REPRESENTING the DIGITAL HUMANITIES COMMUNITY: UNVEILING the SOCIAL NETWORK VISUALIZATION of an INTERNATIONAL CONFERENCE DARIO RODIGHIERO Beyond That Sign

Total Page:16

File Type:pdf, Size:1020Kb

REPRESENTING the DIGITAL HUMANITIES COMMUNITY: UNVEILING the SOCIAL NETWORK VISUALIZATION of an INTERNATIONAL CONFERENCE DARIO RODIGHIERO Beyond That Sign THE PARSONS INSTITUTE 68 Fifth Avenue 212 229 6825 FOR INFORMATION MAPPING New York, NY 10011 piim.newschool.edu Today the scientific community refers to this practice Representing the Digital Humanities as Information Design. Robert Jacobson, one of Community: Unveiling the pioneers in this field, defines Information Design The Social Network Visualization as the discipline whose “purpose is the systematic arrange- ment and use of communication carriers, channels, of an International Conference and tokens to increase the understanding of those participating in a specific conversation or discourse”. DARIO RODIGHIERO The conceptualization of this domain was first introduced in the 1970s and became official with the publication KEYWORDS Actor-network theory, data visualization, of the Information Design Journal in 1979. However, interpretant, semiotics, social network visualization important thinkers such as Charles Joseph Minard, John Snow, Florence Nightingale and Otto Neurath previ- ABSTRACT This paper deals with the sense of represent- ously carried out some significant works in this field. ing both a new domain as Digital Humanities and In recent years, other areas of study entered Informa- its community. Based on a case study, where a set of tion Design with different denominations. One of visualizations was used to represent the community these is Data Visualization, a recent domain that attending the international Digital Humanities conference explores how digital data can be portrayed. Now “Data of 2014 in Lausanne, Switzerland, the meaning of Visualization” as a term is in wide-spread use all over representing a community is investigated in the light the world; it is common to come across writings, courses, of the theories of three acknowledged authors, namely and web sites related to this domain: FlowingData is Charles Sanders Peirce for his notion of the interpretant, one of them, a web magazine whose payoff is “Data Ludwig Wittgenstein for his insights on the use of Visualization, Infographics and Statistics”. language, and finally Bruno Latour for his ideas of This article expands on the notion that it can be representing politics. reductive to only speak about visualization. In the past, There results a proposal to designing and interpreting people who lived in Valcamonica were not simply social network visualizations in a more thoughtful way, drawing what they saw; rather they used images to while remaining aware of the relation between objects represent their community and their lives. What they in the real world and their visualizations. As this type drew was not just a sign, they also implied a behavior of work pertains to a wider scope, we propose bringing a theoretical framework to a young domain such as data visualization. In Valcamonica, a valley close to Brescia in the north of Italy, there is the largest number of prehistoric petroglyphs in the world. Here, UNESCO identified about 140,000 different drawings. But the actual number is likely twice as much because some of them are still covered by vegetation. All these incisions date back to different ages: Epipaleolithic, Neolithic, Copper Age, etc., until the Middle Age. This corresponds to a long period, about six or eight millenniums, where people have used this kind of visual communication. Historical information has been deduced from these drawings: people living in that area practiced agriculture, fought to protect their community, hunted wild