Eugene Paul Wigner
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering. -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
Decoherence and the Transition from Quantum to Classical—Revisited
Decoherence and the Transition from Quantum to Classical—Revisited Wojciech H. Zurek This paper has a somewhat unusual origin and, as a consequence, an unusual structure. It is built on the principle embraced by families who outgrow their dwellings and decide to add a few rooms to their existing structures instead of start- ing from scratch. These additions usually “show,” but the whole can still be quite pleasing to the eye, combining the old and the new in a functional way. What follows is such a “remodeling” of the paper I wrote a dozen years ago for Physics Today (1991). The old text (with some modifications) is interwoven with the new text, but the additions are set off in boxes throughout this article and serve as a commentary on new developments as they relate to the original. The references appear together at the end. In 1991, the study of decoherence was still a rather new subject, but already at that time, I had developed a feeling that most implications about the system’s “immersion” in the environment had been discovered in the preceding 10 years, so a review was in order. While writing it, I had, however, come to suspect that the small gaps in the landscape of the border territory between the quantum and the classical were actually not that small after all and that they presented excellent opportunities for further advances. Indeed, I am surprised and gratified by how much the field has evolved over the last decade. The role of decoherence was recognized by a wide spectrum of practic- 86 Los Alamos Science Number 27 2002 ing physicists as well as, beyond physics proper, by material scientists and philosophers. -
UC San Diego UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title The new prophet : Harold C. Urey, scientist, atheist, and defender of religion Permalink https://escholarship.org/uc/item/3j80v92j Author Shindell, Matthew Benjamin Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The New Prophet: Harold C. Urey, Scientist, Atheist, and Defender of Religion A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Matthew Benjamin Shindell Committee in charge: Professor Naomi Oreskes, Chair Professor Robert Edelman Professor Martha Lampland Professor Charles Thorpe Professor Robert Westman 2011 Copyright Matthew Benjamin Shindell, 2011 All rights reserved. The Dissertation of Matthew Benjamin Shindell is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ ___________________________________________________________________ Chair University of California, San Diego 2011 iii TABLE OF CONTENTS Signature Page……………………………………………………………………...... iii Table of Contents……………………………………………………………………. iv Acknowledgements…………………………………………………………………. -
April 2002 NEWS Volume 11, No
April 2002 NEWS Volume 11, No. 4 A Publication of The American Physical Society http://www.aps.org/apsnews Executive Board Expresses Concern Over Funding Imbalance In Bush Administration’s FY2003 Budget Request When President Bush unveiled outside of the scientific community tire research budget of the National for physical science remains es- his FY 2003 budget request for have expressed concern at the im- Science Foundation, in keeping sentially flat, the APS Executive The Executive Board of the R&D in February, no one was sur- balance of research funding with the president’s campaign bud- Board approved a resolution re- American Physical Society ap- prised at the emphasis on priorities in favor of the biological get to double the NIH budget by garding the FY2003 budget plauds the proposed increased antiterrorist, and on homeland sciences. 2003. request at its meeting on Febru- for the NIH and for life sciences and economic security in the wake For example, the National Insti- Noting that while funding for ary 23, 2002. The full text of the generally in the FY2003 Bud- of the September 11th attacks. How- tutes of Health would receive a $3.9 biological and medical research Executive Board statement is con- get Request submitted by President Bush on February 4, ever, many both within and billion increase, larger than the en- continues to increase, funding tained in the box at the right. 2002. However, the Board ex- presses great concern about Task Force to Weigh Pros the requested budgetary lev- Outlook on FY 2003 Budget Bills els for research in the physi- cal sciences. -
