Quantile Regression and Other Distributional Estimators: Moving Beyond Mean Impacts of Policies

Total Page:16

File Type:pdf, Size:1020Kb

Quantile Regression and Other Distributional Estimators: Moving Beyond Mean Impacts of Policies Quantile Regression and Other Distributional Estimators: Moving Beyond Mean Impacts of Policies Marianne Bitler, Department of Economics, UC Davis and NBER The research results described in this publication were supported in part by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number P01HD065704. The content is 1 solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health. Means versus distributions • Much of what we estimate in applied micro fields are means or conditional means. We then argue about the extent to which these estimate causal impacts. • Another approach is to look at the overall distribu- tion of impacts. • Today, I'll touch on what we can learn when we do this. 2 • Examples from my research with various coauthors (Thad Domina, Hilary Hoynes, and Emily Penner). • Also examples in a do file available on the INID webside. Why would we want to look at distributions? (I) • If there is interest in ex-post of intervention gaps across groups, effects on distributions are the rel- evant object for accounting with a social welfare function. (Issues about the distribution of treat- ment effects (DOTE) for individuals versus what we learn with quantile treatment effects or other treatment effects on distributions are mentioned be- low.) For example, racial/ethnic gaps in wages, test scores ... • If you are using an outcome with a ceiling/floor, means can be biased but quantile regression or quan- tile treatment effects (QTE) away from the ceil- ing/floor are not (e.g., test scores). 3 Why would we want to look at distributions? (II) • If effects are offsetting, the overall impact mean can be zero while there can be important treatment ef- fect heterogeneity by subgroups, relevant for policy targeting. Policy makers are probably happier with programs where the whole distribution benefits than ones where there are winners and losers. • These subgroups may be suggested by theory or by a specific institutional feature of your setting. • But then, why not look at means within those sub- groups? 4 { In various experimental settings, researchers have found that even within the subgroups, the within heterogeneity swamps the between heterogene- ity. This holds with QTE and a welfare experi- ment (Bitler, Gelbach, and Hoynes, forthcoming, ReStat). { \Subgroup" itself is not a fixed concept across most data sets, incorporating individuals with different characteristics (observed and unobserved). Hispanics in one state (e.g., Texas) may be quite different from those in another (e.g., those of Cuban descent in Florida) in terms of background, income, etc. Example where effects on the distribution are in- teresting: Welfare experiment in the US in CT (Bitler, Gelbach, and Hoynes, AER) • Control group face the (old) AFDC program: Guar- antee with essentially a 100% tax on earnings. So, for each dollar earned, the welfare recipients lost a dollar of welfare benefits. • Treatment group face the (new) Jobs First pro- gram: 0% tax rate on earnings up to a cliff, then all taxed away. So, they got to keep each dollar they earned until they reached the poverty guide- line, then if they earned one more dollar, they lost the entire welfare benefit. 5 • Static model of labor supply predicts: No effects at the bottom of the earnings distribution, a positive effect higher up, and then a negative effect near the top. Graph of differences between quantiles of the treat- ment and control distribution of earnings 1 to 7 quarters after Random Assignment, from Bitler, Gelbach, and Hoynes, AER • Graph is quantile treatment effects (QTE) at each percentile (x-axis). y-axis measures QTE in dollars. The dashed horizontal line is the mean treatment effect. The solid line is the QTE. The dotted lines are 90% pointwise CIs. • The mean would miss a lot of interesting hetero- geneity that is consistent with economic theory. 6 1000 800 600 400 200 0 Quarterly impact −200 −400 −600 10 20 30 40 50 60 70 80 90 Quantile 7 Quantile regression • Quantile regression provides one with a way to look at effects across the distribution of an outcome 8 What is quantile regression? (I) • It is a way to see how the quantiles of the depen- dent variable change in response to changes in some independent variables, in a linear framework. • Often, we estimate a multivariate regression of an outcome Y on some controls X1;X2; :::. In the linear case, the estimated coefficients on the independent variables, βck, tell us the average effect on Y of a 1 unit change in the variable Xk. 9 What is quantile regression? (II) • Quantile regression instead tells us how the effect of changing Xk by 1 unit varies across the conditional distribution of Y . • It is also possible to undo the conditioning, and learn what changing Xk does to the unconditional distribution of Y . 10 Accessible references (more technical papers/references at the end) • Roger Koenker and Kevin Hallock. 