VERDIER DUALITY 1. Introduction Let M Be a Smooth, Compact Oriented Manifold of Dimension N, and Let K Be a Field. Recall That T
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
K-THEORY of FUNCTION RINGS Theorem 7.3. If X Is A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 69 (1990) 33-50 33 North-Holland K-THEORY OF FUNCTION RINGS Thomas FISCHER Johannes Gutenberg-Universitit Mainz, Saarstrage 21, D-6500 Mainz, FRG Communicated by C.A. Weibel Received 15 December 1987 Revised 9 November 1989 The ring R of continuous functions on a compact topological space X with values in IR or 0Z is considered. It is shown that the algebraic K-theory of such rings with coefficients in iZ/kH, k any positive integer, agrees with the topological K-theory of the underlying space X with the same coefficient rings. The proof is based on the result that the map from R6 (R with discrete topology) to R (R with compact-open topology) induces a natural isomorphism between the homologies with coefficients in Z/kh of the classifying spaces of the respective infinite general linear groups. Some remarks on the situation with X not compact are added. 0. Introduction For a topological space X, let C(X, C) be the ring of continuous complex valued functions on X, C(X, IR) the ring of continuous real valued functions on X. KU*(X) is the topological complex K-theory of X, KO*(X) the topological real K-theory of X. The main goal of this paper is the following result: Theorem 7.3. If X is a compact space, k any positive integer, then there are natural isomorphisms: K,(C(X, C), Z/kZ) = KU-‘(X, Z’/kZ), K;(C(X, lR), Z/kZ) = KO -‘(X, UkZ) for all i 2 0. -
Cellular Sheaf Cohomology in Polymake Arxiv:1612.09526V1
Cellular sheaf cohomology in Polymake Lars Kastner, Kristin Shaw, Anna-Lena Winz July 9, 2018 Abstract This chapter provides a guide to our polymake extension cellularSheaves. We first define cellular sheaves on polyhedral complexes in Euclidean space, as well as cosheaves, and their (co)homologies. As motivation, we summarise some results from toric and tropical geometry linking cellular sheaf cohomologies to cohomologies of algebraic varieties. We then give an overview of the structure of the extension cellularSheaves for polymake. Finally, we illustrate the usage of the extension with examples from toric and tropical geometry. 1 Introduction n Given a polyhedral complex Π in R , a cellular sheaf (of vector spaces) on Π associates to every face of Π a vector space and to every face relation a map of the associated vector spaces (see Definition 2). Just as with usual sheaves, we can compute the cohomology of cellular sheaves (see Definition 5). The advantage is that cellular sheaf cohomology is the cohomology of a chain complex consisting of finite dimensional vector spaces (see Definition 3). Polyhedral complexes often arise in algebraic geometry. Moreover, in some cases, invariants of algebraic varieties can be recovered as cohomology of certain cellular sheaves on polyhedral complexes. Our two major classes of examples come from toric and tropical geometry and are presented in Section 2.2. We refer the reader to [9] for a guide to toric geometry and polytopes. For an introduction to tropical geometry see [4], [20]. The main motivation for this polymake extension was to implement tropical homology, as introduced by Itenberg, Katzarkov, Mikhalkin, and Zharkov in [15]. -
Derived Functors for Hom and Tensor Product: the Wrong Way to Do It
Derived Functors for Hom and Tensor Product: The Wrong Way to do It UROP+ Final Paper, Summer 2018 Kevin Beuchot Mentor: Gurbir Dhillon Problem Proposed by: Gurbir Dhillon August 31, 2018 Abstract In this paper we study the properties of the wrong derived functors LHom and R ⊗. We will prove identities that relate these functors to the classical Ext and Tor. R With these results we will also prove that the functors LHom and ⊗ form an adjoint pair. Finally we will give some explicit examples of these functors using spectral sequences that relate them to Ext and Tor, and also show some vanishing theorems over some rings. 1 1 Introduction In this paper we will discuss derived functors. Derived functors have been used in homo- logical algebra as a tool to understand the lack of exactness of some important functors; two important examples are the derived functors of the functors Hom and Tensor Prod- uct (⊗). Their well known derived functors, whose cohomology groups are Ext and Tor, are their right and left derived functors respectively. In this paper we will work in the category R-mod of a commutative ring R (although most results are also true for non-commutative rings). In this category there are differ- ent ways to think of these derived functors. We will mainly focus in two interpretations. First, there is a way to concretely construct the groups that make a derived functor as a (co)homology. To do this we need to work in a category that has enough injectives or projectives, R-mod has both. -
Sheaves and Homotopy Theory
SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case. -
Perverse Sheaves