EUGENE PAUL WIGNER November 17, 1902–January 1, 1995
NATIONAL ACADEMY OF SCIENCES E U G ENE PAUL WI G NER 1902—1995 A Biographical Memoir by FR E D E R I C K S E I T Z , E RICH V OG T , A N D AL V I N M. W E I NBER G Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1998 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of Atoms for Peace Awards, Inc. EUGENE PAUL WIGNER November 17, 1902–January 1, 1995 BY FREDERICK SEITZ, ERICH VOGT, AND ALVIN M. WEINBERG UGENE WIGNER WAS A towering leader of modern physics Efor more than half of the twentieth century. While his greatest renown was associated with the introduction of sym- metry theory to quantum physics and chemistry, for which he was awarded the Nobel Prize in physics for 1963, his scientific work encompassed an astonishing breadth of sci- ence, perhaps unparalleled during his time. In preparing this memoir, we have the impression we are attempting to record the monumental achievements of half a dozen scientists. There is the Wigner who demonstrated that symmetry principles are of great importance in quan- tum mechanics; who pioneered the application of quantum mechanics in the fields of chemical kinetics and the theory of solids; who was the first nuclear engineer; who formu- lated many of the most basic ideas in nuclear physics and nuclear chemistry; who was the prophet of quantum chaos; who served as a mathematician and philosopher of science; and the Wigner who was the supervisor and mentor of more than forty Ph.D. -
Mothers of Invention: Women in Technology
Mothers of Invention: Women in Technology n old adage counsels, “Maternity Rideout (AZT), M. Katherine Holloway and is a matter of fact… paternity is Chen Zhao (protease inhibitors), and Diane a matter of opinion.” And indeed, Pennica (tissue plasminogen activator).2 Awhen it comes to people, the evidence of By 1998, women accounted for 10.3 who physically bears the child is visible and percent of all U.S.–origin patents granted undeniable. With the gestation of ideas, annually. Innovation professionals believe this however, lineage is less clear. percentage will continue to increase. A recent The evidence for women’s role in survey of one thousand U.S. researchers technology has been obscured historically. yielded the names of twenty U.S. scientists Only two percent of the fi ve hundred Nobel under the age of forty who have demonstrated Prize Laureates recognized for scientifi c once-in-a-generation insight. Nine of them— achievement are women. As recently as the almost half—are women.3 Jennifer A. Kurtz early 1980s, U.S. Patent and Trademark Offi ce records show that only 2.8 percent of patents Research Fellow, Indiana went to women each year. This participation Business Research Center, rate did not differ much from the 1 percent or Women must Kelley School of Business, so of patents that went to women in the period increasingly pursue Indiana University from 1790 to 1895.1 Young women have had relatively few role science and models to encourage their pursuit of scientifi c and technological adventures. That pattern has technology to ensure begun to change as women are increasingly that the future needs present in all dimensions of the innovation life cycle: knowledge creation, technology transfer, for a skilled U.S. -
Adobe Acrobat PDF Document
BIOGRAPHICAL SKETCH of HUGH EVERETT, III. Eugene Shikhovtsev ul. Dzerjinskogo 11-16, Kostroma, 156005, Russia [email protected] ©2003 Eugene B. Shikhovtsev and Kenneth W. Ford. All rights reserved. Sources used for this biographical sketch include papers of Hugh Everett, III stored in the Niels Bohr Library of the American Institute of Physics; Graduate Alumni Files in Seeley G. Mudd Manuscript Library, Princeton University; personal correspondence of the author; and information found on the Internet. The author is deeply indebted to Kenneth Ford for great assistance in polishing (often rewriting!) the English and for valuable editorial remarks and additions. If you want to get an interesting perspective do not think of Hugh as a traditional 