2001. Quan- tile Regression. Journal of Economic Perspectives 15(4):143{156. Also, Roger Koenker's web site has many helpful other examples, presentations, and pa- pers. See: http://www.econ.uiuc.edu/%7Eroger/courses/ • Josh Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics. Chapter 7. 11 • Markus Fr¨olichand Blaise Melly. 2010. Estima- tion of Quantile Treatment Effects with Stata. The Stata Journal 10(3): 423{457. Supporting material • See example program in Stata which produce the estimates I present below, along with others I don't discuss here, and including a bootstrapping exam- ple. • Also links to the data and relevant statistical rou- tines in the do file. • Will need to comment some lines out if not in linux/unix setting (commented). 12 Code in various packages (I) • Stata: { qreg (built in, conditional quantile regression and SEs under homoskedasticity) { bsqreg (built in, does bootstrap SEs) { sqreg (simultaneously estimates numerous quan- tiles, can test cross quantile restrictions) { ivqte (conditional and unconditional QTE with and without endogeneity, Blaise and Melly, 2010) 13 { cdeco (decompositions of change in distribution of covariates, Chernozhukov, Fernandez-Val, and Melly, 2009) { rqdeco (decompositions, Melly, 2005, like Machado and Mata) { rifreg (recentered influence regression functions or a version of unconditional effects, Firpo, Fortin, and Lemiuex, 2009) Code in various packages (II) • R: { quantreg package (Koenker, suite of programs) { iv qte (unconditional IV QTE and more, Fr¨olich and Melly, 2009) { rqdeco3 (decompositions, Melly, 2005, like Machado and Mata) { Lots of code by Victor Chernozhukov and coau- thors 14 Code in various packages (III) • SAS: { quantreg (conditional quantile regression) 15 Motivation for looking at quantile regression in the context of educational interventions (I) • Often there is a goal of increasing educational at- tainment and achievement. • At the same time, there is a focus on narrowing gaps between haves and have nots. • Either of these suggest that looking at effects across the distribution and not at average effects is impor- tant. 16 Motivation for looking at quantile regression in the context of educational interventions (II) • Theoretical: For example, developmental science might suggest different effects for children of dif- ferent \ability" levels. • Tied to specific context: Interventions like exit ex- ams may result in teachers refocusing effort on those near the passing threshold, to the possible detri- ment of those at the bottom or top. • Both kinds of hypotheses suggest an analysis of ef- fects on the distribution may be particularly mean- ingful. 17 Motivation for looking at quantile regression in general • Much research focuses on mean differences or mean differences within subgroup. • Yet, it seems intuitive that a program from which everyone benefits might be more desirable than one where there are winners and losers. • Zero or small effects at the mean may obscure off- setting effects. • This also motivates an interest in distributional es- timators. 18 Outline • Stylized motivating example • Background on the potential outcomes framework, as applied to this setting • Practical example of applying method to following { Unconditional quantiles in an experimental set- ting { Conditional and unconditional QTE, assuming exogeneity 19 { Conditional and unconditional IV QTE, assum- ing exogeneity • Other considerations Stylized motivating example (I) • Suppose there are two types of people who are af- fected by an educational intervention. They are evenly distributed in the population. • The first group (Type 1) gains by an amount δ, a measure of achievement, and the second group (Type 2) loses by the same amount. • The average effect of this intervention would be zero. 20 Stylized motivating example (II) • If we could, we would like to know that this is be- cause some gain and some lose. Quantile regression can tell us there is this variation. • If we knew who was in each group, we probably wouldn't give the Type 2 people the intervention. But often we can't figure out a way to tell the peo- ple apart. But with quantile regression, we might learn how observables are associated with the vari- ation. 21 Outline • Stylized motivating example • Background on the potential outcomes frame- work, as applied to this setting • Practical example of applying method to following { Unconditional quantiles in an experimental set- ting { Conditional and unconditional QTE, assuming exogeneity 22 { Conditional and unconditional IV QTE, assum- ing exogeneity • Other considerations Methodology: Potential outcomes model (I) • Potential outcomes framework of Rubin, Neyman, etc. • Assume there is a binary treatment, D. Let D = 1 if treated, and D = 0 otherwise. 0 • Let Yi denote person i's outcome when not treated. 1 • Let Yi denote person i's outcome when treated. 23 1 • Define the individual treatment effect as ∆i = Yi − 0 Yi . 0 • Write Yi = Yi + ∆i · Di. Methodology: Potential outcomes model (II) • The evaluation problem is that we never see both outcomes for any person (Holland, 1986).