animals, and prayed according to their religious beliefs. For thousands of years, people living Figure 1: The network visualization based on authors and there represented their world through visualization. keywords derived from publications. PIIM IS A RESEARCH AND DEVELOPMENT © 2015 PARSONS JOURNAL FOR FACILITY AT THE NEW SCHOOL INFORMATION MAPPING AND PARSONS INSTITUTE FOR INFORMATION MAPPING REPRESENTING THE DIGITAL HUMANITIES COMMUNITY: UNVEILING THE SOCIAL NETWORK VISUALIZATION OF AN INTERNATIONAL CONFERENCE DARIO RODIGHIERO beyond that sign. Illustrations are meaningful because Subsequently the original network was split in two they represent something important to the community; networks: the first representing the authors, the consequently, it is fundamental that those who observe second the keywords. The purpose was to simplify them also detect the object indicated so as to hear the visualization in order to make it more comprehensible. the voice of the community who drew the sign. To This network represents all authors attending the investigate this theme, the argument should be built conference who had entered at least one submission. by investigating the relationship between visualization The authors in the middle of the network are the most and representation, as can be shown by a practical linked, both due to their co-authoring and to common example of design; the brand image of DH2014, keywords. In fact, this is not just a network showing who the Digital Humanities conference that took place at published with whom, but also a network displaying the EPFL and UNIL campus in Lausanne, Switzerland. authors with shared keywords or, in other words, who The idea was to represent the Digital Humanities worked on the same theme. (DH) domain as a pattern that could be beautiful and The force-directed graph, arranged by combining ductile, which would allow it to be used as a brand image ForceAtlas 2 and Fruchterman–Reingold algorithms, for producing posters, covers, banners, etc. The DHLAB, makes identification of author clusters easy. Due to laboratory in Digital Humanities at EPFL, one of the these algorithms, the spatial disposition doesn’t have organizers of the conference, accomplished this task a disposition based on coordinates, rather its relevance by using the conference data set—in particular the is in terms of proximity; the closer two authors are, submission information. By analyzing this data it was the more documents or interests they share. possible to create a network visualization based on The social network of authors was printed and placed authors and keywords derived from the metadata found in front of the conference’s entrance. Due to its large size in all papers and posters accepted for the conference. All this visualization, reified in a carpet, gave participants the keywords of each document were linked, as well as a clear invitation to exploration. As shown in the photo- all authors of each document. Then, the authors and graph, authors were attempting to locate themselves on keywords of each document were linked. The three sets of the map. What soon became a game was a perfect mix links were merged to form a unique network that provided between entertainment and examination; each person a representation of the DH community’s complexity. followed their personal path within the social network. Figure 2: Conference authors represented by co-authoring Figure 3: The authors network visualisation and shared keywords. materialized in a red carpet, placed just in front of the conference entrance. PARSONS JOURNAL FOR INFORMATION MAPPING © 2015 PARSONS JOURNAL FOR VOLUME VII ISSUE 2, SPRING 2015 INFORMATION MAPPING AND PARSONS [PAGE 2] INSTITUTE FOR INFORMATION MAPPING Anas Fahad Khan Ouafae Nahli Vania Baldi Drayton Callen Benner Mark Wolff Lev