 1

CALCULATION WORKSHEET

CLIENT EPA JOB NUMBER 7793 SUBJECT McKin Site - Estimation of TCE Flux in Aquifer BY MSH /vnf/1^ CHECKED BY DATE

GIVEN A1000 = 3,700 ft2 Cross-sectional Area of 1,000 ug/l plume 01000 = 1,100 ug/l Avg cone of TCE within 1,000 ug/l x-section 2 A300 = 26,268 ft Cross-sectional Area of 300 ug/l plume C300 = 570 ug/l Avg cone of TCE within 300 ug/l x-section k = 300 ft/day Shallow Zone Hydraulic Conductivity '300 = 0 0095 ft/ft Shallow Zone Gradient (TCE >300 and <1 000 ppb) 11000 = 0015 ft/ft Shallow Zone Gradient (TCE >1 ,000 ppb)

FIRST Apply Darcy's Law to estimate the volume of groundwater through the TCE plumes

3 Q1000= 16,650 ft /day = 124,559 gallons/day 3 QSOO = X k X i = 74,864 ft /day = 560,056 gallons/day

Specific discharge of plume with greater than 300 ppb TCE = 4754269 gpm Approximately 480 gpm

Q1000 = 471,454 liters/day Q300 = 2,119,812 liters/day

SECOND Calculate the TCE flux through the RRDZ

FTCE =

F1000 = QIOOOXC-IOOO 0 52 kg/day x F300 = QSOO 1 21 kg/day

FTCE = 1 73 kg/day

NOTES: 1 RRDZ - Royal River Discharge Zone 2 Cross-sectional areas developed from direct push investigation, see Figure 4-2 3 1300 is the average gradient for the shallow and deep zones, ((0015 + 0 004)/2) Page 1 of 1

CALCULATION WORKSHEET

CLIENT: EPA JOB NUMBER: 7793

SUBJECT McKin Site - Estimation of extraction well capture zone

BY: MSH )vt > '^"^ CHECKED BY: > DATE:

Method Capture Zone analysis presented in Hydraulics of Groundwater. Bear, Jacob, (1979).

Equation xs = Qw/ 2 X B qrj

Where

xs = 1/2 width of capture zone (feet) 3 3 Qw = Pumping rate (ft /day) 60 gpm = 11549.26 ft /day B = Saturated thickness (feet) 87 feet

qo = hydraulic conductivity X gradient 300 ft/day X 0.0095 2.85 ft/day

Width of capture zone is equal to twice xs = 46.57898 feet

Width of the capture zone is approximately 46 feet

NOTES: 1 This analysis does not account for the influence of the Royal River. 2 The Royal River is expected to act to decrease the calculated capture zone. 3 The actual capture zone is expected to be larger due to well interference caused by adjacent extraction wells. 4 The actual size of the capture zone will have to be determined during final design. APPENDIX I

POTENTIAL SITES FOR REMEDIAL FACILITIES Appendix I Potential Sites for Remediation Facilities Remedial Alternative Screening Technical Memorandum Royal River Discharge Zone (RRDZ) McKin Site, Gray, Maine

Potential sites for McKin Site RRDZ groundwater remediation facilities are presented in this discussion. Alternatives under consideration for the mitigation of groundwater contamination at the Royal River include groundwater extraction wells and treatment facilities that will require construction and operation of remediation facilities at or near the RRDZ. Some type of access roadway and electrical service is also required. The RRDZ is located approximately 1,900 feet from the nearest highway and electrical lines (Depot Road) and access to the RRDZ is a relatively difficult due to its location in the Royal River floodplam and the surrounding irregular and steep terrain. In addition a petroleum/natural gas pipeline is located immediately west of the RRDZ. Siting of remediation facilities must take into consideration the topography, floodplam zone, wetland areas, the petroleum/natural gas pipeline, and a requirement to minimize cost and environmental impacts. The following evaluates five potential sites for remediation facilities (see Figure I -1) as follows:

A. RRDZ Site B. Depot Road Site C. East Bank Royal River Site D. West RRDZ Site E. North RRDZ Site

A. RRDZ Site

Ideally, it would be advantageous to locate the remediation facilities in the vicinity of the interception wells. Installing the treatment facility near the wells will minimize the length of process piping when compared to other locations. Disadvantages of installing a remedial compound within the RRDZ include, the

1-1 distance from a power source, access, construction difficulty, and the flooding hazards The nearest electrical lines are located along Depot Road Discussions with Central Maine Power have estimated the costs of running power the 1,900 feet to the RRDZ around $50,000 An access road would be necessary for equipment maintenance, and periodic carbon vessel replacement. Since the site is isolated, mobilization of construction material and equipment would be difficult. Finally, this location is within the floodplam, and the treatment facility would have to be elevated approximately 11 feet above grade to get above the flood elevation.

B. Depot Road Site

This location solves the problems of electric service availability and access A site just off Depot Road near the Royal River would be readily accessible and near available power An access road would still be necessary for the wells, but could possibly be scaled down with the major equipment components are near Depot Road. This location also solves the problems of construction difficulty, and the floodplam issue. The mam disadvantage of installing a remedial compound along Depot Road centers on the groundwater interception alternative. Contaminated groundwater would have to be pumped the 1,900 feet from the interception wells to the treatment facility If double containment piping is required, costs to install the piping will be high Also, since the re-injection wells are near Boiling Springs, the treated effluent would have to be piped the 1,900 feet back to the RRDZ

C. Royal River East Bank Site

The east bank of the Royal River, across from the RRDZ, would be local to the extraction wells However, utilizing this site as an treatment facility location is contingent on receiving permission from the railroad to use an existing access road. The access road runs parallel along the west side of the rail bed between the railroad tracks and the Royal River It is unclear if permission could be obtained from the railroad to use the road

I-2 Although this site is in the floodplain, the elevation is slightly higher than the RRDZ area. Besides potential access problems the main disadvantage of this location is the fact that a river crossing would be necessary to convey contaminated groundwater over the river. The combination of elevating the treatment facility and construction of pipe bridges significantly increase construction costs. This location would also require power to be run the 1,900 feet from Depot Road.

D. West RRDZ Site

The topography on the west side of the Royal River rises steeply away from the river and levels off. By locating the remediation facility west of the RRDZ on the elevated level area, the remedial facilities can be sited near the wells and out of the floodplain. Construction activities in or near the floodplain and wetlands would be avoided or minimized. This site, however, would require a lengthy access road from Mayall Road as the grade is too steep to construct a road between the wells and an treatment facility west of the RRDZ. This location would also require a long electrical service run. If the treatment plant effluent is discharged to the Royal River a pipeline crossing would be required.

F. North RRDZ Site

A fairly level elevated section of topography halfway between the RRDZ and Depot Road was identified as a potential location for the treatment facility. By locating the remediation facility in this area flood hazards would be avoided. The main advantage this site offers over the Depot Road location is the minimization of the double containment pipe. Double containment pipe is proposed from the extraction wells to the treatment system. Nearly 500 feet of double containment pipe would be eliminated by siting the system between the RRDZ and Depot Road. An access road would still be required, although the road could possibly be scaled down between the treatment facility and the extraction wells.