Recommended publications
  • QUANTILE REGRESSION for CLIMATE DATA Dilhani Marasinghe Clemson University, [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Clemson University: TigerPrints Clemson University TigerPrints All Theses Theses 8-2014 QUANTILE REGRESSION FOR CLIMATE DATA Dilhani Marasinghe Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Statistics and Probability Commons Recommended Citation Marasinghe, Dilhani, "QUANTILE REGRESSION FOR CLIMATE DATA" (2014). All Theses. 1909. https://tigerprints.clemson.edu/all_theses/1909 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. QUANTILE REGRESSION FOR CLIMATE DATA A Master Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Mathematical Sciences by DILHANI SHALIKA MARASINGHE August 2014 Accepted by: Dr. Collin Gallagher, Committee Chair Dr. Christoper McMahan Dr. Robert Lund Abstract Quantile regression is a developing statistical tool which is used to explain the relationship between response and predictor variables. This thesis describes two examples of climatology using quantile re- gression. Our main goal is to estimate derivatives of a conditional mean and/or conditional quantile function. We introduce a method to handle autocorrelation in the framework of quantile regression and used it with the temperature data. Also we explain some properties of the tornado data which is non-normally distributed. Even though quantile regression provides a more comprehensive view, when talking about residuals with the normality and the constant variance assumption, we would prefer least square regression for our temperature analysis.
    [Show full text]
  • Gretl User's Guide
    Gretl User’s Guide Gnu Regression, Econometrics and Time-series Allin Cottrell Department of Economics Wake Forest university Riccardo “Jack” Lucchetti Dipartimento di Economia Università Politecnica delle Marche December, 2008 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation (see http://www.gnu.org/licenses/fdl.html). Contents 1 Introduction 1 1.1 Features at a glance ......................................... 1 1.2 Acknowledgements ......................................... 1 1.3 Installing the programs ....................................... 2 I Running the program 4 2 Getting started 5 2.1 Let’s run a regression ........................................ 5 2.2 Estimation output .......................................... 7 2.3 The main window menus ...................................... 8 2.4 Keyboard shortcuts ......................................... 11 2.5 The gretl toolbar ........................................... 11 3 Modes of working 13 3.1 Command scripts ........................................... 13 3.2 Saving script objects ......................................... 15 3.3 The gretl console ........................................... 15 3.4 The Session concept ......................................... 16 4 Data files 19 4.1 Native format ............................................. 19 4.2 Other data file formats ....................................... 19 4.3 Binary databases ..........................................