Manovich Federico Boschetti Angelo Mario Del Grosso Karin Gross John Macarthur Lídia Oliveira Marion Lamé Craig Macnamara Penny Johnston Izabella Pluta Thomas Zastrow Keisuke Koguchi Elizabeth Losh Kiyonori Nagasaki Jean-Paul Fourmentraux Deborah Van der Plaat Osamu Imahayashi Takako Hashimoto Gavin Bannerman Miyuki Nishio A. Charles Muller Janina Gosseye Clarisse Bardiot Hieke Huistra Jane Hunter Masahiro Hori Christopher W. Forstall Thomas Krause Masahiro Shimoda Andrae Muys Walter J. Scheirer Fred Tappenden Toru Tomabechi Nieves Baranda LeturioMaría Dolores Martos Pérez Anke Lüdeling Chris Donaldson Patricia Murrieta-Flores C.J. Rupp Carson Logan María Carmen Marín Pina Joachim Berger Katrina Fenlon Brenton Sullivan Masakatsu Murakami Ayaka Uesaka Debora Marques de Matos Fraser Dallachy Robert Morrissey Michael Muthukrishna Andrew Hardie Stewart Brookes Ian Gregory Scott Piao Peter Anthony Stokes Alistair Baron Doug Oard Edward Slingerland William J. Turkel Stefan Sinclair Matilda Watson Craig Willis Clovis Gladstone Colleen Fallaw Geoffroy Noël Aaron Mathew Mauro Jean Anderson Adi Hajj-Ahmad Christian Kay Alaa Abi Haidar Vinodh Rajan Anita Law Yukari Shirota David Mimno Jill Belli Stéphane Couture Glenn Roe Rolf Fredheim Whitney Trettien Giancarlo Buomprisco Marie Giltner Saldaña Dennis Zielke Timothy W. Cole Jean-Gabriel Ganascia Thomas Bartz Marc Alexander Graham Alexander Sack Peter Schirmbacher Mark Andrew Algee-HewittLaura Eidem Timothy R. Tangherlini RIchard Lawrence Edwards Simon Ganahl Yoshihiro Nikaido Olliver Dyens Timothy Compeau Christian Pölitz Nadja Radtke Padmini Ray Murray Michael Eberle-Sinatra David Hoover Rachele Sprugnoli Caleb Derven Peter M. Broadwell Monica Brown Daren Mueller Andrew Goldstone Paul Rayson Aaron Louis Plasek Marcello Vitali Rosati Laurent Bolli Carolina Ferrer Aja Teehan Jaap Verheul Angelika Storrer Johanna Drucker Tanya Llewellyn Rory Solomon Tony Borries Aaron Plasek Eric Poitras Mary Caton Lingold Carolin Odebrecht Toine Pieters Sara Tonelli Joris Job Van Zundert Christopher Long Devon Elliott Boris Orekhov Radu Suciu David Smith Michael Sperberg-Mcqueen Anastasia Bonch-Osmolovskaya Edith Gwendolyn Nally Naoki Yamazaki Elena Pierazzo Ashley Clarkson Alberto Campagnolo Kerstin Brückweh Michael Beißwenger
Recommended publications
  • Tuesday's Evening Fast Forward Session
    Fast Forward Session on Tuesday Oct. 27 EVENING (for Wednesday's events and presentations) be in the Red Lacquer Ballroom by 17:55 sharp Title Authors Seat # InfoVis Session: Applications [08:30–10:10, Grand] Visual Mementos: Reflecting Memories with Personal Alice Thudt, Dominikus Baur, Samuel Huron, Sheelagh - Data Carpendale 1 Roeland Scheepens, Christophe Hurter, Huub van de - Visualization, Selection, and Analysis of Traffic Flows Wetering, Jarke van Wijk 2 - Visually Comparing Weather Features in Forecasts P. Samuel Quinan, Miriah Meyer 3 Hendrik Strobelt, Bilal Alsallakh, Joseph Botros, Brant - Vials: Visualizing Alternative Splicing of Genes Peterson, Mark Borowsky, Hanspeter Pfister, Alexander 4 Lex TimeSpan: Using Visualization to Explore Temporal Mona Hosseinkhani Loorak, Charles Perin, Noreen - Multidimensional Data of Stroke Patients Kamal, Michael Hill, Sheelagh Carpendale 5 SciVis Session: Tasks and Applications [08:30–10:10, State] A Classification of User Tasks in Visual Analysis of Bireswar Laha, Doug Bowman, David Laidlaw, John - Volume Data Socha 6 Using Maximum Topology Matching to Explore Jorge Poco, Harish Doraiswamy, Marian Talbert, Jeffrey - Differences in Species Distribution Models Morisette, Claudio Silva 7 Visual Verification of Space Weather Ensemble Alexander Bock, Asher Pembroke, M. Leila Mays, Lutz - Simulations Rastaetter, Anders Ynnerman, Timo Ropinski 8 A Visual Voting Framework for Weather Forecast Hongsen Liao, Yingcai Wu, Li Chen, Thomas M. Hamill, - Calibration Yunhai Wang, Kan Dai, Hui Zhang, Wei