I-3

APPENDIX J

REMEDIAL ALTERNATIVE CALCULATIONS APPENDIX J

REMEDIAL ALTERNATIVE CALCULATIONS

1 TCE Plume Cross-section developed from DPT investigation (Figure 4-2). 2 Plume areas planimetered to estimate x-sectional areas. 3 Estimation of TCE flux through the RRDZ. 4 Calculation of extraction rate required to achieve SWQC 5 Hydraulic headloss calculations. 6 Carbon usage calculations. 7 ShallowTray Model Output Sheet (Air Stripper simulation) 8 Estimate of well yield for injection wells. 9 Injection well calculation worksheet. 10 PumpingMnjection Well Superposition calculation worksheet. 11 Estimate volume of groundwater treated over the life of the project.. 12 Evaluation of River Sparging Calculations. O

OT 2

O LU tn

(75

^ s­

5-J U5 ?L_J 3? I 2 £ Z ;! f ' 5­ , ^ I IQ a. i r

s a 5 2 I 5­ i

af a 2 s N l ELEVATION (FEET) ­ 1 oo O oo 00 0 r< o o m o < CO ID cr CN E I s • en oo

LU oo in o: CD a? Z) r^ o o T3 § ce

o • o o o o . o1- _ in ^ IT) <*0 °y <£•<£! IS

00 Id en 01 d O Ct LJ I n Q_ Z x z m \si i LxJ g ^0 & •-S 2 13 I Q_ LJ s

CO-MM S a

o u rO cn *oi '<) C3 <£> fO o. -^ _ o affi =ffl j£ ^ =a »a o ^^ _i z O o o o LU O LJ O 5

a *

u a: a. fe

4 •r . ID CD •* oq •* on ot> .0 0 cn to * tji tan to M z z z JE\ JS =£S sS =d =S UJ LJ un 1-1 LJ z a: a< QL-J a: a: to o _ z | z u < V a3; co O _l z < f) tO V- S 3 to to LJ a 10-MW z a. -• a M a (~ m a:

i Z oo in O) ID LD LJ %. m »­ •* Z a ^0 Jfi =* Ji LJ LJ LJ a: si 20-MW a o o a. _ Z Q­ r^ ^ Kl o' t- o LJ fb x LD %, -8 z < to o; ^, to a JO LJ Ct a u z ^ CJ LJ a. H -i a: Z > LJ LJ a u a < a < ^ CL -­ u a. § < to u uI < QL O i X 5 :* „ >­ LJ a ot 3 U o. U Q_ 11- s < I- LJ a _ a. a (=1 LJ * L3 LJ LJ L3 > ^ LJ O a z z 1=1 I- a a: a: < _i a a a o LJ UJ Z a _i 0­ II M o z u_ a 13 u a I 3 LJ U I z a: a co to z LJ LJ z i— n -1 LJ _ LJ at a: PAGE I OF JOB NUMBER -, .5 / / 7 SUBJECT

BASED ON DRAWING NUMBER X­ CHECKED BY APPROVED BY DATE

i.ooo due/ 'So S

2 > lo

3, ^00

30 O HI / J? e trcss> ­

/^ • 73 IB .17 J

,7-2­ 2 - ' 2- - / ^ . 7 3

I ."' Page 1 of 1

CALCULATION WORKSHEET

CLIENT: EPA JOB NUMBER: 7793 SUBJECT: McKin Site - Estimation of TCE Flux in Aquifer BY: MSH CHECKED BY: DATE:

2 GIVEN A100o = 3,400 ft Cross-sectional Area of 1,000 ug/l plume CIOOQ = 1,100 ug/l Avg. cone, of TCE within 1 ,000 ug/l x-section 2 A3oo = 26,800 ft Cross-sectional Area of 300 ug/l plume CSQO= 570 ug/l Avg. cone, of TCE within 300 ug/l x-section k = 300 ft/day Shallow Zone Hydraulic Conductivity

J300 = 0.0095 ft/ft Shallow Gradient (TCE >300 and <1,000 ppb) hooo = 0.015 ft/ft Shallow Gradient (TCE >1, 000 ppb)

FIRST Apply Darcy's Law to estimate the volume of groundwater through the TCE plumes:

3 Qtooo ­ oXkXhoo o 15,300 ft /day = 114,459 gallons/day 3 Q300 = , X k X i300 76,380 ft /day = 571,399 gallons/day

Q-iooo= 433,228 liters/day Q300 = 2,162,744 liters/day

SECOND Calculate the TCE flux through the RRDZ:

FTCE = F-iooo + FWQ

F-iooo= QlOOO X CIQO 0.48 kg/day

Q3oo X C30o 1.23 kg/day

TCE 1.71 kg/day

NOTES: 1 RRDZ - Royal River Discharge Zone 2 Cross-sectional areas developed from direct push investigation, see Figure 4-2.

3 The flux through the aquifer in the RRDZ (FTCE = 1 -7 kg/day) is approximately equal to the flux estimated in the Royal River. Page 1 of I

CALCULATION WORKSHEET CLIENT: EPA JOB NUMBER: 7793 SUBJECT: McKin Site - Estimation of Recovery Well Flowrate BY; DFC CHECKED BY: JLG DATE: 8/26/98

GIVEN QHM = 48 cfs Harmonic Mean River Flow CALL = 2.7 ug/i AWQC for TCE CRW = 590 ug/l Recovery Well Concentration

TCEIN = 1.5 kg/day TCE flux into Royal River

FIRST Estimate the allowable contaminant (TCE) flux:

= TCEALL QHM X CALL

Unit Conversion

QHM= 1.17E+08 I/day

CALL = 2.7E-09 kg/I

TCEALL = 0.32 kg/day

SECOND Estimate volume of TCE to be removed:

TCEOUT' TCE1N - TCE'ALL

TCEOUT ' 1.18 kg/day

THIRD Calculate the required recovery well flowrate to remove TCEOUT.

= QRW TCEOUT/

Unit Conversion

CRW = 5.9E-07 kg/I

QRW= 2,004,896 I/day 368 gpm

•'DESIGN X 1.3 478 gpm

NOTES: 1 AWQC - Maine's ambient water quality concentration for TCE.

2 CRW - from a dynamic sample collected at the end of a 72-hour pump test Page £ o f 1.

byTtNUS(May 1998)

3 Values of QHM and TCE,N estimated from historical data and mutually agreed upon beween agencies and PRPs. 4 A safety factor of 30% was used in calculating the design fiowrate. CO co 0) h_ r-­ h- *-» ^ Ifl CN nCOj c"^r <«= CO to ^i • ; O CD O) o o CN QL CO O> O T3 || 5- CD CO CO H* W r ^ CO 0) u o> S JJ 0 re X CL ^£ ^Qf i^_ CO CO O Q. Irt 0 ~5 b_ U) CM v^— — O T- -a o S —1 . ^_ o o HO Ts3 oII C ^s. n CO X o)"ro

0) ll CO o o CO " gl

= J1 CJ 111 ­ Q ID O co o CO _£Z O CO CO CO c CO CO CO _ cIful 0o) CO »- M- — P CO c o o o O O 0 CO w ii C o o o o o o o to O O O CO CO o' o' — CM en O CO >• _i O CD Q \— cy *"" CO <" c < ui 5 "~ "c .0 UJ iii ^ CO X E co Q "5 lii — k_ o: t/1 CD o _o CO

tj 1° 1 5 Q Is CO U. CO U. u sa X o X -- CO Lf) o o CO ^ CO CO o o .1± U O (j Q) in o CO Iu j :V^H- ^U— - £ 1 I O jrt 0 o f T3 SYS Coe l CO Coe l CO Elev z o o X CD o o i o o o headlos s Lengt h Elevatio n o o 2 v)

CO Influen t o **­ c

WORKSHEE T < k o 0_ cj u. Hazen/William s Hazen/William s Pipelin e Diamete r UJ 2 Q Equivalen t Discharg e Lowes t Calculate d Pipelin e Typ