    [Show full text]
  • Quantreg: Quantile Regression
    Package ‘quantreg’ June 6, 2021 Title Quantile Regression Description Estimation and inference methods for models of conditional quantiles: Linear and nonlinear parametric and non-parametric (total variation penalized) models for conditional quantiles of a univariate response and several methods for handling censored survival data. Portfolio selection methods based on expected shortfall risk are also now included. See Koenker (2006) <doi:10.1017/CBO9780511754098> and Koenker et al. (2017) <doi:10.1201/9781315120256>. Version 5.86 Maintainer Roger Koenker <[email protected]> Repository CRAN Depends R (>= 2.6), stats, SparseM Imports methods, graphics, Matrix, MatrixModels, conquer Suggests tripack, akima, MASS, survival, rgl, logspline, nor1mix, Formula, zoo, R.rsp License GPL (>= 2) URL https://www.r-project.org NeedsCompilation yes VignetteBuilder R.rsp Author Roger Koenker [cre, aut], Stephen Portnoy [ctb] (Contributions to Censored QR code), Pin Tian Ng [ctb] (Contributions to Sparse QR code), Blaise Melly [ctb] (Contributions to preprocessing code), Achim Zeileis [ctb] (Contributions to dynrq code essentially identical to his dynlm code), Philip Grosjean [ctb] (Contributions to nlrq code), Cleve Moler [ctb] (author of several linpack routines), Yousef Saad [ctb] (author of sparskit2), Victor Chernozhukov [ctb] (contributions to extreme value inference code), Ivan Fernandez-Val [ctb] (contributions to extreme value inference code), Brian D Ripley [trl, ctb] (Initial (2001) R port from S (to my 1 2 R topics documented: everlasting shame -- how could I have been so slow to adopt R!) and for numerous other suggestions and useful advice) Date/Publication 2021-06-06 17:10:02 UTC R topics documented: akj..............................................3 anova.rq . .5 bandwidth.rq .
    [Show full text]
  • 柏際股份有限公司 Bockytech, Inc. 9F-3,No 70, Yanping S
    柏際股份有限公司 BockyTech, Inc. 9F-3,No 70, YanPing S. Rd., Taipei 10042, Taiwan, R.O.C. 10042 台北市延平南路 70 號 9F-3 Http://www.bockytech.com.tw Tel:886-2-23618050 Fax:886-2-23619803 Version 10 LIMDEP Version 10 is an integrated program for estimation and analysis of linear and nonlinear models, with cross section, time series and panel data. LIMDEP has long been a leader in the field of econometric analysis and has provided many recent innovations including cutting edge techniques in panel data analysis, frontier and efficiency estimation and discrete choice modeling. The collection of techniques and procedures for analyzing panel data is without parallel in any other computer program available anywhere. Recognized for years as the standard software for the estimation and manipulation of discrete and limited dependent variable models, LIMDEP10 is now unsurpassed in the breadth and variety of its estimation tools. The main feature of the package is a suite of more than 100 built-in estimators for all forms of the linear regression model, and stochastic frontier, discrete choice and limited dependent variable models, including models for binary, censored, truncated, survival, count, discrete and continuous variables and a variety of sample selection models. No other program offers a wider range of single and multiple equation linear and nonlinear models. LIMDEP is a true state-of-the-art program that is used for teaching and research at thousands of universities, government agencies, research institutes, businesses and industries around the world. LIMDEP is a Complete Econometrics Package LIMDEP takes the form of an econometrics studio.