20th century physicist but more of a Renaissance man with interests and skills in many different areas. He was smart and lots of things interested him and he brought the same general conceptual methodology to solve them. The subject matter was not so important as the solution ideas. Donald Reisler [1] Someone once noted that Hugh Everett should have been declared a “national resource,” and given all the time and resources he needed to develop new theories. Joseph George Caldwell [1a] This material may be freely used for personal or educational purposes provided acknowledgement is given to Eugene B. Shikhovtsev, author ([email protected]), and Kenneth W. Ford, editor ([email protected]). To request permission for other uses, contact the author or editor. CONTENTS 1 Family and Childhood Einstein letter (1943) Catholic University of America in Washington (1950-1953). Chemical engineering. Princeton University (1953-1956). -
WOMEN in STEM WORD SEARCH Learn About Women Scientists Who Broke MARY JACKSON Boundaries and Made Important Discoveries Credit: NASA
WOMEN IN STEM WORD SEARCH Learn about women scientists who broke MARY JACKSON boundaries and made important discoveries Credit: NASA V WANGARIMAATHAIMEQNW QAWAZSXEDCFRVGHAITIA XMLONOSKCAJYRAMRRPLL ZAPELNMTIOPYBNMYUIKK ORBINJANEGOODALLCRNC NYDBATRKJLXDTOCEEAAO IGOAQSIDFYOWRNBAICRT KONGHJMNOQPEVAMKRHFN GLNZXCAVALNLLUQEAEDI DDABNMEWETRLYXKYMLNL OASPOIJUIIEFERLDSCIC HRTAZWEESKXRAEQTSALC YOREYAMTREPPEOGAIRAM HSIWEEIXRYATYSUJMSSA TSCESOSRAHYNMPHIKOOR OAKIDSOATGPMOERKINRA RVLFAPNRNRTUYOUYOUQB OWAERTEYMDGUOFXBCVOR DENXOBIVANDANASHIVAA MMDYLADDRANYAMEIRAMB Answer key on page 4 Alice Ball Mae Jemison Rachel Carson Barbara McClintock Marie Curie Rosalind Franklin Bertha Parker Marie Maynard Daly Tu Youyou Donna Strickland Maria Goeppert Mayer Valentina Tereshkova Dorothy Hodgkin Mary Golda Ross Vandana Shiva Jane Goodall Mary Jackson Wangari Maathai An agency of the Lise Meitner Mary Leakey Government of Ontario WOMEN IN STEM WORD SEARCH Learn about women scientists who broke MAE JEMISON boundaries and made important discoveries Credit: NASA 1. Marie Curie (1867-1934) Polish-born French physicist and chemist. She was the first woman to be awarded a Nobel Prize (Physics), in 1903, for her research on X-rays and radioactivity, and the first person to be awarded a second Nobel Prize (Chemistry), in 1911, for her discovery of the elements polonium and radium. 2. Lise Meitner (1878-1968) Austrian-born nuclear physicist. Her research led to the discovery of uranium fission, for which only her male colleague, Otto Hahn, was awarded the Nobel Prize in 1945. 1n 1997, an element was named meitnerium (Mt) in her honour. 3. Alice Ball (1892-1916) Black American chemist. She developed the first effective treatment for leprosy, later known as the Ball Method, which was widely used for over thirty years until the introduction of sulfone drugs. 4. Maria Goeppert Mayer (1906-1972) German-born American mathematician and physicist. -
Annotated Bibliography: Women in Physics, Astronomy, and Related Disciplines
Annotated Bibliography: Women in Physics, Astronomy, and Related Disciplines Abir Am, Pnina and Dorinda Outram, eds. Uneasy Careers and Intimate Lives: Women in Science, 1787-1979. New Brunswick, NJ: Rutgers University Press, 1987. Abir Am and Outram’s volume includes a collection of essays about women in science that highlight the intersection of personal and professional spheres. All of the articles argue that the careers of women scientists are influenced by their family lives and that their family lives are impacted because of their scientific careers. This text is significant in two ways: first, it is one of the earliest examples of scholarship that moves beyond the recovering women in science, but placing them in the context of their home and work environments. Second, it suggests that historians of science can no longer ignore the private lives of their historical subjects. This volume contains four articles relating to women in physics and astronomy: Marilyn Bailey Ogilvie’s “Marital Collaboration: An Approach to Science” (pages 104-125), Sally Gregory Kohlstedt’s “Maria Mitchell and the Advancement of Women in Science” (pages 129-146), Helena M. Pycior’s “Marie Curie’s ‘Anti-Natural Path’: Time