IO N ' : o 1— i— CO H K ° Q. g E 3 z m z ^ o. o UJ m 1 1 CT -i =i >­ ^CJ O CO CO CO CO O) CM h- "35 ^ _ w o £ 5f • ; *- ^* ^ CM o o O CM o -a u C kD CM CM QL CM CM 01 UJ .• : O O) m [^ d CO X Q. D <

CD 0) o Q. in o V) {N — O T­ -0 ~0 a> o O co nj o -a II ^ CO CM CM co co "T" »— *" S ° 0) X O5 05 CO c .C o 0) O O 1 O O 2 in en O O Q co d d d o o> C 0 O O °. °. °. o3 w u C r-^ o o 2 O O CMO O O T3 d d d — CM O CM CM CD _i O CO H- 0) *- *- CD _C c UJ '^ _0 UJ y o X = o CO O 2 uT JJ £ .E Q. in CD 0 C/5 (U (1) o c > to >- 00 CO 2 T3 CO co 005 0) S2 S2 "5 sc >i a-£ C1D o o X oj E E cz a> ^ <5 a> CD o o o- .5 .2 ro -J UJ ^ -= o o SHEE T H = = b d d d *(£ CO Q> > > CU1 ai 1 O c c c ^ c '•r: cu CO -T; 5 2 ^ -i 1 « < k o S N N o 1 -g | 3 z Q, 0 U_ 9- CD CD 9- CT.S 2 § " ^CJ O CO CO CALCULATION WORKSHEET Ofd.r». »n. ,01-,,) PAGE / OF CLIENT USEP/V JOB NUMBER 7 7 ^ ^S SUBJECT n^,^/A., ^ ~ Cbfoori u £

RV «^>» CHECKED BY APPROVED BY DATE _ ^

CONC£NT(?ft7/0™ OF

TO

OF THE

- 0*008$ %* lOZ CALCULATION WORKSHEET M. NO i.n.

SUBJECT '

BASED ON DRAWING NUMBER

BY CHECKED BY APPROVED BY °ATE

,10 ' 2.0 «7

. 3o o o o o - Q. QC 8

o CE m QC o o o

cc LU D. £ Q. CO

UJ O 111 CO DC ra => D. "c g CC

o d

CVJ O n oo o o

o o o o Ut lb:4b , Ub

in A CM 0. CO *- 3 S S o T_ o cn 2 2 CD o 0) a> q 05 CD TJ = O 3= d cn 5 LU CO CD C\J ?? O 00 i- .o (O co c» CM O. re T- Q. o cn o co o X E ra CD CM o co co o> q CM r~xg. hi CO — S JL E 1-^ oj s» -r E O LO 0 3 I < * 0 CO £ 2 LU cn •3­ CO f- oCO CD O CM J2 CM 0. -C- CO o CO co m co Q. C5O ^S €03 0° N- i^­ — c -0 E to 0) o> =• 2 CO ro I ^ X •O 5 •= ^ d co o O S: < 5­ cn cu C/3 5 LU E o H , CO .a CM cu 0) re o £; o LO O "ca o CO a W> UO 7— (/> 1 «* m LO CD CO ¥ 0) 1 "35 0) ' g « o TJ 2 i= ^0 u_ O 5^ *^ o^­ 0 LO s 111 Q >s ±3 Q. _ E Q. O a. a> H C 3 D) CU C O £)" O I 0 L^U o « CM 0) 2 m TS a> "c j/3 CD 5 £ ro O tj o c d. c c >^ LU 13 o co co O c o O O LL CD c 1 1 0} c .t; LO LL. co o O E C/) ^J­ O CD tz Q .E cu o. C/J ^ .E E Q. CM o ca cu o LU ID E 00 2 ^~ -^^ ' CD 1— 03 -C LU o «V CD CD ™ 1 5 | co S ^ 1 ­ CD CD CD Page 1 of 1

CALCULATION WORKSHEET

CLIENT: EPA JOB NUMBER: 7793

SUBJECT. McKin Site - Estimate of well yield for Injection wells

BY: MSH CHECKED BY: DATE:

GIVEN L 10.0 ft Length of Well Screen (6 inch id.) Slot Size 40.0 (0.040 in) Well Screen Slot size (V slot plastic continuous slot) A 45.0 in2/ft Open area per foot of screen V 0.1 ft/sec Allowable velocity

FIRST Calculate the open area of the well screen. Assume that 50% of screen open area is lost during installation.

Open Area = LXAX0.5 225.0 in2 1.56 ft2

SECOND Calculate Pumping rate that will result in an enterance velocity of 0.1 ft/sec.

velocity = Q (ft3/sec)/open area (ft2)

Solve for Q = V (open area)

Q= 0.16 ft3/sec 70.125 gal/min

NOTES: 1 Open area of well screen from GROUNDWATER AND WELLS (Driscoll, 1986). 2 Enterance velocity from GROUNDWATER AND WELLS (Driscoll, 1986). CD CM 00 LO 00 | O) ps. CM O CD CO «— 00 CD LO LO CO CM CM CO r­ ai LO CM CM CD CO r-^ 1 LO ,— CN CM ! CM ,T­ s

O CO oo CD 00 O r* CO cp o O O 0 T 9 0 LU LU LU LU LU | LU LU LU LU LU CO in CO oo CM CD LO CO in 00 r-. OT ' in •=t CO

* c\i * co CO CO CO t-^ co ^

O O O o O o O O O o -f a LU LU LU LU LU LU LU LU LU LU CO CO CO CO CO CO CO CO CO CO T CO 5 ~a o <^­ CD ai CD CD 0) ai ^CD CD CD ai u_ i; O o O O 0 o O 0 O o CD CD a> CD 03 CD CD CD CO g n 5 2 — 0 0. CO \L a 03 0 LO in in £ O 0 o O 0 0 o 0) 00 00 00 00 CO CD CD CD co co CO c „ *pr ^~ t— t— CO CO CO t— T*­ CO ^~ T— CO en — o 5» c ^ }_ c. TJ T3 E~t t: co fl> c .2 jJ3 CO >~ ' o T5 y^. ca = 3 *-• CO co 1— CL co -o 2 ,— ^J­ o o ,_ O o «­ o o •a •^ CM CM o CM o CO o CE 03 CD c O 03 C O 2 CO (5 "ra C/3 03 ca CE Q 2. *j CO CO CO CO CO CO CO CO CO co co -^ o o o o o o o o o o W LU LU LU LU LU LU LU LU LU LU LO LO > in LO m in in in in m o^ ~ CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO co co CO w o ^^ 2 a: 52 CO