    [Show full text]
  • Unconditional Quantile Regressions*
    UNCONDITIONAL QUANTILE REGRESSIONS* Sergio Firpo Nicole M. Fortin Departamento de Economia Department of Economics Catholic University of Rio de Janeiro (PUC-Rio) University of British Columbia R. Marques de S. Vicente, 225/210F #997-1873 East Mall Rio de Janeiro, RJ, Brasil, 22453-900 Vancouver, BC, Canada V6T 1Z1 [email protected] [email protected] Thomas Lemieux Department of Economics University of British Columbia #997-1873 East Mall Vancouver, Canada, BC V6T 1Z1 [email protected] July 2007 ABSTRACT We propose a new regression method to estimate the impact of explanatory variables on quantiles of the unconditional (marginal) distribution of an outcome variable. The proposed method consists of running a regression of the (recentered) influence function (RIF) of the unconditional quantile on the explanatory variables. The influence function is a widely used tool in robust estimation that can easily be computed for each quantile of interest. We show how standard partial effects, as well as policy effects, can be estimated using our regression approach. We propose three different regression estimators based on a standard OLS regression (RIF-OLS), a logit regression (RIF-Logit), and a nonparametric logit regression (RIF-OLS). We also discuss how our approach can be generalized to other distributional statistics besides quantiles. * We are indebted to Joe Altonji, Richard Blundell, David Card, Vinicius Carrasco, Marcelo Fernandes, Chuan Goh, Joel Horowitz, Shakeeb Khan, Roger Koenker, Thierry Magnac, Whitney Newey, Geert Ridder, Jean-Marc Robin, Hal White and seminar participants at Yale University, CAEN-UFC, CEDEPLARUFMG, PUC-Rio, IPEA-RJ and Econometrics in Rio 2006 for useful comments on this and earlier versions of the manuscript.
    [Show full text]
  • Stochastic Dominance Via Quantile Regression
    Abstract We derive a new way to test for stochastic dominance between the return of two assets using a quantile regression formulation. The test statistic is a variant of the one-sided Kolmogorov-Smirnoffstatistic and has a limiting distribution of the standard Brownian bridge. We also illustrate how the test statistic can be extended to test for stochastic dominance among k assets. This is useful when comparing the performance of individual assets in a portfolio against some market index. We show how the test statistic can be modified to test for stochastic dominance up to the α-quantile in situation where the return of one asset does not dominate another over the whole spectrum of the return distribution. Keywords: Quantile regression, stochastic dominance, Brownian bridge, test statis- tic. 1Introduction Stochastic dominance finds applications in many areas. In finance, it is used to assess portfolio diversification, capital structure, bankruptcy risk, and option’s price bound. In welfare economics, it is used to measure income distribution and income inequality In reinsurance coverage, the insured use it to select the best coverage option while the insurers use it to assess whether the options are consistently priced. It is also used to select effective treatment in medicine and selection of the best irrigation system in agriculture. There are two big classes of stochastic dominance tests. The first is based on the inf / sup statistics over the support of the distributions as in McFadden (1989), Klecan, McFadden and McFadden (1991), and Kaur, Rao and Singh (1994). The second class is based on comparison of the distributions over a set of grid points as in Anderson (1996), Dardanoni and Forcina (1998, 1999), and Davidson and Duclos (2000).
    [Show full text]
  • A New Quantile Regression for Modeling Bounded Data Under a Unit Birnbaum–Saunders Distribution with Applications in Medicine and Politics
    S S symmetry Article A New Quantile Regression for Modeling Bounded Data under a Unit Birnbaum–Saunders Distribution with Applications in Medicine and Politics Josmar Mazucheli 1 , Víctor Leiva 2,* , Bruna Alves 1 and André F. B. Menezes 3 1 Departament of Statistics, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; [email protected] (J.M.); [email protected] (B.A.) 2 School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile 3 Departament of Statistics, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; [email protected] * Correspondence: [email protected] or [email protected] Abstract: Quantile regression provides a framework for modeling the relationship between a response variable and covariates using the quantile function. This work proposes a regression model for continuous variables bounded to the unit interval based on the unit Birnbaum–Saunders distribution as an alternative to the existing quantile regression models. By parameterizing the unit Birnbaum–Saunders distribution in terms of its quantile function allows us to model the effect of covariates across the entire response distribution, rather than only at the mean. Our proposal, especially useful for modeling quantiles using covariates, in general outperforms the other competing models available in the literature. These findings are supported by Monte Carlo simulations and applications using two real data sets. An R package, including parameter estimation, model checking Citation: Mazucheli, J.; Leiva, V.; as well as density, cumulative distribution, quantile and random number generating functions of the Alves, B.; Menezes, A.F.B. A New unit Birnbaum–Saunders distribution was developed and can be readily used to assess the suitability Quantile Regression for Modeling of our proposal.