    [Show full text]
  • Scientific Visualization
    Report from Dagstuhl Seminar 11231 Scientific Visualization Edited by Min Chen1, Hans Hagen2, Charles D. Hansen3, and Arie Kaufman4 1 University of Oxford, GB, [email protected] 2 TU Kaiserslautern, DE, [email protected] 3 University of Utah, US, [email protected] 4 SUNY – Stony Brook, US, [email protected] Abstract This report documents the program and the outcomes of Dagstuhl Seminar 11231 “Scientific Visualization”. Seminar 05.–10. June, 2011 – www.dagstuhl.de/11231 1998 ACM Subject Classification I.3 Computer Graphics, I.4 Image Processing and Computer Vision, J.2 Physical Sciences and Engineering, J.3 Life and Medical Sciences Keywords and phrases Scientific Visualization, Biomedical Visualization, Integrated Multifield Visualization, Uncertainty Visualization, Scalable Visualization Digital Object Identifier 10.4230/DagRep.1.6.1 1 Executive Summary Min Chen Hans Hagen Charles D. Hansen Arie Kaufman License Creative Commons BY-NC-ND 3.0 Unported license © Min Chen, Hans Hagen, Charles D. Hansen, and Arie Kaufman Scientific Visualization (SV) is the transformation of abstract data, derived from observation or simulation, into readily comprehensible images, and has proven to play an indispensable part of the scientific discovery process in many fields of contemporary science. This seminar focused on the general field where applications influence basic research questions on one hand while basic research drives applications on the other. Reflecting the heterogeneous structure of Scientific Visualization and the currently unsolved problems in the field, this seminar dealt with key research problems and their solutions in the following subfields of scientific visualization: Biomedical Visualization: Biomedical visualization and imaging refers to the mechan- isms and techniques utilized to create and display images of the human body, organs or their components for clinical or research purposes.
    [Show full text]
  • Minard's Chart of Napolean's Campaign
    Minard's Chart of Napolean's Campaign Charles Joseph Minard (French: [minaʁ]; 27 March 1781 – 24 October 1870) was a French civil engineer recognized for his significant contribution in the field of information graphics in civil engineering and statistics. Minard was, among other things, noted for his representation of numerical data on geographic maps. Charles Minard's map of Napoleon's disastrous Russian campaign of 1812. The graphic is notable for its representation in two dimensions of six types of data: the number of Napoleon's troops; distance; temperature; the latitude and longitude; direction of travel; and location relative to specific dates.[2] Wikipedia (n.d.). Charles Minard's 1869 chart showing the number of men in Napoleon’s 1812 Russian campaign army, their movements, as well as the temperature they encountered on the return path. File:Minard.png. https:// en.wikipedia.org/wiki/File:Minard.png The original description in French accompanying the map translated to English:[3] Drawn by Mr. Minard, Inspector General of Bridges and Roads in retirement. Paris, 20 November 1869. The numbers of men present are represented by the widths of the colored zones in a rate of one millimeter for ten thousand men; these are also written beside the zones. Red designates men moving into Russia, black those on retreat. — The informations used for drawing the map were taken from the works of Messrs. Thiers, de Ségur, de Fezensac, de Chambray and the unpublished diary of Jacob, pharmacist of the Army since 28 October. Recognition Modern information
    [Show full text]
  • Time and Animation