T3 o o o O o o o 0 0 o C 4~ ~t* ~\~ ~f~ + •fl~ ~r ~r ~4~ ~l~ D ^> LU LU LU LU LU LU LU LU LU LU r— i— t— o CO r— ^— r— in in in o CO CO CD CD CD CD CO CO CO CO CO >• CM CM CM CM Csi CM CM r­ T-^ ,-^ £ CD "o CO "O c g CO P "r CO "5 _u CO c CJ 0 CD ~ r* u — "• " 1 03_ 03 *^ > > § •3 J5 LU LU •a £ .§_ 03 5 j^ +_t CO ^_ -"• 03 r~ 03 C33 "^ S! _C C r­ CO "sf CO o g '"i- a -o ~~~~ ca •^ 4—1 it 03 c u a. o 5^ t^r —^ JO CO Cu LU <— CM ^ ,_ ^_ CO CD LO CM r^ CO 00 ^. en CN C "-I" '3' '.t LO oq r^ ~ 3 SL. ' *~ «~ T— »­ 3 a! CD co -*• > *(0^ > ^CO T3 c •a c — 03 03 $ 4-1 g — ro • O ' ro ­ o CO CO CD CD co T3 co 3 •a _to O o 0 o o a O O 0 U ~03 LU LU LLJ LU ro LLJ LU LLJ LLJ ro ca ••a- CN O en a 2 CN CO CO en u Q CN Q CN r­ 00 03 CN LO 03 O3 en •-t r^ csi LO ai "a i C ^ ^ 2 'o. 03 o 03 'o , E 3 o i— U 1- i 't g | I o o O o O O O 0 LU to _l_ i 1 _i_ to ^_ _i_ _1_ i CO LU LU LU LU ro LU LU LU LU ro o O 3 CD CD CO CO CO CO CD CD ro CT CT CO T T 03 ^~. *^ *~! 03 g ^ ^ ^ ro •*^ o c ^~ r~* ^~ *~ C "0 U- g g a o • c 0 O O O •a O o 0 O T3 0) g CD co CD CD CO CO CD CD -*•> g g ro ro 'co CO o o Q a c Q. """"" "ra "ra 03 g ^> Q. o Q. O O 3 Ll- U CO 03 0 O O o O O c 0 o o en O5 en en en en § ^ o C en •D to Cn — to c -a co 03 a. <2 ^ g CD E "­ to E CD CO~ 3 +^ ca C H Q. CO -a i= O g­ o ,_ 10 en CO lO en o ^j­ •^ *— r** Cr_D CO CM CN co 01 •^— ^ ^ ^__ c f— * I 03 o — Oc c •n *^ +­i o ro <2 03 QC Q 03 ^ c/ c CO CO CO CO CO CO CO CO o 03 o o o O o o o o a. i^" LU LU LU LLJ LLJ LU LLJ LU O^ LO If3 LO LO LO LO LO LO CD CD ^ CO CO CO CO CO CO CO CO Q. ^CD CO CO CO CO CO CO CO CO 3 CD CO O _ C CO £ ^f. ^f­ *J­ ^J­ ^J. o T^­ ^> T3 >* o O^ o O O o O O •5 4­ + 4­ + g + + + + CO U3 LU LU LU LU LU LU LU LU Q in j^ CO CD CO CO CD CD CO CO *4— ro O to -a C\i CN CN CN CM CN CN CN c o 03 Csi 4-1 CD - — - - _ — — — - - _ _ — — 3

"Si c O 0 03 Q. ,_ ^j­ ,_ C3 — CN CO CN CO ^j E ~ 03 "33 5 § "3 3 § 5 § $ Q. LU LU LU LU LL LU LU LU T3 .g — 5 — 03 5 to • •"^ 03 13 LT P— 03 CO ^" K c CO CO ^" CO T3 o o 'V a CO to II n 3 3 to Q. i CT to 21 IT- 3 ^ LU T— CN Page 1 of 1

CALCULATION WORKSHEET

CLIENT: EPA JOB NUMBER: 7793 SUBJECT: McKin Site - Estimate volume of groundwater to be treated BY: DFC CHECKED BY: DATE:

GIVEN QRW 480 gpm Total System Flowrate FTCE : 1.3 kg/day Daily quantity of TCE removed and treated.

FIRST Estimate the annual quantity of grounded treated by the system:

Assume the system will operate 85% of the time: e = 85% Operational efficiency

QANNUAL = QRW X 1440min/day X 365 days/yr X e

QANNUAL = 214 Million Gallons / year

SECOND Estimate volume of groundwater treated over the expected life of the system (15 years):

QTOTAL = QANNUAL X 15 years

QTOTAL = 3,217 Million gallons 3.2 Billion gallons

THIRD Estimate quantity of TCE removed from the aquifer over the life of the project:

TCE = FTCE X e X 365 days/yr X 15 years

TCE = 6,050 kg CO CO CTi | !

C s ! i ' O ! 1 i •H 1 1 4-1 iu 03 CD C 1 1 : 1 . i : I •H 03 • ! i g CD 3 i ; i i 03 . 73 73 ; • ' ! ! ! \ 4-J O -H C i i ; C !O 3 3 o !CN O o 1 4-J Su u 4H Cn I 1 CJ u : O 4U £-) . 0 VD O 4-1 z C 01 ! X 0) .. 03 "^ : i 4-J O : c DI 03 3 ' CO £ ' •H C I iu O C 0) . 3 o rH C 1 0 i-l ' 03 rH 3 rH o ; c u rH -H 0) : 0 0 i 1 o id _J_| rH i-M < D 3 ^, ^ 1 0) i 1 1 I ' .03 i 03 rH C 0) CO CO 1 . M X 1 i ' , iu O -rH rH 03 0) o ' ! ra OJ CU 03 i i CO 4-J : : UH i C o CD CD g CO ' i ' 03 , 1— i| ] Q ~>i o rH iu C i^^ i ''' o iu x; ^j< 03 • H CO : 4_J i ' i i 03 CO C 1 S-l i ' CO 4-J g c - tt j ! | ; 4U 0) 0) 0) : U • iu •H a: CO 3 O ; CO 0 CO >i •H • i 3 3 4J c ^ : •H 03 X! rH •H rH 4-1 : u ' CO iu 73 0 i-l : 03 CD 73 CD •H cu c •H ! •H in 4-1 > •XI : C rH|Q T o •rH '•—i i ' i ; ' —. i-l o ; 73 g CD 03 4-J o op ico iu 73 03 C •rH -U 73 03 u ' <^ ' • : • . C 1 L- !i CD iu O "1 *. , CO 1 i_i 4H CD CL, O c ' C ' co M C 1-5 03 CO 4-J 3 a, 0 cu 03 C 03 §^ c; > ! 0 ° 3 C CD i a 0 C • ! 03 •H £ i Iu 03 E -H i : a CO ! 1 (0 ! ! •rH 03 CO O 73 1 D-. ^ O ! T3 ' iu Cn £•* rH ^ "3 -P 8" •Q _J_) -H CU . iu rH 03 -S 0) •P iu O CD ^ • iu CJ 4-1 CU 73 CD uu rH 0) I Cu 1 03 g "«' j ' ^ r 1 cu •H CU 03 4-J CD CU 0) co CO O, CU i CN BS H i Cn 03 CO U CO 03 4-1 • H ! 03 ; ra CO iu 0 rJ i^i ' c 73 i 0 03 g 1 0 CO iu 03 j iu CD SCl4 03 o C C i O ! •5 Si Cu W MH 0) co rH 03 C ? i -^ cni 3 ' CD « 2> CJ E -H O 3 n: ; rH ^ ra D-i 4-1 •H a C CO 3 •H CD •rH 1 rH 3 ' x ! -H o 4-1 CO O g X! Su X! m "o tS Cn •H 4-J C rH rH 03 -H i—I 03 4-1 X ro r- i i -Q 3 « ^ C 73 03 01 :cj 1 u x; ii~i j_l c O ii—1 ; i-i . i 3 S i-o •rH C Su Cn i CO 12 CO O 3 c . 4-1 C C 03 -Q'iS ­ >! -H -H i c C C o -rH 0) Su i ' 3 U 4-J X 0v CQ ^ •?:§. • CD 4-J O 03 CJ ' 6 X O i : > ™ OJ rH 03 0 CJ CN 03 •H 4-J g •H co o 4-1 •rH u ° CJ i iU «•> 0 i-rJ O ~ 4u • 01 -H . iu 03 C 1 &u 01 CM i"- : a) •H 01 > --co, . ^ CD 73 u ^ CN o 4u o "2 Iu CP iu fcd -j i <"3 ixi 4-1 C -H 4U 3 o CO :C d O .1 D CO O iu C " X; ra : - O 03 — •• O o ^'CN ; O ' •H : CD u 0) 0 iu c rH i : C ^ te CO MH CD CM a: • , C O ' il C^O £> £ CD 3 03 1 " 4U . 03 i*" 1 03 ,4-1 x; 73 0' X O £> r| j sui^>!o ^ 2 3 •H i iu O ^ rH i ' CU 4-J 0) ClJi rH O : 4J -° O QJ cn O os 03 •rH iu co C i ' 4-1 iu ! ~~", U, £ i§ 2 C rH O^ iu 0 0 i i S S IX! 03 Su -rH ! 1 CO •H <4U rH Su 3 -H : 3:3 0) 1 -Hi co 2 ra O CD iu i i i 03 ! 1 rH 1 03 rH CO c - DS 73 CT a , 0 C 0) 73 CD r r-i , : 10 ! CD : CD Cn •rH a ; 3 iu C >v O 03 x; C rH ; . 0) 1 i 03 0 - rH C CD 4-J , 0^ Q ; 1 H 03 03 O i ,4-1 3 iu 01 iCJ 4-1 -H • a 0) as O X -Hi Q C co DS <4H i ! rH W i i'll^ CJ C O 03 ' i-—' w IP « •8 C ! CU

