The Named-State Register File
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hardware Realization of an FPGA Processor – Operating System Call Offload and Experiences
Downloaded from orbit.dtu.dk on: Oct 02, 2021 Hardware Realization of an FPGA Processor – Operating System Call Offload and Experiences Hindborg, Andreas Erik; Schleuniger, Pascal; Jensen, Nicklas Bo; Karlsson, Sven Published in: Proceedings of the 2014 Conference on Design and Architectures for Signal and Image Processing (DASIP) Publication date: 2014 Link back to DTU Orbit Citation (APA): Hindborg, A. E., Schleuniger, P., Jensen, N. B., & Karlsson, S. (2014). Hardware Realization of an FPGA Processor – Operating System Call Offload and Experiences. In A. Morawiec, & J. Hinderscheit (Eds.), Proceedings of the 2014 Conference on Design and Architectures for Signal and Image Processing (DASIP) IEEE. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Hardware Realization of an FPGA Processor – Operating System Call Offload and Experiences Andreas Erik Hindborg, Pascal Schleuniger Nicklas Bo Jensen, Sven Karlsson DTU Compute – Technical University of Denmark fahin,pass,nboa,[email protected] Abstract—Field-programmable gate arrays, FPGAs, are at- speedup of up to 64% over a Xilinx MicroBlaze based baseline tractive implementation platforms for low-volume signal and system. -
Computer Organization and Architecture Designing for Performance Ninth Edition
COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America. -
Introduction to the Intel® Nios® II Soft Processor
Introduction to the Intel® Nios® II Soft Processor For Quartus® Prime 18.1 1 Introduction This tutorial presents an introduction the Intel® Nios® II processor, which is a soft processor that can be instantiated on an Intel FPGA device. It describes the basic architecture of Nios II and its instruction set. The Nios II processor and its associated memory and peripheral components are easily instantiated by using Intel’s SOPC Builder or Platform Designer tool in conjunction with the Quartus® Prime software. A full description of the Nios II processor is provided in the Nios II Processor Reference Handbook, which is available in the literature section of the Intel web site. Introductions to the SOPC Builder and Platform Designer tools are given in the tutorials Introduction to the Intel SOPC Builder and Introduction to the Intel Platform Designer Tool, respectively. Both can be found in the University Program section of the web site. Contents: • Nios II System • Overview of Nios II Processor Features • Register Structure • Accessing Memory and I/O Devices • Addressing • Instruction Set • Assembler Directives • Example Program • Exception Processing • Cache Memory • Tightly Coupled Memory Intel Corporation - FPGA University Program 1 March 2019 ® ® INTRODUCTION TO THE INTEL NIOS II SOFT PROCESSOR For Quartus® Prime 18.1 2 Background Intel’s Nios II is a soft processor, defined in a hardware description language, which can be implemented in Intel’s FPGA devices by using the Quartus Prime CAD system. This tutorial provides a basic introduction to the Nios II processor, intended for a user who wishes to implement a Nios II based system on an Intel Development and Education board. -
Computer Organization & Architecture Eie
COMPUTER ORGANIZATION & ARCHITECTURE EIE 411 Course Lecturer: Engr Banji Adedayo. Reg COREN. The characteristics of different computers vary considerably from category to category. Computers for data processing activities have different features than those with scientific features. Even computers configured within the same application area have variations in design. Computer architecture is the science of integrating those components to achieve a level of functionality and performance. It is logical organization or designs of the hardware that make up the computer system. The internal organization of a digital system is defined by the sequence of micro operations it performs on the data stored in its registers. The internal structure of a MICRO-PROCESSOR is called its architecture and includes the number lay out and functionality of registers, memory cell, decoders, controllers and clocks. HISTORY OF COMPUTER HARDWARE The first use of the word ‘Computer’ was recorded in 1613, referring to a person who carried out calculation or computation. A brief History: Computer as we all know 2day had its beginning with 19th century English Mathematics Professor named Chales Babage. He designed the analytical engine and it was this design that the basic frame work of the computer of today are based on. 1st Generation 1937-1946 The first electronic digital computer was built by Dr John V. Atanasoff & Berry Cliford (ABC). In 1943 an electronic computer named colossus was built for military. 