Butyl Paraben)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multi-Scale Impact of Chronic Exposure to Environmental Concentrations Of
Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta Romain Colpaert, Pierre-Henri Villard, Laetitia de Jong, Marina Mambert, Karim Benbrahim, Joelle Abraldes, Claire Cerini, Valérie Pique, Maxime Robin, Xavier Moreau To cite this version: Romain Colpaert, Pierre-Henri Villard, Laetitia de Jong, Marina Mambert, Karim Benbrahim, et al.. Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta. Environmental Science and Pollution Research, Springer Verlag, 2020, 27 (33), pp.41052-41062. 10.1007/s11356-019-06859-4. hal-02451113 HAL Id: hal-02451113 https://hal-amu.archives-ouvertes.fr/hal-02451113 Submitted on 23 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multi-scale impact of chronic exposure to environmental concentrations of chlordecone in freshwater cnidarian, Hydra circumcincta. Romain COLPAERT1, Pierre-Henri VILLARD1, Laetitia DE JONG1, Marina MAMBERT1, Karim BENBRAHIM1, Joelle ABRALDES1, Claire CERINI2, Valérie PIQUE1, Maxime ROBIN1, Xavier MOREAU1 1 : Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France 2 : Aix Marseille Univ, Inserm U1263, C2VN, Marseille, France Corresponding author: email : [email protected] phone : +33-(0)4-91-83-56-38 Abstract Chlordecone (CLD) is an organochlorine pesticide widely used by the past to control pest insects in banana plantations in the French West Indies. -
Development and Validation of an HPLC-DAD Method for The
separations Article Development and Validation of an HPLC-DAD Method for the Simultaneous Extraction and Quantification of Bisphenol-A, 4-Hydroxybenzoic Acid, 4-Hydroxyacetophenone and Hydroquinone in Bacterial Cultures of Lactococcus lactis Angelos T. Rigopoulos 1, Victoria F. Samanidou 2 ID and Maria Touraki 1,* ID 1 Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece; [email protected] 2 Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-231-099-8292 Received: 8 January 2018; Accepted: 31 January 2018; Published: 6 February 2018 Abstract: Bisphenol-A, a synthetic organic compound with estrogen mimicking properties, may enter bloodstream through either dermal contact or ingestion. Probiotic bacterial uptake of bisphenol can play a major protective role against its adverse health effects. In this paper, a method for the quantification of BPA in bacterial cells of L. lactis and of BPA and its potential metabolites 4-hydroxybenzoic Acid, 4-hydroxyacetophenone and hydroquinone in the culture medium is described. Extraction of BPA from the cells was performed using methanol–H2O/TFA (0.08%) (5:1 v/v) followed by SPE. Culture medium was centrifuged and filtered through a 0.45 µm syringe filter. Analysis was conducted in a Nucleosil column, using a gradient of A (95:5 v/v H2O: ACN) and B (5:95 v/v H2O: ACN, containing TFA, pH 2), with a flow rate of 0.5 mL/min. -
Water Quality Testing Summary
WATER QUALITY TESTING SUMMARY A DETAILED REVIEW OF THE TEST RESULTS FOR THE DRINKING WATER PRODUCED BY THE CARY/APEX WATER TREATMENT FACILITY 2020 JOHN CONLEY (Senior Laboratory Analyst) has been employed by the Town of Cary at the Cary/Apex Water Treatment Facility Laboratory since September 2001. CARY/APEX WATER TREATMENT FACILITY 2020 WATER QUALITY TESTING SUMMARY We are pleased to present to you the Cary/ If you have any questions or concerns regarding this Apex Water Treatment Facility Test Result report, please contact Rachel Monschein, Water System Summary for 2020. This report is a snapshot of last Laboratory Supervisor, at (919) 362-5507. year’s water quality. The values contained in this report In order to ensure that tap water is safe to drink, EPA are based on single measurements or yearly averages depending on the contaminant. The Environmental prescribes regulations that limit the amount of certain Protection Agency and/or the State requires us to contaminants in water provided by public water systems. monitor for certain substances less than once per year Drinking water, including bottled water, may reasonably because the concentrations of these substances are not be expected to contain at least small amounts of some expected to vary significantly from year to year. Some of contaminants. The presence of contaminants does not the data, though representative of the water quality, is necessarily indicate the water poses a health risk. To obtain more than one year old. In these cases, the most recent more information about contaminants and potential data is included, along with the year in which the sample health effects, call the EPA’s Safe Drinking Water Hotline was taken. -