    TIME AND ANIMATION Petra Isenberg (&Pierre Dragicevic) TIME VISUALIZATION ANIMATION 2 TIME VISUALIZATION ANIMATION Time 3 VISUALIZATION OF TIME 4 TIME Is just another data dimension Why bother? 5 TIME Is just another data dimension Why bother? What data type is it? • Nominal? • Ordinal? • Quantitative? 6 TIME Ordinal Quantitative • Discrete • Continuous Aigner et al, 2011 7 TIME Joe Parry, 2007. Adapted from Mackinlay, 1986 8 TIME Periodicity • Natural: days, seasons • Social: working hours, holidays • Biological: circadian, etc. Has many subdivisions (units) • Years, months, days, weeks, H, M, S Has a specific meaning • Not captured by data type • Associations, conventions • Pervasive in the real-world • Time visualizations often considered as a separate type 9 TIME Shneiderman: • 1-dimensional data • 2-dimensional data • 3-dimensional data • temporal data • multi-dimensional data • tree data • network data 10 VISUALIZING TIME as a time point 11 VISUALIZING TIME as a time period 12 VISUALIZING TIME as a duration 13 VISUALIZING TIME PLUS DATA 14 MAPPING TIME TO SPACE 15 MAPPING TIME TO AN AXIS Time Data 16 TIME-SERIES DATA From a Statistics Book: • A set of observations xt, each one being recorded at a specific time t From Wikipedia: • A sequence of data points, measured typically at successive time instants spaced at uniform time intervals 17 LINE CHARTS Aigner et al, 2011 18 LINE CHARTS Marey’s Physiological Recordings Plethysmograph Étienne-Jules Marey, 1876 (image source) Pneumogram Étienne-Jules Marey, 1876 (image source) 19 LINE CHARTS Pendulum Seismometer (image source) Andrea Bina, 1751 Possibly also 17th century (source) 20 LINE CHARTS Inclinations of planetary orbits Macrobius, 10th or 11th century cited in Kendall, 1990 21 Marey’s Train Schedule LINE CHARTS 6 PARIS LYON 7 22 Étienne-Jules Marey, 1885, cited in Tufte, 1983 OTHER CHARTS Line Plots Point Plots Silhouette Graphs Bar Charts Aigner et al, 2011 23 OTHER CHARTS Combination - New York Times Weather Chart New York Times, 1980.
    [Show full text]
  • Defining Visual Rhetorics §
    DEFINING VISUAL RHETORICS § DEFINING VISUAL RHETORICS § Edited by Charles A. Hill Marguerite Helmers University of Wisconsin Oshkosh LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS 2004 Mahwah, New Jersey London This edition published in the Taylor & Francis e-Library, 2008. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Copyright © 2004 by Lawrence Erlbaum Associates, Inc. All rights reserved. No part of this book may be reproduced in any form, by photostat, microform, retrieval system, or any other means, without prior written permission of the publisher. Lawrence Erlbaum Associates, Inc., Publishers 10 Industrial Avenue Mahwah, New Jersey 07430 Cover photograph by Richard LeFande; design by Anna Hill Library of Congress Cataloging-in-Publication Data Definingvisual rhetorics / edited by Charles A. Hill, Marguerite Helmers. p. cm. Includes bibliographical references and index. ISBN 0-8058-4402-3 (cloth : alk. paper) ISBN 0-8058-4403-1 (pbk. : alk. paper) 1. Visual communication. 2. Rhetoric. I. Hill, Charles A. II. Helmers, Marguerite H., 1961– . P93.5.D44 2003 302.23—dc21 2003049448 CIP ISBN 1-4106-0997-9 Master e-book ISBN To Anna, who inspires me every day. —C. A. H. To Emily and Caitlin, whose artistic perspective inspires and instructs. —M. H. H. Contents Preface ix Introduction 1 Marguerite Helmers and Charles A. Hill 1 The Psychology of Rhetorical Images 25 Charles A. Hill 2 The Rhetoric of Visual Arguments 41 J. Anthony Blair 3 Framing the Fine Arts Through Rhetoric 63 Marguerite Helmers 4 Visual Rhetoric in Pens of Steel and Inks of Silk: 87 Challenging the Great Visual/Verbal Divide Maureen Daly Goggin 5 Defining Film Rhetoric: The Case of Hitchcock’s Vertigo 111 David Blakesley 6 Political Candidates’ Convention Films:Finding the Perfect 135 Image—An Overview of Political Image Making J.