1946 – The first general purpose digital computer- the Electronic Numerical Integrator and computer (ENIAC) was built. This computer weighed 30 tons and had 18,000 vacuum tubes which were used for processing. -
A Modular Soft Processor Core in VHDL
A Modular Soft Processor Core in VHDL Jack Whitham 2002-2003 This is a Third Year project submitted for the degree of MEng in the Department of Computer Science at the University of York. The project will attempt to demonstrate that a modular soft processor core can be designed and implemented on an FPGA, and that the core can be optimised to run a particular embedded application using a minimal amount of FPGA space. The word count of this project (as counted by the Unix wc command after detex was run on the LaTeX source) is 33647 words. This includes all text in the main report and Appendices A, B and C. Excluding source code, the project is 70 pages in length. i Contents I. Introduction 1 1. Background and Literature 1 1.1. Soft Processor Cores . 1 1.2. A Field Programmable Gate Array . 1 1.3. VHSIC Hardware Definition Language (VHDL) . 2 1.4. The Motorola 68020 . 2 II. High-level Project Decisions 3 2. Should the design be based on an existing one? 3 3. Which processor should the soft core be based upon? 3 4. Which processor should be chosen? 3 5. Restating the aims of the project in terms of the chosen processor 4 III. Modular Processor Design Decisions 4 6. Processor Design 4 6.1. Alternatives to a complete processor implementation . 4 6.2. A real processor . 5 6.3. Instruction Decoder and Control Logic . 5 6.4. Arithmetic and Logic Unit (ALU) . 7 6.5. Register File . 7 6.6. Links between Components . -
Assignment Solutions
Week 1: Assignment Solutions 1. Which of the following statements are true? a. The ENIAC computer was built using mechanical relays. b. Harvard Mark1 computer was built using mechanical relays. c. PASCALINE computer could multiply and divide numbers by repeated addition and subtraction. d. Charles Babbage built his automatic computing engine in 19th century. Solution: ((b) and (c)) ENIAC was built using vacuum tubes. Charles Babbage designed his automatic computing engine but could not built it. 2. Which of the following statements are true for Moore’s law? a. Moore’s law predicts that power dissipation will double every 18 months. b. Moore’s law predicts that the number of transistors per chip will double every 18 months. c. Moore’s law predicts that the speed of VLSI circuits will double every 18 months. d. None of the above. Solution: (b) Moore’s law only predicts that number of transistors per chip will double every 18 months. 3. Which of the following generates the necessary signals required to execute an instruction in a computer? a. Arithmetic and Logic Unit b. Memory Unit c. Control Unit d. Input/Output Unit Solution: (c) Control unit acts as the nerve center of a computer and generates the necessary control signals required to execute an instruction. 4. An instruction ADD R1, A is stored at memory location 4004H. R1 is a processor register and A is a memory location with address 400CH. Each instruction is 32-bit long. What will be the values of PC, IR and MAR during execution of the instruction? a. -
Bringing Virtualization to the X86 Architecture with the Original Vmware Workstation