Only for Science and Family” (pages 191-215), and Peggy Kidwell’s “Cecelia Payne-Gaposchkin: Astronomy in the Family” (pages 216-238). As a unit, the articles would constitute and interesting lesson on personal and professional influences. Individually, the articles could be incorporated into lessons on a single scientist, offering a new perspective on their activities at work and at home. It complements Pycior, Slack, and Abir Am’s Creative Couples in the Sciences and Lykknes, Opitz, and Van Tiggelen’s For Better of For Worse: Collaborative Couples in the Sciences, which also look at the intersection of the personal and professional. -
Maria Goeppert Mayer Papers
http://oac.cdlib.org/findaid/ark:/13030/tf4489p06g No online items Maria Goeppert Mayer Papers Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2015 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html Maria Goeppert Mayer Papers MSS 0020 1 Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: Maria Goeppert Mayer Papers Identifier/Call Number: MSS 0020 Physical Description: 7.5 Linear feet(15 archives boxes, 1 flat box and 1 map case folder) Date (inclusive): 1906-1996 (bulk 1930-1972) Abstract: Papers of Maria Goeppert Mayer, Nobel Prize winning physicist and professor at the University of California, 1960-1964. The collection includes correspondence, biographical information, reprints, manuscript drafts, notebooks, teaching materials, subject files, news clippings and photographs. Scope and Content of Collection Papers of Maria Goeppert Mayer, Nobel Prize winning physicist and professor at the University of California, 1960-1964. The collection includes correspondence, biographical information, reprints, manuscript drafts, notebooks, teaching materials, subject files, news clippings and photographs. Accessions Processed in 1988: Mayer's papers contain a relative abundance of correspondence and her research notebooks. There are scant manuscript materials related to her numerous publications. Arranged in seven series: 1) CORRESPONDENCE, 2) REPRINTS, WRITINGS, AND LECTURES, 3) RESEARCH NOTEBOOKS AND CLASS LECTURES, 4) TEACHING MATERIALS, 5) BIOGRAPHICAL MATERIALS, 6) NEWSPAPER CLIPPINGS and 7) SUBJECT MATERIALS. Accession Processed in 1997 Arranged in two series: 8) PHOTOGRAPHS and 9) AWARDS, CERTIFICATES AND DIPLOMAS. Accession Processed in 2015 Arranged in four series: 10) BIOGRAPHICAL MATERIALS, 11) CORRESPONDENCE, 12) WRITINGS BY MAYER and 13) PHOTOGRAPHS. -
Atti E Memorie Dell’Ateneo Di Treviso
ATTI E MEMORIE DELL’ATENEO DI TREVISO nuova serie, numero 23 anno accademico 2005/06 Hanno contribuito all’attività dell’Ateneo di Treviso nell’anno accademico 2005-06: Ministero dei Beni Culturali e Ambientali Regione Veneto Comune di Treviso Fondazione Cassamarca - Treviso ISSN 1120-9305 © 2007 Ateneo di Treviso Palazzo dell’Umanesimo Latino - Riviera Giuseppe Garibaldi 13 - 31100 Treviso Autoriz. Tribunale Treviso n. 654 del 17/7/1987 - Dir. resp. Antonio Chiades Cura editoriale e stampa: Grafiche Antiga - Cornuda (Treviso) - ottobre 2007 INDICE Giuliano Romano - La nuova fisica . p. 9 Luigi Pianca - La rapsodia poetica di Sainte-Anne-La-Palud, di Tristan Corbière, nella traduzione bretono dei Pardons . » 21 Sante Rossetto - “Il Gazzettino”, un giornale alla ricerca della sua identità . » 33 Maria Silvia Bassignano - Franco Sartori Tarvisianus (1922- 2004) . » 41 Nadia Andriolo - L’eisanghelia contro Licofrone . » 49 Filippo Boscolo - I farmacisti bresciani in età romana . » 55 Annarosa Masier - Marcus Licinius Crassus Frugi e il monu- mento di Segobriga. Nuove considerazioni . » 67 Armando Mammino - Attualità dell’ingegneria civile ed infra- strutturale nel ri-disegno del territorio globalizzato; le di - namiche storiche che alimentano la palingenesi delle terre abitate . » 77 Ferdy Hermes Barbon - I segni dei mercanti a Venezia nel fon- daco dei tedeschi . » 103 Giuliano Simionato - Influssi musicali della poesia pascoliana . » 123 Antonio Chiades - Il mondo negli occhi di lei. Un itinerario poetico fra luoghi confini e occasioni . » 135 Ciro Perusini - L’urbanistica nel Veneto nell’ultimo mezzo se- colo . » 149 Maurizio Gallucci - La qualità della vita nella terza età a Treviso, tipica città del Nord-Est d’Italia. Evidenze dello studio “Treviso longeva” .