    [Show full text]
  • Data Visualization by Nils Gehlenborg
    Data Visualization Nils Gehlenborg ([email protected]) Center for Biomedical Informatics / Harvard Medical School Cancer Program / Broad Institute of MIT and Harvard ISMB/ECCB 2011 http://www.biovis.net Flyers at ISCB booth! Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg A good sketch is better than a long speech. Napoleon Bonaparte Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg Minard 1869 Napoleon’s March on Moscow Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 4 I believe when I see it. Unknown Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg Anscombe 1973, The American Statistician Anscombe’s Quartet mean(X) = 9, var(X) = 11, mean(Y) = 7.5, var(Y) = 4.12, cor(X,Y) = 0.816, linear regression line Y = 3 + 0.5*X Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 6 Anscombe 1973, The American Statistician Anscombe’s Quartet Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 7 Exploration: Hypothesis Generation trends gaps outliers clusters - A large data set is given and the goal is to learn something about it. - Visualization is employed to perform pattern detection using the human visual system. - The goal is to generate hypotheses that can be tested with statistical methods or follow-up experiments. Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 8 Visualization Use Cases Presentation Confirmation Exploration Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 9 Definition The use of computer-supported, interactive, visual representations of data to amplify cognition. Stu Card, Jock Mackinlay & Ben Shneiderman Computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively.effectively.
    [Show full text]
  • Pop-Out, Illusions, Interaction
    Pop-Out, Illusions, Interaction DS 4200 FALL 2020 Prof. Cody Dunne NORTHEASTERN UNIVERSITY Slides and inspiration from Michelle Borkin, Krzysztof Gajos, Hanspeter Pfister, Miriah Meyer, Jonathan Schwabish, and David Sprague 1 CHECK-IN 2 PREVIOUSLY, ON DS 4200… 4 Color Vocabulary and Perceptual Ordering Darkness (Lightness) Saturation Hue ? ? Based on Slides by Miriah Meyer, Tamara Munzner 5 Color Deficiencies (Color Blindness) Based on Slides by Hanspeter Pfister, Maureen Stone 6 Check your images/colormaps for issues! http://www.vischeck.com/vischeck/vischeckImage.php https://www.color-blindness.com/coblis-color-blindness-simulator/ 7 Color Brewer http://colorbrewer2.org 8 Color Advice Summary Use a limited hue palette • Control color “pop out” with low-saturation colors • Avoid clutter from too many competing colors Use neutral backgrounds • Control impact of color • Minimize simultaneous contrast Use Color Brewer etc. for picking scales Don’t forget aesthetics! Based on Slides by Hanspeter Pfister, Maureen Stone 9 NOW, ON DS 4200… 10 POP-OUT EFFECTS 15 POP-OUT EFFECTS COLOR Healey, 2012 16 POP-OUT EFFECTS SHAPE Healey, 2012 17 POP-OUT EFFECTS “CONJUNCTION” (HARDER TO FIND RED CIRCLE!) Healey, 2012 18 POP-OUT EFFECTS MOTION Healey, 2012 19 POP-OUT EFFECTS Healey, 2012 20 POP-OUT EFFECTS Healey, 2012 21 Use these “popout” effects to help design effective visualizations! (E.g., draw viewer’s attention to main points, effective redundant encodings, etc.) Ware, VTFD 22 Discriminability and Separability The question of discriminability is: if you encode data using a particular visual channel, are the differences between items perceptible to the human as intended? Munzner, VAD 23 Textures easy hard Ware, VTFD 25 Textures: Interference Ware, VTFD 26 ILLUSIONS AND TRICKS 28 Visual Attention & Change Blindness 30 Visual Attention & Change Blindness Task: Identify the lumps/nodules in the patient’s lungs to look for cancer or abnormal growth.