    [Show full text]
  • Quantile Regressionregression
    QuantileQuantile RegressionRegression By Luyang Fu, Ph. D., FCAS, State Auto Insurance Company Cheng-sheng Peter Wu, FCAS, ASA, MAAA, Deloitte Consulting AgendaAgenda Overview of Predictive Modeling for P&C Applications Quantile Regression: Background and Theory Two Commercial Line Case Studies – Claim Severity Modeling and Loss Ratio Modeling Q&A Overview of Predictive Modeling for P&C Applications OverviewOverview ofof PMPM forfor P&CP&C ApplicationsApplications Modeling Techniques: ◦ Ordinary Least Square and Linear Regression: Normal distribution assumption Linear relationship between target and covariates Predict the mean of the target against the covariates ◦ GLM: Expansion of distribution assumptions with exponential family distributions,: frequency - Poisson, severity - Gamma, pure premium and loss ratio - Tweedie Linear relationship between the mean of the target and the covariates through the link function ◦ Minimum Bias/General Iteration Algorithm: Iterative algorithm Essentially derives the same results as GLM Categorical predictive variables only Linear relationship between target and covariates ◦ Neural Networks: ◦ Non-linear regression: a series of logit functions to approximate the nonlinear relationship between target and covariates ◦ Originated in the data mining field; a curve fitting technique; non parametric assumptions ◦ Different cost or error functions can be selected for minimization, for example, a least square error term or an absolute error function ◦ One popular algorithm is the backward propagation
    [Show full text]
  • Notes on Median and Quantile Regression
    Notes On Median and Quantile Regression James L. Powell Department of Economics University of California, Berkeley Conditional Median Restrictions and Least Absolute Deviations It is well-known that the expected value of a random variable Y minimizes the expected squared deviation between Y and a constant; that is, µ E[Y ] Y ≡ =argminE(Y c)2, c − assuming E Y 2 is finite. (In fact, it is only necessary to assume E Y is finite, if the minimand is normalized by|| subtracting|| Y 2, i.e., || || µ E[Y ] Y ≡ =argminE[(Y c)2 Y 2] c − − =argmin[c2 2cE[Y ]], c − and this normalization has no effect on the solution if the stronger condition holds.) It is less well-known that a median of Y, defined as any number ηY for which 1 Pr Y η and { ≤ Y } ≥ 2 1 Pr Y η , { ≥ Y } ≥ 2 minimizes an expected absolute deviation criterion, η =argminE[ Y c Y ], Y c | − | − | | though the solution to this minimization problem need not be unique. When the c.d.f. FY is strictly increasing everywhere (i.e., Y is continuously distributed with positive density), then uniqueness is not an issue, and 1 ηY = FY− (1/2). In this case, the first-order condition for minimization of E[ Y c Y ] is | − | − | | 0= E[sgn(Y c)], − − for sgn(u) the “sign” (or “signum”) function sgn(u) 1 2 1 u<0 , ≡ − · { } here defined to be right-continuous. 1 Thus, just as least squares (LS) estimation is the natural generalization of the sample mean to estimation of regression coefficients, least absolute deviations (LAD) estimation is the generalization of the sample median to the linear regression context.