Z i-H 1 •M-H CO i§ O O i>i ;o 2 i ^2^73 mov a CJ CD 1 iu 3 ! CD ! 3 1 cn Su -U O 03 CD iu •rH 03 tj C -0 0) ! CU cu H • H 03 i C i—i MH ! < M •H £H '4-1 O re H co ™ s a 4-1 • CN S 0) CD M ,f ^ iu 3 3 us ,—1 X C i CJ u 4-1 0 co .5 in CO E a 03 O Cn > CD 03 O O rH -H i 0) c ,n O . Z 03 M iO ;rH 0) cu VH £ U j || ; ! r* ~ i! n\J u , Q) ' O CD 3 • ! ! 4-1 ,-H 1 3 i-H 0 4u '4u 4U O cu O a,: w °w cu a5 > 73 03 4-J CD 4-J i in U o IDS II CD O ' C 1 1 iO o^ > c o ° E 4H 03 03 0) : •3 ° r—< x; C cn CJ w a CJ iu H r~- -H § ° £. -rH DI CO 4U rH t . (_j | in 3 X3 4-1 03 g •H CJ ""I ' CJ g 01 :tn 4-1 c jc 4J C c CD 4-1 03 i >-1 03 03 a 0) 3 CO EH o •E-i ,11 4-1 ,fc4 03 o ' ra DI CO •H 03 CU ; >^ CU : >i|' =< 0) rH CD g : g • 0) u C 03 i W > '-S'c c CD iu 4-1 Cu o I> iu •H 73 •H 73 73 i 2 73 03 3 /.iirH giig'-rH 4U 4-1 03 0) ' OS i ' 1 r-l rH •H uJ : E C70 0) 4-1 i > CD •H 03 CO 4-J c 4-J g : cu < 1 s M s 0) 73 co •H , 4-J 03 i CD a c 03 cn c : g ' CO 03 03 . . ' u > ! KJ C i O 0) 73 O co -P i ESH 1 L3 O : ra : g 0) 3 x: ;Z . 01 03 °: cu g • £ £ 0 E 03 co rH 4-1 ' < CO 03 u -H (A 3 •H CJ 4H i S Wi cj t ° jj e 2 CJ EH 03 : o CD ' O) SU .4-J o 4-1 Z co 4-J i CJ , iu ' W (£ ' « „ ffl 73 Z c > c ;f l x; iu > 03 -H iu CO H CO CO 1 £-* 3 K ' ff: : a> o, -S3 ; £ co C , W "H •• CJ -H ff. ,fS, Z . 3 Cu CJ IU X! , c c -H •H 03 M ' ' OT H ji §J r° Q i"" , ' ra> ' -• ~W i i; .2 4-i X! 1 i-j; a r> W OS i ° ir ac o U 2 M |EH EH ^ iE-i 0) £ ;CJ o & s '«*.-:«" H ' H^ ,W(rH £ 8 CN § '^ — , .. , ra i n f_l . i ; • EH ; ^ i I c/j PQ n 1 : 1 i I ' W ! ™™ .013 0 < Cd ^C "^ co ro co (Tl 4-1 \ O

CM CO

i C 0 ] H 4-1 03 01 O SH H 3 1 CO O-. I U CO Q-. C 0) 03 1 o 1 o a 3 1 O CM -g g 0 rH o 1 CO ' ' t . 'j QJ ^_l CM OO c*= 03 i ' , rH cn 0> CD CM r— 0 £ | cn CO CO • • O CO cn H rH in • rH 1 T3 V y 4H co m M 1 DJ 1 I C 4-1 ICM | ^^ ~ •? ° O CJ ** LO C 0 |4-l CO 1 03 c 4J .C 4-1 0! j 4-1 in CD — H CJ O rH 4-1 "' ^^ O CL ro 03 CJ Cn CD ^ in CD cn CD ro ro cn E-i G 03 ^ C CO o Q *S o O 0 V4 CM rH II II E >l M rH Cn CJ 03 p E 0 p a #§ 0 0 0 4-4 P O Cn Cn 4-1 O Cn 3 S-4 5 CJ S-4 1 II 0 03 0 CO in cn H •*• hJ o CM H c O o in o r^ -o ~ CM O 03 ~ 1 H in CU r-, < a^ ^•^ M ~-. 03 l in CM r- o in | ) CJ H M J :; II m 0 CO p 0 rH H CD O U CD J£ X) O ro CM rH r-H onsta n

usin g rH a; C p 0 P > CM 01 CD 03 o 03 Du Cn ^ H 2-0 1 a e CQ 05 ^ CD 4-1 j2 >i H CD X C 3 1 03 4-1 g O X! T3 ^^ O 3 cr — U) 4-4 O CD 03 C E l^O Cn CM rH fO CD < 0 O CD 03 S-4 o 1 p P ^ "O CD oi jH U C 0) CM CM £EJ SH 03 I i ,_l O C CO . ro O CO rH o §^° 3 "—* H H 3 OO tJi Qj 01 •-­ 03 4-1 4-4 II c o > P >• ,-q 4-1 c 4H II C H M CD rH 4-1 n3 ^ CM CD 1 CD H p 0) C^ 0 , wi—i Ii cj^, , a r- ~ D cn O "" ' i i — ' i_ji "O ' u Cn ^ i i^j CD Of >1 1 03 CD > CD EC CU CJ X •—1 II >i 4-1 0) X T3 P P X UUP > 03 03 01 II i-4 O OH cn O O EC 03 CO O U £> £> ^ C Cn| E C 2 | '> -^ M CO XI O O O CD o c co cj C — 4-1 II O 4-4 CM CD 03 P > E P n 03 EC C H H 0 P SH U 4H O IH O SH rH U CD 03 03 ^i i^ P o E 1[05 03 0) O 1 O U 0) C o) CD la: CO U 3 — C cn CO p 4H EC 4H 0 ri p \. T3 C co CO |\ O CU3 03 CD 2 cn rH P 03 rH 01 3 O) H cu cn CO 2 H IH 4-1 CJ 1 S-l X C CO S-4 Ol 1 Cn O P rH 03 03 P 3 4H 3 M CD 03 C DM 03 rH cn ,_) CM C Cn X O CO rH P 03 P CM SH 0) C 3 X p 4-t H O o H 03 CO T3 m 03 rH CD 0 P E H O C .—1 rH ^ H p Cn CM SH CD cn M 3 1I 6 Cn H CO CU CO cn c U \ 4~* (H 4-4 >-l 01 O co cn Q 4-4 e£ U 0^) CO CO C 0) X N CD a o cu a 0) 1 s-4 x cn ! O*° 1-1 p 03 H 01 3 ~ Qj rH s E rH oi o3 II *. S-) 1 CD 03 TJ e -< 01 O II '.C H CD O a H g 0) 01 H rH Q, 3 CJ *4-l 1 X •• e CM p c 4-1 6 CO •• 0 SH OS- •. o CD Q rH CD \ Oj O C II CD II 0) II II 5 SH II N 01 II II II O U SH H u 'S "Olce M 05 rH O rH 0) riC II 01 >|a, Q 05 E- 2 O CD CO EC CD 0) joo CD of 0 rc c CM n 1 II .C I II II II P > .C SH H x: II 0 H 0> H 2 1 -H CD CM 03 Cu 3 0) rH || 3 03 rH CJ CP Oil cn CT> Cn O ^H 3 rj CJ X CJ cj u U U tu 3 E-I cr o 2 , i . 1 , 1 (P 1 1 to 1 s-l CJ i CO 0) 0) p 4-1 03 0] e a, E H Cd rH P CO P CO co CJ H CJ CO I _ I C M H |M