    [Show full text]
  • The Forgotten Discovery of Gravity Models and the Inefficiency of Early
    The forgotten discovery of gravity models and the inefficiency of early railway networks Andrew Odlyzko School of Mathematics University of Minnesota Minneapolis, MN 55455, USA [email protected] http://www.dtc.umn.edu/∼odlyzko Revised version, April 19, 2015 Abstract. The routes of early railways around the world were generally inef- ficient because of the incorrect assumption that long distance travel between major cities would dominate. Modern planners rely on methods such as the “gravity models of spatial interaction,” which show quantitatively the impor- tance of accommodating travel demands between smaller cities. Such models were not used in the 19th century. This paper shows that gravity models were discovered in 1846, a dozen years earlier than had been known previously. That discovery was published during the great Railway Mania in Britain. Had the validity and value of gravity models been recognized properly, the investment losses of that gigantic bubble could have been lessened, and more efficient rail systems in Britain and many other countries would have been built. This incident shows society’s early encounter with the “Big Data” of the day and the slow diffusion of economically significant information. The results of this study suggest that it will be increasingly feasible to use modern network science to analyze information dissemination in the 19th century. That might assist in understanding the diffusion of technologies and the origins of bubbles. Keywords: gravity models, railway planning, diffusion of information JEL classification codes: D8, L9, N7 1 Introduction Dramatic innovations in transportation or communication frequently produce predictions that distance is becoming irrelevant. In recent decades, two popular books in this genre introduced the concepts of “death of distance” [7] and “the Earth is flat” [25].
    [Show full text]
  • Eurovis 2019 Eurographics / IEEE VGTC Conference on Visualization 2019
    EuroVis 2019 Eurographics / IEEE VGTC Conference on Visualization 2019 Porto, Portugal June 3 – 7, 2019 Organized by EUROGRAPHICS THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS IEEE Visualization and Graphics Technical Committee General Chairs Alfredo Ferreira – INESC-ID, Instituto Superior Técnico, Universidade de Lisboa Joaquim A. Jorge – INESC-ID, Instituto Superior Técnico, Universidade de Lisboa Full Papers Chairs Michael Gleicher – University of Wisconsin Ivan Viola – KAUST Heike Leitte – TU Kaiserslautern STARs Chairs Robert S. Laramee – Swansea University Steffen Oeltze – Dept. of Neurology, University of Magdeburg Michael Sedlmair – Jacobs University Short Papers Chairs Jimmy Johansson – Linköping University Filip Sadlo – Heidelberg University G. Elisabeta Marai – University of Illinois at Chicago Posters Chairs João Madeiras Pereira – Universidade de Lisboa Renata Raidou – TU Wien DOI: 10.1111/cgf.13725 https://www.eg.org https://diglib.eg.org Eurographics Conference on Visualization (EuroVis) 2019 Volume 38 (2019), Number 3 M. Gleicher, H. Leitte, and I. Viola (Guest Editors) Organizers and Sponsors Eurographics Conference on Visualization (EuroVis) 2019 Volume 38 (2019), Number 3 M. Gleicher, H. Leitte, and I. Viola (Guest Editors) Preface EuroVis 2019, the 21th Eurographics / IEEE VGTC Conference on Visualization, was held in Porto, Portugal, on June 3-7, 2019. The proceedings are published as a special issue of the Eurographics Computer Graphics Forum journal. The conference, which started in 1990 as the Eurographics Workshop on Visualization in Scientific Com- puting and was called VisSym after 1999, has been known as EuroVis since 2005. EuroVis attracts contributions that broadly cover the field of visualization. Topics include visualization techniques for spatial data, such as volumet- ric, tensor, and vector field datasets, and for non-spatial data, such as graphs, text, and high-dimensional datasets.
    [Show full text]
  • Visions and Re-Visions of Charles Joseph Minard
    Visions and Re-Visions of Charles Joseph Minard Michael Friendly Psychology Department and Statistical Consulting Service York University 4700 Keele Street, Toronto, ON, Canada M3J 1P3 in: Journal of Educational and Behavioral Statistics. See also BIBTEX entry below. BIBTEX: @Article{ Friendly:02:Minard, author = {Michael Friendly}, title = {Visions and {Re-Visions} of {Charles Joseph Minard}}, year = {2002}, journal = {Journal of Educational and Behavioral Statistics}, volume = {27}, number = {1}, pages = {31--51}, } © copyright by the author(s) document created on: February 19, 2007 created from file: jebs.tex cover page automatically created with CoverPage.sty (available at your favourite CTAN mirror) JEBS, 2002, 27(1), 31–51 Visions and Re-Visions of Charles Joseph Minard∗ Michael Friendly York University Abstract Charles Joseph Minard is most widely known for a single work, his poignant flow-map depiction of the fate of Napoleon’s Grand Army in the disasterous 1812 Russian campaign. In fact, Minard was a true pioneer in thematic cartography and in statistical graphics; he developed many novel graphics forms to depict data, always with the goal to let the data “speak to the eyes.” This paper reviews Minard’s contributions to statistical graphics, the time course of his work, and some background behind the famous March on Moscow graphic. We also look at some modern re-visions of this graph from an information visualization perspecitive, and examine some lessons this graphic provides as a test case for the power and expressiveness of computer systems or languages for graphic information display and visual- ization. Key words: Statistical graphics; Data visualization, history; Napoleonic wars; Thematic car- tography; Dynamic graphics; Mathematica 1 Introduction RE-VISION n.