    [Show full text]
  • The Use of Logistic Regression and Quantile Regression in Medical Statistics
    The use of logistic regression and quantile regression in medical statistics Solveig Fosdal Master of Science Submission date: June 2017 Supervisor: Ingelin Steinsland, IMF Co-supervisor: Håkon Gjessing, Nasjonalt folkehelseinstitutt Norwegian University of Science and Technology Department of Mathematical Sciences Summary The main goal of this thesis is to compare and illustrate the use of logistic regression and quantile regression on continuous outcome variables. In medical statistics, logistic regres- sion is frequently applied to continuous outcomes by defining a cut-off value, whereas quantile regression can be applied directly to quantiles of the outcome distribution. The two approaches appear different, but are closely related. An approximate relation between the quantile effect and the log-odds ratio is derived. Practical examples and illustrations are shown through a case study concerning the effect of maternal smoking during preg- nancy and mother’s age on birth weight, where low birth weight is of special interest. Both maternal smoking during pregnancy and mother’s age are found to have a significant ef- fect on birth weight, and the effect of maternal smoking is found to have a slightly larger negative effect on low birth weight than for other quantiles. Trend in birth weight over years is also studied as a part of the case study. Further, the two approaches are tested on simulated data from known probability density functions, pdfs. We consider a population consisting of two groups, where one of the groups is exposed to a factor, and the effect of exposure is of interest. By this we illustrate the quantile effect and the odds ratio for several examples of location, scale and location-scale shift of the normal distribution and the Student t-distribution.
    [Show full text]
  • Chapter Quantile Regression
    A Handbook of Statistical Analyses Using R — 3rd Edition Torsten Hothorn and Brian S. Everitt CHAPTER 12 Quantile Regression: Head Circumference for Age 12.1 Introduction 12.2 Quantile Regression 12.3 Analysis Using R We begin with a graphical inspection of the influence of age on head circumfer- ence by means of a scatterplot. Plotting all pairs of age and head circumference in one panel gives more weight to the teens and 20s, so we produce one plot for younger boys between two and nine years old and one additional plot for boys older than nine years (or > 108 months, to be precise). The cut function is very convenient for constructing a factor representing these two groups R> summary(db) head age Min. :33.5 Min. : 0.03 1st Qu.:48.8 1st Qu.: 1.75 Median :53.0 Median : 9.99 Mean :51.7 Mean : 8.94 3rd Qu.:55.7 3rd Qu.:14.84 Max. :66.3 Max. :21.68 R> db$cut <- cut(db$age, breaks = c(2, 9, 23), + labels = c("2-9 yrs", "9-23 yrs")) which can then be used as a conditioning variable for conditional scatterplots produced with the xyplot function (Sarkar, 2014, package lattice). Because we draw 5101 points in total, we use transparent shading (via rgb(.1, .1, .1, .1)) in order to obtain a clearer picture for the more populated areas in the plot. Figure 12.1, as expected, shows that head circumference increases with age. It also shows that there is considerable variation and also quite a number of extremely large or small head circumferences in the respective age cohorts.
    [Show full text]
  • Logistic Quantile Regression to Evaluate Bounded Outcomes
    Logistic Quantile Regression to Evaluate Bounded Outcomes Vivi Wong Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2018:16 Matematisk statistik Juni 2018 www.math.su.se Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Matematiska institutionen Mathematical Statistics Stockholm University Bachelor Thesis 2018:16 http://www.math.su.se Logistic Quantile Regression to Evaluate Bounded Outcomes Vivi Wong∗ June 2018 Abstract Lower urinary tract symptoms in men are common when men get older, and these symptoms can be measured with I-PSS (International Prostate Symptom Score), a scale between 0-35. The density function of the bounded outcome variable, I-PSS, is highly skewed to the right. It can therefore be difficult to analyze this type of variables with stan- dard regression methods such as OLS, since these methods give us the effect of the explanatory variables on the mean of the response variable. Epidemiological studies commonly study how lifestyle and several other factors affect health-related problems. We will therefore study the effect physical activity has on lower urinary tract symptoms by using logistic quantile regression, which is an appropriate method to use when we have bounded outcomes. The method works well because instead of the mean, it focuses on quantiles and it takes the bounded interval into account. The results show a negative relationship between total physical activity and lower urinary tract symptoms, so men who are more physical active will more likely have lower and milder symptoms. ∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-mail: [email protected].
    [Show full text]