Urinary Paraben Concentrations and Ovarian Aging Among Women from a Fertility Center
Urinary Paraben Concentrations and Ovarian Aging among Women from a Fertility Center The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Smith, Kristen W., Irene Souter, Irene Dimitriadis, Shelley Ehrlich, Paige L. Williams, Antonia M. Calafat, and Russ Hauser. 2013. “Urinary Paraben Concentrations and Ovarian Aging among Women from a Fertility Center.” Environmental Health Perspectives 121 (11-12): 1299-1305. doi:10.1289/ehp.1205350. http://dx.doi.org/10.1289/ehp.1205350. Published Version doi:10.1289/ehp.1205350 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879222 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA All EHP content is accessible to individuals with disabilities. A fully accessible (Section 508–compliant) HTML version of this article is available at http://dx.doi.org/10.1289/ehp.1205350. Research Urinary Paraben Concentrations and Ovarian Aging among Women from a Fertility Center Kristen W. Smith,1 Irene Souter,2 Irene Dimitriadis,1,2 Shelley Ehrlich,1 Paige L. Williams,3 Antonia M. Calafat,4 and Russ Hauser1,2 1Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA; 2Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Harvard Medical School/Massachusetts General Hospital Fertility Center, Boston, Massachusetts, USA; 3Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA; 4National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA In 2008, the Cosmetic Ingredient Review BACKGROUND: Parabens are preservatives commonly used in personal care products, pharmaceuticals, Panel concluded that parabens used in cos- and foods. -
Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5]. -
Parabens Preservatives for Focused Protection
PARABENS Preservatives For Focused Protection Parabens are the most commonly used preservatives in personal care products. Parabens display a low irritation potential, have low toxicity levels, and are active against a wide spectrum of fungi and bacteria at low concentrations. They are stable and effective over a wide pH range, can withstand temperatures up to 100°C, and are biodegradable. Also, they are highly compatible with other compounds. When combining two or more Parabens, their antimicrobial performance is enhanced due to a synergistic effect. While this is not a complete listing of Paraben features, it is clear why they are such an effective preservative and so commonly used. MINIMUM INHIBITION CONCENTRATIONS (MIC) FOR PARABENS Microorganism Methyl Ethyl Propyl Butyl Aspergillus niger 600 300 300 200 Candida albicans 900 500 200 100 Pseudomonas aeruginosa 1600 1500 >900 - Bacillus cereus 1600 800 300 100 Burkholderia cepacia 600 350 200 200 Escherichia coli 1400 700 350 140 INCI CAS Staphylococcus epidermidis 2000 900 350 150 Methylparaben 99-76-3 Staphylococcus aureus 2000 1000 300 110 Ethylparaben 120-47-8 Propylparaben 94-13-3 All the Parabens have low aqueous solubility, but will dissolve in most systems Butylparaben 94-26-6 at temperatures above 60°C. When considering the solubility of Parabens, we recommend dissolving short-chained Parabens (such as Methylparaben) Appearance in the aqueous phase and longer-chained Parabens in the oil phase. If all the White, dry powder Parabens must be introduced to the water phase, pre-heating of the water is recommended. In the event that heating is undesirable, we recommend using Solubility Paraben sodium salts. -
01 Excipients Prelims 1..9
Ethylparaben 1 Nonproprietary Names BP: Ethyl Hydroxybenzoate SEM 1: Excipient: ethylparaben; magnification: 600Â. JP: Ethyl Parahydroxybenzoate PhEur: Ethyl Parahydroxybenzoate E USP-NF: Ethylparaben 2 Synonyms Aethylum hydrobenzoicum; CoSept E; E214; ethylis parahydroxy- benzoas; ethyl p-hydroxybenzoate; Ethyl parasept; 4-hydroxyben- zoic acid ethyl ester; Nipagin A; Solbrol A; Tegosept E; Uniphen P- 23. 3 Chemical Name and CAS Registry Number Ethyl-4-hydroxybenzoate [120-47-8] 4 Empirical Formula and Molecular Weight C9H10O3 166.18 5 Structural Formula SEM 2: Excipient: ethylparaben; magnification: 3000Â. 6 Functional Category Antimicrobial preservative. 7 Applications in Pharmaceutical Formulation or Technology Ethylparaben is widely used as an antimicrobial preservative in cosmetics,(1) food products, and pharmaceutical formulations. It may be used either alone or in combination with other paraben esters or with other antimicrobial agents. In cosmetics it is one of the most frequently used preservatives. The parabens are effective over a wide pH range and have a broad spectrum of antimicrobial activity, although they are most effective against yeasts and molds; see Section 10. Owing to the poor solubility of the parabens, paraben salts, particularly the sodium salt, are frequently used. However, this may cause the pH of poorly buffered formulations to become more alkaline. See Methylparaben for further information. 