12 Bringing Virtualization to the x86 Architecture with the Original VMware Workstation EDOUARD BUGNION, Stanford University SCOTT DEVINE, VMware Inc. MENDEL ROSENBLUM, Stanford University JEREMY SUGERMAN, Talaria Technologies, Inc. EDWARD Y. WANG, Cumulus Networks, Inc. This article describes the historical context, technical challenges, and main implementation techniques used by VMware Workstation to bring virtualization to the x86 architecture in 1999. Although virtual machine monitors (VMMs) had been around for decades, they were traditionally designed as part of monolithic, single-vendor architectures with explicit support for virtualization. In contrast, the x86 architecture lacked virtualization support, and the industry around it had disaggregated into an ecosystem, with different ven- dors controlling the computers, CPUs, peripherals, operating systems, and applications, none of them asking for virtualization. We chose to build our solution independently of these vendors. As a result, VMware Workstation had to deal with new challenges associated with (i) the lack of virtual- ization support in the x86 architecture, (ii) the daunting complexity of the architecture itself, (iii) the need to support a broad combination of peripherals, and (iv) the need to offer a simple user experience within existing environments. These new challenges led us to a novel combination of well-known virtualization techniques, techniques from other domains, and new techniques. VMware Workstation combined a hosted architecture with a VMM. The hosted architecture enabled a simple user experience and offered broad hardware compatibility. Rather than exposing I/O diversity to the virtual machines, VMware Workstation also relied on software emulation of I/O devices. The VMM combined a trap-and-emulate direct execution engine with a system-level dynamic binary translator to ef- ficiently virtualize the x86 architecture and support most commodity operating systems. -
Register Are Used to Quickly Accept, Store, and Transfer Data And
Register are used to quickly accept, store, and transfer data and instructions that are being used immediately by the CPU, there are various types of Registers those are used for various purpose. Among of the some Mostly used Registers named as AC or Accumulator, Data Register or DR, the AR or Address Register, program counter (PC), Memory Data Register (MDR) ,Index register,Memory Buffer Register. These Registers are used for performing the various Operations. While we are working on the System then these Registers are used by the CPU for Performing the Operations. When We Gives Some Input to the System then the Input will be Stored into the Registers and When the System will gives us the Results after Processing then the Result will also be from the Registers. So that they are used by the CPU for Processing the Data which is given by the User. Registers Perform:- 1) Fetch: The Fetch Operation is used for taking the instructions those are given by the user and the Instructions those are stored into the Main Memory will be fetch by using Registers. 2) Decode: The Decode Operation is used for interpreting the Instructions means the Instructions are decoded means the CPU will find out which Operation is to be performed on the Instructions. 3) Execute: The Execute Operation is performed by the CPU. And Results those are produced by the CPU are then Stored into the Memory and after that they are displayed on the user Screen. Types of Registers are as Followings 1. MAR stand for Memory Address Register This register holds the memory addresses of data and instructions. -
Static Fault Attack on Hardware DES Registers
Static Fault Attack on Hardware DES Registers Philippe Loubet-Moundi, Francis Olivier, and David Vigilant Gemalto, Security Labs, France {philippe.loubet-moundi,david.vigilant,francis.olivier}@gemalto.com http://www.gemalto.com Abstract. In the late nineties, Eli Biham and Adi Shamir published the first paper on Differential Fault Analysis on symmetric key algorithms. More specifically they introduced a fault model where a key bit located in non-volatile memory is forced to 0=1 with a fault injection. In their scenario the fault was permanent, and could lead the attacker to full key recovery with low complexity. In this paper, another fault model is considered: forcing a key bit to 0=1 in the register of a hardware block implementing Data Encryption Stan- dard. Due to the specific location of the fault, the key modification is not permanent in the life of the embedded device, and this leads to apply a powerful safe-error like attack. This paper reports a practical validation