U CJ 2 1 1

i 1 1 O n

1

CJ 1

u 0) O 4-1 MH 03 0) IH S

in MH 0) i^ Ch H 03 1 £ 4-J Chi 0) 0) IH -a H H 1 t , "* ' 1 ' -a 0) cr H 4-1 *H 0) O e 03 iH MH ^ 0) d cn c 2 JZ CD C 03 0 -,-1 CM 4-J rH rH <4H "4H 03 0 II C2J O"! O 1H ' ,_) 4-J IH 01 O"> 03 g c< Ch in H 0(3 4-1 H CO MH a 03 03 tn c O rH 1 rH a o m a.1 dft CD CM X CT1 -C rH rH IH C. u 0) <*> m 03 0 CM r-J >, 01 Cn ~ EH M ^ II (0 cr H (31 O 0) m" | 1 CTi II IH 0) O" tTv CM M tn 0) 0) M 03 C Ch rH O O O> g o. 4-1 OO * 03 m 0) tj~l rH in >1 ai cu r; CO MH O 2 H 03 -H O H O 4-1 U tn o i ro IH O MH 03 Ch 4-J II -P H Jl i | MH O MH rH 01 O 0) 4-> C MH i—1 MH rH Cn O O 05 O H MH O 0) H e 4-1 01 MH 03 «3 Oj cu J-l MH MH dp H Ch O 1H U 1 1 II II •0 a 01 U O c H > 0) c cu a: CU D u 1 i/N ^H ,— i cnl O 01 03 lH 2 CO o r- rH 03 .Q O f^ 0) o m > 03 m Cn •o 03 Chi 01 C CJ r~ o C cu 1H a 0 rH 1 o in "D 0) 4-1 H e 0) 0) •o 03 0) 0) 4j in D 4J 0) 0) a c II iH ^ 4-J 03 CM en IH in 03 ii o e tn 3 03 C iH tn 03 D H to rH H 03 03 rH Ch in o H to 1 04 0) 1 D 2 T3 CJ 03 03 tn tn 4-1 U ll 0) iH 03 0 c o O a rH T3 rH O rH Ch T! 01 cn 03 MH Chi 01 H 4-J 01 ^ c^u 4J CJ >H tn T! a 0) 4-) 03 o CD 2 , , J-^J CU H V_| 01 03 ^( rH U o CU rH H in D iH IH 0) VH 03 03 MH H rH c tn C H 03 CT i 0! rH 01 a. .C H M-l f] o C 01 O CJ H in TJ 03 m O iH -o O _£­ 03 O 03 O !H E •3 •a 01 CD 4-J 0) O O O C O EH m >i 4-1 T3 c jn iH OS c 0) 0) Pu o m C rH 1 C 0) 3 H C J-J C C £ 03 1 c O o H 4-1 U to H 0) o) H e *T H rH rH 01 03 a 3 ^ rH H 4-1 0) CM cn e a> o •a C 4-1 cj in "O cn O in 03 IH 0) in m (0 3 - u n in 4-J -U Cd i ^ ro MH 1 CD 4-1 O MH rH •D H MH CD II IH MH ,—1 H in c cu cj 01 1 H 4J 01 JZ CD 3 O C < tn C 4-1 3 O a; i-4 4-J 4-1 cn 0 c O O in a requi : H C CX rH O rH o) tn <-D 0 rH T3 H C 0 in 03 g O 03 iH CD H 0) 4-1 H i— i in 0) 3 4-> 0) tO £> 0) iH X 4-J X u U 1 0) N O tO 4-1 J3 H i—i 0 rH 2 Ch rH O 03 rH c in C 10 0 0 H Ch In o in MH O 4-1 e Ch i U CU II 0> MH rH U 1H Du H tn U H H H 0) -V MH H U, 4-J rH cu H in c QJ to n O 03 ta (0 H sum e sum e Cd CD 'Z IH 03 sum e c 4-1 o Z C CJ -C1 JT1 H 4-1 in tn 03 tn M 0 rH ll II O W E-i E- Di sC co

g itf

I

s § APPENDIX K

DETAILED COST ESTIMATES DRAFT

ALTERNATIVE COST SUMMARY RRDZ MITIGATION ALTERNATIVES TECHNICAL MEMORANDUM McKIN SITE, GRAY, MAINE

Alternative Description Costs Capital O&M' O&M2 Total

1 Natural Attenuation $45,095 $67,721 $616,799 $661 ,894

2 Groundwater Interception $2,332,129 $233,806 $2,129,484 $4,461,613

3 Cover Boiling Springs/Groundwater Interception $2,111,308 $219,532 $1,999,478 $4,110,787

4 Cover Boiling Springs/Sparge Royal River $1,284,838 $302,747 $2,757,391 $4,042,229

Notes: 1 Estimated O&M costs for one year. 2 Present value of O&M costs based on 15 years of operation and interest rate of 7%. 3 Equipment, as itemized in the following detailed spreadsheets, includes the mechanical devices (i.e. pumps, blowers, vessels ...) and their appurtenances (i.e. controls, cables, telemetry ...) which are incorporated in the evaluated remedial systems.

9/14/98 MCKCOST4.XLS Summary oi o 1 i C O ° 1 i 8.

1 ill g 8.8. S

1 III

mo ID eocoo 10 eon in o 010 ooo o oo^-ec OCNOCJ)CNf*3 lo'~O> ^ 5 CNO CN CO tO O CN ton O OOOOOO O CN -«r CO •«! »— o ••— ocor^ n ir> CN o o o to 10 to ^ o cocnw*- o en ID •«— r~- r-» '~f *"

OOO O OOOOOOO WOO O OtAtAMOW O O O O CN O CN ^ r- (/> 2 1 O)

fe too m «>fo in co oooooo o oo o " CNO CN CO CO r~- n OWOOO O O CN^- g^_ co 5 (C —' '-CNCO^-'­ O1CT) *Tt ^*'*CNrNatlO'- CN " jj> o S» w w w « 0 n -o > OO O O OOOOOOO tree CN „ (AtAt A V* OtAWWOtfJ O cO'fl n c !| CO (D •*?• Vt i- \u J « 5» 2f Q.