8 Description Ethylparaben occurs as a white, odorless or almost odorless, active against yeasts and molds than against bacteria. They crystalline powder. are also more active against Gram-positive than against Gram-negative bacteria. 9 Pharmacopeial Specifications The activity of the parabens increases with increasing chain See Table I. See also Section 18. length of the alkyl moiety, but solubility decreases. -
Studies on the Effects of Paraben Mixtures on MCF-7 Breast Cancer
Studies on the Effects of Paraben Mixtures on MCF-7 Breast Cancer Cells in Culture A thesis submitted in partial fulfilment of the requirements for the Degree of Masters of Science in Biochemistry In the Department of Chemistry At the University of Canterbury New Zealand By Kristie Webber University of Canterbury 2013 Table of Contents Acknowledgements .............................................................................................................................. i Abstract ............................................................................................................................................... ii Abbreviations ..................................................................................................................................... iii List of figures and tables .................................................................................................................... iv 1 Introduction ......................................................................................................................................... 1 1.1 Hormones and the endocrine system ........................................................................................... 2 1.2 Estrogens ....................................................................................................................................... 5 1.2.1 What are estrogens? .............................................................................................................. 5 1.2.2 17β-Estradiol ......................................................................................................................... -
Science of the Total Environment 445–446 (2013) 299–305
Science of the Total Environment 445–446 (2013) 299–305 Contents lists available at SciVerse ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007–2008 Erika S. Koeppe, Kelly K. Ferguson, Justin A. Colacino, John D. Meeker ⁎ Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States HIGHLIGHTS ► Triclosan and parabens are widely used in the US and elsewhere. ► Biomarkers of exposure were examined in relation to serum thyroid hormone levels. ► In adults, we observed inverse associations between parabens and thyroid hormones. ► In adolescents, we observed positive associations between triclosan and total T3. ► Future research is necessary to confirm findings and explore clinical relevance. article info abstract Article history: Triclosan and parabens are broad spectrum antimicrobials used in a range of consumer products. In vitro and Received 28 September 2012 animal studies have suggested the potential for these compounds to disrupt thyroid function, though studies Received in revised form 17 December 2012 in humans have been limited. The objective of the study was to assess the relationship of urinary concentra- Accepted 17 December 2012 tions of triclosan and parabens with serum thyroid measures in a large, representative sample of the US pop- Available online 20 January 2013 ulation. We conducted an exploratory, cross-sectional analysis of data on urinary biomarkers of triclosan and paraben exposure and serum thyroid measures obtained from 1831 subjects (ages≥12 years) as part of the Keywords: – Biomarkers 2007 2008 National Health and Nutrition Examination Survey (NHANES). -
Annex Vi List of Preservatives Which Cosmetic Products May Contain