of the fault model on two actual circuits, and discusses limitations and efficient countermeasures against this threat. Keywords: Hardware DES, fault attacks, safe-error, register attacks 1 Introduction Fault attacks against embedded systems exploit the disturbed execution of a given program to infer sensitive data, or to execute unauthorized parts of this program. Usually a distinction is made between permanent faults and transient faults.A permanent fault alters the behavior of the device from the moment it is injected, and even if the device is powered off [8]. On the other hand, a transient fault has an effect limited in time, only a few cycles of the process are affected. -
Validating Register Allocation and Spilling
Validating Register Allocation and Spilling Silvain Rideau1 and Xavier Leroy2 1 Ecole´ Normale Sup´erieure,45 rue d'Ulm, 75005 Paris, France [email protected] 2 INRIA Paris-Rocquencourt, BP 105, 78153 Le Chesnay, France [email protected] Abstract. Following the translation validation approach to high- assurance compilation, we describe a new algorithm for validating a posteriori the results of a run of register allocation. The algorithm is based on backward dataflow inference of equations between variables, registers and stack locations, and can cope with sophisticated forms of spilling and live range splitting, as well as many architectural irregular- ities such as overlapping registers. The soundness of the algorithm was mechanically proved using the Coq proof assistant. 1 Introduction To generate fast and compact machine code, it is crucial to make effective use of the limited number of registers provided by hardware architectures. Register allocation and its accompanying code transformations (spilling, reloading, coa- lescing, live range splitting, rematerialization, etc) therefore play a prominent role in optimizing compilers. As in the case of any advanced compiler pass, mistakes sometimes happen in the design or implementation of register allocators, possibly causing incorrect machine code to be generated from a correct source program. Such compiler- introduced bugs are uncommon but especially difficult to exhibit and track down. In the context of safety-critical software, they can also invalidate all the safety guarantees obtained by formal verification of the source code, which is a growing concern in the formal methods world. There exist two major approaches to rule out incorrect compilations. Com- piler verification proves, once and for all, the correctness of a compiler or compi- lation pass, preferably using mechanical assistance (proof assistants) to conduct the proof. -
V810 Familytm 32-Bit Microprocessor
V810 FAMILYTM 32-BIT MICROPROCESSOR ARCHITECTURE V805TM V810TM V820TM V821TM Document No. U10082EJ1V0UM00 (1st edition) Date Published October 1995P © 11995 Printed in Japan NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti- static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. -
A Bibliography of Publications in IEEE Micro
A Bibliography of Publications in IEEE Micro Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 16 September 2021 Version 2.108 Title word cross-reference -Core [MAT+18]. -Cubes [YW94]. -D [ASX19, BWMS19, DDG+19, Joh19c, PZB+19, ZSS+19]. -nm [ABG+16, KBN16, TKI+14]. #1 [Kah93i]. 0.18-Micron [HBd+99]. 0.9-micron + [Ano02d]. 000-fps [KII09]. 000-Processor $1 [Ano17-58, Ano17-59]. 12 [MAT 18]. 16 + + [ABG+16]. 2 [DTH+95]. 21=2 [Ste00a]. 28 [BSP 17]. 024-Core [JJK 11]. [KBN16]. 3 [ASX19, Alt14e, Ano96o, + AOYS95, BWMS19, CMAS11, DDG+19, 1 [Ano98s, BH15, Bre10, PFC 02a, Ste02a, + + Ste14a]. 1-GHz [Ano98s]. 1-terabits DFG 13, Joh19c, LXB07, LX10, MKT 13, + MAS+07, PMM15, PZB+19, SYW+14, [MIM 97]. 10 [Loc03]. 10-Gigabit SCSR93, VPV12, WLF+08, ZSS+19]. 60 [Gad07, HcF04]. 100 [TKI+14]. < [BMM15]. > [BMM15]. 2 [Kir84a, Pat84, PSW91, YSMH91, ZACM14]. [WHCK18]. 3 [KBW95]. II [BAH+05]. ∆ 100-Mops [PSW91]. 1000 [ES84]. 11- + [Lyl04]. 11/780 [Abr83]. 115 [JBF94]. [MKG 20]. k [Eng00j]. µ + [AT93, Dia95c, TS95]. N [YW94]. x 11FO4 [ASD 05]. 12 [And82a]. [DTB01, Dur96, SS05]. 12-DSP [Dur96]. 1284 [Dia94b]. 1284-1994 [Dia94b]. 13 * [CCD+82]. [KW02]. 1394 [SB00]. 1394-1955 [Dia96d]. 1 2 14 [WD03]. 15 [FD04]. 15-Billion-Dollar [KR19a].