1 OOO O O OOOOOO O o o y* o o m m */» o t/* w» v* f» o 8 8 § r­~ r­~ *'* eo o o .- ^ w w w £ w 5 w w tr

o o o o o o E o o o c •«- if) in 5 W i— CN UJ

b 88 8 8888 — SS 8 gggg

tA o O n •: c 8 8 o o i o to

_ o o o o •g ft O 1

"I 15 Hi is* p" _­. '!" s" 100 coooo-*o TT o t CM r-J 03 ^-g a "'jsjej s gsss #ses s 1 ° 3^ oS a? j eS ^ t—UJ S22 °? S2^° r­ ID t- n ­^ ' 0)0)3) Q)e> Q)eje)4 iQ) |Q)(Q) 6J Q) Z

OO O OO OOCOO O O S o O S 000 0 0 00|00 0 0 =00 " K t; fes 9. s z 0 .jJjC -!jQ 55 o •g ^o O c O 5 CC o ccg t3T5 S 3 S S g 1 o fc o Ul oo^ £K t^-c

c ^^c — —. a)«C

> CO CM O < oiOfO^roocMom'-ocngoooocMeoooominfOOinooooooQorMr i t 50is (NcMCN*froocMtocO vJtO > «-OCT>onoQmcoro(AOOr-*c>icMmcMinwioeoiDr^cj>*-r j tA tA tA ^ Q ,_ lO^CNOrO «— •>- *" T-

OOOOO OOOOOQ CMOCniNOOQlOCTjeQOCMOtOOOOOOOOOOOrOOlOOOOOOOV co tA tA t/»

882 S £8 S

l Q (J2 T _ ** O

ooomooo oou^oooQooooinnoooooiDoooooaicoooooooocNmooofOoeoooooooioo^c tAtA«A-oeoiAtAinm(OMir)C£>intA co o roojtNt o •a-oroto coom^r o»- (Nro-^ cncor-JCNCN or-r-oit«( ^r"* ro-«-*" cN*™rjvtN ion--'— r\j ' CM fat tf> (AtAtAW r^(Ni—tf> M (A M (A

ID (SJ iT> n (A tA

CM O tO tM CMOtOOJ OOtDO !88 tOOT-lD (flO*-lD tDOlOO O O COCMO1CO COCMCTleO inOi-O CMOOOIO IOCMO CMO (AtA^-tA lAtA^TtA --lO-^O CMtAlOOtA r-<-i- i-tA Vt tA CM CN tA «~ tA tA tA

r- t OlOOOlOOO 8 8 S ta t inr--inmoorfi iorooo toooT-oo*­ >int»OO tAtA-Q-tAlOOiw r-o A

OOtMifJ OOCMU1 OOO o to o 01 o ° 8 S S OOOrO OOOfO OOO (J> i— O ID O n o o (N i- CM (/» fO 3?£55 SSSS S8S U«r2S° 8™w^^!

88 o to o m 8S

; -5 SI . B\ 1) CJ OJ OJ

~2< cotD SSSR'3 ' > •— 10 i o r~­

f 5|

9o H ss i iS !*&2 « c =Q> I £ : 5 S. oj « e iZ m P 2 «l?P o5 sli gllllsiss 1i ?| = siis^i>f-S, i « IlllsIil11 SIi. ^ = ^Slfi^Sziie"ii r^lja . II itffiiift>m°^giiis < s i 5^

ro ro n ro ' ^roromrtrOforOfr>r>nrt[£ s >OOOOT-T~oOOOr-OOOOO(OO( o> to h- ^ co !8SS8SS|8||88|g|§|8888§ o '­ 8 5 IO •- •* tf>mW>»-CN

OOOOOOOOOOOOOOOOOOOOOOOOOWOOTOOOOOOOOOOOOOOOaO WWOWWOO^COTrOi^WOWWWWWMWWWWWkOWOOWWWWWOOWWW^WWClWWW lOOOJr^^-CNOO CNt CT> IO «- (NO O3

OOOOOOOOOO OOlOOOOOfOOOOOMOOlOOOOOQ fnomw>t»ooooa »ai-ow*««/>rNr-'«»-ooorot»O'«»-wi IO CO ^ •*»• *^ CT) CN «O fN W V) Vt Vt W» t« ift W* y> W5 *y> tf» -^- V> W* >

, OOOOQOO*-1 '-OOOOcOOOOOOOOe O *- (O O ID (O ID *- O OVCMOO COOJCOL n 10 V* tft T- w m

OO OOOOOOOOOOOOOOOOOOOQOOOOOOOOOO S iAtA <

8 888S88 8 s g 88 88 2 2 88 £8

8SS 888K88 |S8 S88888S 88 888 8 888 8

W (AMIAtA y» Oi 75l 8^8 888K58888888 S888888 88 s

I S 8 3 CO e D __ • o o •<- 88 -S 3 O O -W *- *- ( O

CO i- t

w w ^ « u! o o (5 o O O O s O CJ llsll

c j c* O o <

£-o o E:

»g,: ^=,05G-=«5;<°S = *slal£3-5g "-tNto-irtocD^-cOuJ §D

^-'— ~­ JOiNrofsir-cnco nr-oir-

tor-OM->~'~r- Ti-^^irn i­ ,12 9 tntororofoi^TT ioeo«-cO

Su tA

m to »o to uo 10 in

co co to eo co co CO ooooooo 33 LU S

O O O CMM O O EO xf i- fM i-

. OkDOir *r *t Cc

in r-­ eo r~­ to •! I

eO O oo 10 ro 10 to CMrorO'-rM'-'*

" " s S l o o

fe S

Sgi 13 Sj Q fc b Z S <" 3 fs( Z OQ5 c4 c a

I!

OC30000OOO

o s

OOOOOOOQO Si

ss

SS8 SSS

- c •IlfiHp ««> >t: ?- M -c

Is "a T H PI T M J8 N T

ii , AT E 3; 5 1 i ! I '­

o

O CN C

) to r~­

! » oooooof^-ionoooot IS S tnooo*/>«Ac^cN(»}OQ}(A»— ( (Din«­ ift V* tft

OOOOOOOOOOOOOOOOOOOOOOO O Oir^OCNOtD OOrOOinOOOOOO^OO S (A

(A W «) I/V t» 1

ooomooooooooooooooocQi— tAtAtAb»tA

CN tf> - tf>(/» *- tf» t

OOOlOOOOOOOiOOOOOOOOOU^rOOOOOOlOOOOOOOOLOCDeOOOOnOCOOOOOOOO^t'-OJin^a-OOOO tA(AtA^tA^tAtAWM(NtAOt/)M^MOtArOrO(A^WCOOcC^tA^Oa)b4Mr^romMMOU3^lOi^tA fi o ro CN CSIID *TOr">(O o»~ CMO"- OIOOC-ICNCN or~-u^intf>tDTiotor-- to 0 •>- "* ^w r-.r-j w>c N IT w CN'-"* iN^CM-a-cN mr^to"* ^tN^incs* m 5 CN trt */» t»tAV>V> ^rN4A t/> T- y» f=»

OOOOOOOOOr^OrOOOOOWOtOOC OOOOOOOOOOOOOO o co co *— in T- o

888 S8SS 8888 o •*- o o I--- ooo oo UD O

r*- *- r*~ inocsioo OlOOOOOO OCMCMOr-OOJOOi asga §g288 inf^inroooio ototommor— mtoi w w w>

o o mo S •>— Q ID (D 88S8 888 8SS8S828SS 8 O ro O O CN *f ^ CM »- CN V> n S n ro 8S»g£SSS8£ 8 W trt l/> U) « vt i/> iot»w»-W'-tD'- in t»

88 88 O m

£1 n £1 JZ .C !

r 88-­ (O cO

«Mt! ^i^if

lilsps u ] Z l S > i2| u o>Itsto °d?