    [Show full text]
  • STAT 6560 Graphical Methods
    STAT 6560 Graphical Methods Spring Semester 2009 Project One Jessica Anderson Utah State University Department of Mathematics and Statistics 3900 Old Main Hill Logan, UT 84322{3900 CHARLES JOSEPH MINARD (1781-1870) And The Best Statistical Graphic Ever Drawn Citations: How others rate Minard's Flow Map of Napolean's Russian Campaign of 1812 . • \the best statistical graphic ever drawn" - (Tufte (1983), p. 40) • Etienne-Jules Marey said \it defies the pen of the historian in its brutal eloquence" -(http://en.wikipedia.org/wiki/Charles_Joseph_Minard) • Howard Wainer nominated it as the \World's Champion Graph" - (Wainer (1997) - http://en.wikipedia.org/wiki/Charles_Joseph_Minard) Brief background • Born on March 27, 1781. • His father taught him to read and write at age 4. • At age 6 he was taught a course on anatomy by a doctor. • Minard was highly interested in engineering, and at age 16 entered a school of engineering to begin his studies. • The first part of his career mostly consisted of teaching and working as a civil engineer. Gradually he became more research oriented and worked on private research thereafter. • By the end of his life, Minard believed he had been the co-inventor of the flow map technique. He wrote he was pleased \at having given birth in my old age to a useful idea..." - (Robinson (1967), p. 104) What was done before Minard? Examples: • Late 1700's: Mathematical and chemical graphs begin to appear. 1 • William Playfair's 1801:(Chart of the National Debt of England). { This line graph shows the increases and decreases of England's national debt from 1699 to 1800.
    [Show full text]
  • Charles Joseph Minard: Mapping Napoleon's March, 1861
    UC Santa Barbara CSISS Classics Title Charles Joseph Minard, Mapping Napoleon's March, 1861. CSISS Classics Permalink https://escholarship.org/uc/item/4qj8h064 Author Corbett, John Publication Date 2001 eScholarship.org Powered by the California Digital Library University of California CSISS Classics - Charles Joseph Minard: Mapping Napoleon's March, 1861 Charles Joseph Minard: Mapping Napoleon's March, 1861 By John Corbett Background "It may well be the best statistical graphic ever drawn." Charles Joseph Minard's 1861 thematic map of Napoleon's ill-fated march on Moscow was thus described by Edward Tufte in his acclaimed 1983 book, The Visual Display of Quantitative Information. Of all the attempts to convey the futility of Napoleon's attempt to invade Russia and the utter destruction of his Grande Armee in the last months of 1812, no written work or painting presents such a compelling picture as does Minard's graphic. Charles Joseph Minard's Napoleon map, along with several dozen others that he published during his lifetime, set the standard for excellence in graphically depicting flows of people and goods in space, yet his role in the development of modern thematic mapping techniques is all too often overlooked. Minard was born in Dijon in 1781, and quickly gained a reputation as one of the leading French canal and harbor engineers of his time. In 1810, he was one of the first engineers to empty water trapped by cofferdams using relatively new steam-powered technology. In 1830 Minard began a long association with the prestigious École des Ponts et Chatussées, first as superintendent, and later as a professor and inspector.
    [Show full text]