Annex VI – Part 1 – List of preservatives allowed for use in cosmetic products ANNEX VI LIST OF PRESERVATIVES WHICH COSMETIC PRODUCTS MAY CONTAIN Preamble 1. Preservatives are substances which may be added to cosmetic products for the primary purpose of inhibiting the development of micro- organisms in such products. 2. The substances marked with the symbol (+) may also be added to cosmetic products in concentration other than those laid down in this ANNEX for other purposes apparent from the presentation of the products, e.g. as deodorants in soaps or as anti-dandruff agents in shampoos. 3. Other substances used in the formulation of cosmetic products may also have anti-microbial properties and thus help in the preservation of the products, as, for instance, many essential oils and some alcohols. These substances are not included in the ANNEX. 4. For the purposes of this list - “Salts” is taken to mean: salts of the cations sodium, potassium, calcium, magnesium, ammonium, and ethanolamines; salts of the anions chloride, bromide, sulphate, acetate. - “Esters” is taken to mean: esters of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, phenyl. 5. All finished products containing formaldehyde or substances in this ANNEX and which release formaldehyde must be labelled with the warning “contains formaldehyde” where the concentration of formaldehyde in the finished product exceeds 0.05%. Version No.: 2016-05 17th November 2016 Annex VI – Part 1 – List of preservatives allowed for use in cosmetic products ANNEX VI – PART 1 LIST OF PRESERVATIVES ALLOWED Reference Substance Maximum authorized Limitations and Conditions of use and Number concentration requirements warnings which must be printed on the label a b c d e 1 Benzoic acid (CAS No. -
Interference of Paraben Compounds with Estrogen Metabolism by Inhibition of 17Β-Hydroxysteroid Dehydrogenases
International Journal of Molecular Sciences Article Interference of Paraben Compounds with Estrogen Metabolism by Inhibition of 17β-Hydroxysteroid Dehydrogenases Roger T. Engeli 1, Simona R. Rohrer 1, Anna Vuorinen 1, Sonja Herdlinger 2, Teresa Kaserer 2, Susanne Leugger 1, Daniela Schuster 2,* and Alex Odermatt 1,* ID 1 Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; [email protected] (R.T.E.); [email protected] (S.R.R.); [email protected] (A.V.); [email protected] (S.L.) 2 Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; [email protected] (S.H.); [email protected] (T.K.) * Correspondence: [email protected] (D.S.); [email protected] (A.O.); Tel.: +43-512-507-58253 (D.S.); +41-61-207-1530 (A.O.) Received: 20 July 2017; Accepted: 14 September 2017; Published: 19 September 2017 Abstract: Parabens are effective preservatives widely used in cosmetic products and processed food, with high human exposure. Recent evidence suggests that parabens exert estrogenic effects. This work investigated the potential interference of parabens with the estrogen-activating enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) 1 and the estrogen-inactivating 17β-HSD2. A ligand-based 17β-HSD2 pharmacophore model was applied to screen a cosmetic chemicals database, followed by in vitro testing of selected paraben compounds for inhibition of 17β-HSD1 and 17β-HSD2 activities. All tested parabens and paraben-like compounds, except their common metabolite p-hydroxybenzoic acid, inhibited 17β-HSD2. -
Toxicity Study of Bisphenol A, Nonylphenol, and Genistein in Rats
linica f C l To o x l ic a o n r l o u g o Yamasaki and Ishii, J Clinic Toxicol 2012, 2:7 y J Journal of Clinical Toxicology DOI: 10.4172/2161-0495.1000e109 ISSN: 2161-0495 EditorialResearch Article OpenOpen Access Access Toxicity Study of Bisphenol A, Nonylphenol, and Genistein in Rats Neonatally Exposed to Low Doses Kanji Yamasaki*, and Satoko Ishii Chemicals Evaluation and Research Institute, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan Due to reports that a considerable number of compounds may on PND 1 [10]. The investigators suggested that greater ER binding of have endocrine-disrupting activity in humans and animals, the estrogen occurs in the postnatal female reproductive tracts than in the Organization for Economic Co-operation and Development (OECD) prenatal reproductive tract and some placental barrier activity of BPA revised the original OECD Test Guideline No. 407 assay and introduced may be caused by the greater binding of estrogenic compounds to ERs in vivo screening tests in 2008 to detect endocrine-mediated effects. in the postnatal period. These suggestions demonstrate that neonatal These effects are one of the important parameters in assessing the exposure studies are useful means to detect the endocrine-mediated risk assessment of chemicals in the REACH program. Recently, risk effects of some estrogenic compounds. We therefore used the neonatal assessments of Bisphenol A (BPA) have conducted [1,2], and several exposure assay to test weakly estrogenic compounds. countries such as Canada, Denmark and France have adopted a The uterotrophic property of BPA, nonylphenol, and genistein was national ban on baby bottles made from polycarbonate plastic [3].