Q

J B

E E 8 e s 3 I

m co -w CD en ioor~oowoowoow»oeo^-eooootDtf>oeoeoinT-cNom»Ao^TWiooor-iooov>coi vooooc3owintoo^j' ry n r— to *- o m r- (N ro m ^j­ l/» tA U? tN (A (A (A *A *A

oooooooooooooooooeooooooooo^ JOOOOOOOOOOOOOOOOOOOOO O ^OlAWOtAWW

,-*»,_ ^10 ^- *» (A (A (A (A

g OOOOOOOOOOOOOCNOOOOfOOOO-^OOOOOlOOOinOOOOOOOOOOOOOOOOOOtOOOO 00001AMOMOtAWWrN^^OOanM{AfACOMMrvjO^(Aa^rb9lOOOtATrO(A(AlAO

eovtomor-ir- IO i-' *" i"— *

Sg ss i m m I C­J if)

888S8S 858 S88888S S88 s sss m •«»• O Q O O eo if) f— eo in fcft (D Cn O O O CD OJ T- fO — 5

m O O Q O O O O 88|HS8888888 CO O O O O O O 88 II W a •V O O O r­ O *- -r­ oo c-t 10 o CN ro * lO^'^'-CNOU^ » V* ^~ tf» ­- CM S U> «J W

06- 000 00^00 (O i- U) i- -­ 1

00ss 5 0s0s n n C ^ E o «

t O uj ­ o> S

2 5 DC S Q. Z > Ifi Sis SB! 8E: oi ro M ro r- o eo m T- en ro - 8 5

in tf> ID m 10 10 w~>

CN CM fN (N CM CN CN

^ CO CO CO CO GO CO CO Q. r<> to ro co (O ro M

W tf» W> W V) tA V*

!«, N 5r — ci i

!UJ o jo.

- 01 i- in ID in o

^ ? ? 3^ 0 < s (O »— CN >~ e> " § <>.* 0z IS -K0 ISo ISo v3 o" =s 5 O O O ^ Q g- Iss |1 * 0| IU^ TD ™ W - p t­ u.o 2- i1™ S> a 1 t- ^ I 3! 1 o> O -5 O

1 II S c i !-•§"= a < h­ £ no t llhicll < u issfii^i doe s

Q t e UJ t­ l! If lip 1

° S* u ^ S S.B U1 c£^fE«i35 UJ 1 CTI ^_ LU S^CO^^m^rtM JOOOOOOOOO o

O) ro s CO CD P4 a ? s si CN CD tN (A a "">

SSSSSSSSSg

O

8 88 88 «g a88g 88

3.6 8 8 1| 0

O O O 888 8 O if) O 888 8 o to oi

Or^CNt' ^ ­

00 jg o o g •o S f, " IS B S o o Q * O OC u u oe £ - to o> O O i*» v»w»"-io(oocNv» iN(N(Nir>r\tm M4 wr^-fflooini^-rsofflro w* o CN in o c

y> tf» W» V V> tf> <** MW»M(OM - r«» * 4A«A bV> tAt^^u^OUIfc^fNO^Of* *W» (A O O O Wn M W> O O

» ^w» 4<* n» w> ui-<­ ^«AW

88S 8 8 8SS

i— O Oh-OOOO OOO ) O O O ^-O OOOOOfMO O O O ) S o o n o o i- o o i— ^-o Ofoootno ooo o w» w» * io m o v» IA o tr>w»or4^-o ooo § o

tA S W» U»

fN o o o uio oerio mo<- ooo ooo 10 o i- o io«> - o ID o cNO"- u->oo ooo

M CM •­ (M W* (O f~- V» Lf) SS88 W W* V> CO

*= S.S , „, ;S JT= J : — o" 1 — S >.— •a S

0^0,0^ J U3 (N O T­ > o o O i

sj S.2 •o S g , p_ : 8 3 -i j : » "° M z > : OgS ^^'i U1 15° linr 1^1; gouil ^ E - "= ( m 11 ||ll' xf" ":?^ il?S; LU N Z > Q 5 Sl^l< US ii gl O K t O K £ i- tD CN O IN •>­ -r5oLSSScESSoomooSSSSS2LowSS§oS2 S S2! § s S M «A

CL CD CD II

N CO CO S2S5SSS8SS8SSS8§gSSSSS§SSSSSSS222 0. O O O O r-- o»-n ^-flO or-.»» in to o ^ o> v M M » " O O

Oi— OOtOOO OD O O OD O O O O O O O OD O O O O O O OD OOOOOO fNlO «W»EOW»W»>-W»O **» v> CN rv* *» w» w» w» «» «» w *W» M» *">*** t*> */> w* U9< w»w>w»w>«-w» un fM S S n r- o«­ o°- I i-c-i W SS »» s

SSSK3SSSS3SSSSSSSS2SSSSSSSSSSSS °~ s s s s en n to S

s: 11 8 1

o O o S RSS 8g 888 8 888 8 s tD o o«*(N otN r-it-fo (N (Ni-ro o F o: O it *:> o 88 88 u, n. fC C 8 u. O

CN o "2 S ?! g O '

# S # £ 0 o

»- -^ *- — O u O O n O O o o o o U O 5 O O O O O o g, *s«0 0 o gg, s"5 g8&2 1 ^< B ° " u -0 Q >~ fogS 8 £1 ga i I B

O Z 1 Til VI «!z > ij s S ogS 8 < S is D e oSj§5°u 111! ! Detai l Pre-Fa l Calculal i Roa d Ul&|I o f Sl^ i * or K Ul NJ Z 6 3 > Q S s u. O K o II u :nQ Q :>xw I111t ! ifl Z U < _KQ-> 1W— ! h 1•? ^. W to (O n UJ Q ••­ o o o

^ 1

o

Q. X

0 o g g g § S SSSS SS3SSSSS5 " h. ID CO S M ° * ~ j ";;££ 2 S° m "« £ £ " ™ M* »

o 1 a M IC S | | m w» ** ** S S s § 0)

a <0 o a o o o O co ro co 01 in " IA o 1st •O K o f^ M ­ " S 2 V» M V) £ »= £ » |

s S s s s o o o I II

s S S 2 g § 2 eo i I s s s S S s S

8 8 8 8 8 8 2 1

O O 8 8 8 g PI S S 1

8 8 1i

O o CO O 8 o o 0 o fcfl 1

>, "Q 1i S i1 E I - - * CO CO S

0000 00 S 0

IK Tfl T/i TK "SIS 01 IS -r­ OOOO OO c o # Q C OOOU OO § O r^ OO^" C O " "§ — § «*|j! «(§ J il -a

°°tr-Q « 1S "E ° m s %<%£ £° -X >­ 2L a>«5

Oc t / 0 0 E Q. i- O t­ (Quarterly ) (ANNUAL )

s isembl e T [/) ,.. CO "a 1 0 D 0 E u B o 45 0 (Disa i Boilin g * sample : E C o f O i 1 1 II % -o z a: < 5 1 £ -5 < O u Q u_ Q g Q MAINTENANC E pectio n nuncJwate r i maintenanc e :onsumptio n I S « LU , LU n & al M i

In s s LU N Z c I ° 1 ° I I 1

> Q^ Die m •§ 2 5 « i­ LU >­ O a: u o II Pe r Penodi c Proiec t u ec S Annua l o o: LU RATIO N LU -r- co CO + n *­