Perverse Sheaves Bhargav Bhatt Fall 2015 1 September 8, 2015 The goal of this class is to introduce perverse sheaves, and how to work with it; plus some applications. Background For more background, see Kleiman's paper entitled \The development/history of intersection homology theory". On manifolds, the idea is that you can intersect cycles via Poincar´eduality|we want to be able to do this on singular spces, not just manifolds. Deligne figured out how to compute intersection homology via sheaf cohomology, and does not use anything about cycles|only pullbacks and truncations of complexes of sheaves. In any derived category you can do this|even in characteristic p. The basic summary is that we define an abelian subcategory that lives inside the derived category of constructible sheaves, which we call the category of perverse sheaves. We want to get to what is called the decomposition theorem. Outline of Course 1. Derived categories, t-structures 2. Six Functors 3. Perverse sheaves—definition, some properties 4. Statement of decomposition theorem|\yoga of weights" 5. Application 1: Beilinson, et al., \there are enough perverse sheaves", they generate the derived category of constructible sheaves 6. Application 2: Radon transforms. Use to understand monodromy of hyperplane sections. 7. Some geometric ideas to prove the decomposition theorem. If you want to understand everything in the course you need a lot of background. We will assume Hartshorne- level algebraic geometry. We also need constructible sheaves|look at Sheaves in Topology. Problem sets will be given, but not collected; will be on the webpage. There are more references than BBD; they will be online. -
81151635.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 158 (2011) 2103–2110 Contents lists available at ScienceDirect Topology and its Applications www.elsevier.com/locate/topol The higher derived functors of the primitive element functor of quasitoric manifolds ∗ David Allen a, , Jose La Luz b a Department of Mathematics, Iona College, New Rochelle, NY 10801, United States b Department of Mathematics, University of Puerto Rico in Bayamón, Industrial Minillas 170 Car 174, Bayamón 00959-1919, Puerto Rico article info abstract Article history: Let P be an n-dimensional, q 1 neighborly simple convex polytope and let M2n(λ) be the Received 15 June 2011 corresponding quasitoric manifold. The manifold depends on a particular map of lattices Accepted 20 June 2011 λ : Zm → Zn where m is the number of facets of P. In this note we use ESP-sequences in the sense of Larry Smith to show that the higher derived functors of the primitive element MSC: functor are independent of λ. Coupling this with results that appear in Bousfield (1970) primary 14M25 secondary 57N65 [3] we are able to enrich the library of nice homology coalgebras by showing that certain families of quasitoric manifolds are nice, at least rationally, from Bousfield’s perspective. © Keywords: 2011 Elsevier B.V. All rights reserved. Quasitoric manifolds Toric topology Higher homotopy groups Unstable homotopy theory Toric spaces Higher derived functors of the primitive element functor Nice homology coalgebras Torus actions Cosimplicial objects 1. Introduction Given an n-dimensional q 1 neighborly simple convex polytope P , there is a family of quasitoric manifolds M that sit over P . -
Curves, Surfaces, and Abelian Varieties
Curves, Surfaces, and Abelian Varieties Donu Arapura April 27, 2017 Contents 1 Basic curve theory2 1.1 Hyperelliptic curves.........................2 1.2 Topological genus...........................4 1.3 Degree of the canonical divisor...................6 1.4 Line bundles.............................7 1.5 Serre duality............................. 10 1.6 Harmonic forms............................ 13 1.7 Riemann-Roch............................ 16 1.8 Genus 3 curves............................ 18 1.9 Automorphic forms.......................... 20 2 Divisors on a surface 22 2.1 Bezout's theorem........................... 22 2.2 Divisors................................ 23 2.3 Intersection Pairing.......................... 24 2.4 Adjunction formula.......................... 27 2.5 Riemann-Roch............................ 29 2.6 Blow ups and Castelnuovo's theorem................ 31 3 Abelian varieties 34 3.1 Elliptic curves............................. 34 3.2 Abelian varieties and theta functions................ 36 3.3 Jacobians............................... 39 3.4 More on polarizations........................ 41 4 Elliptic Surfaces 44 4.1 Fibered surfaces........................... 44 4.2 Ruled surfaces............................ 45 4.3 Elliptic surfaces: examples...................... 46 4.4 Singular fibres............................. 48 4.5 The Shioda-Tate formula...................... 51 1 Chapter 1 Basic curve theory 1.1 Hyperelliptic curves As all of us learn in calculus, integrals involving square roots of quadratic poly- nomials can be evaluated by elementary methods. For higher degree polynomi- als, this is no longer true, and this was a subject of intense study in the 19th century. An integral of the form Z p(x) dx (1.1) pf(x) is called elliptic if f(x) is a polynomial of degree 3 or 4, and hyperelliptic if f has higher degree, say d. It was Riemann who introduced the geometric point of view, that we should really be looking at the algebraic curve Xo defined by y2 = f(x) 2 Qd in C . -
The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017)
The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017) Richard Hughes May 12, 2017 1 Preliminaries on derived functors. 1.1 A computational definition of right derived functors. We begin by recalling that a functor between abelian categories F : A!B is called left exact if it takes short exact sequences (SES) in A 0 ! A ! B ! C ! 0 to exact sequences 0 ! FA ! FB ! FC in B. If in fact F takes SES in A to SES in B, we say that F is exact. Question. Can we measure the \failure of exactness" of a left exact functor? The answer to such an obviously leading question is, of course, yes: the right derived functors RpF , which we will define below, are in a precise sense the unique extension of F to an exact functor. Recall that an object I 2 A is called injective if the functor op HomA(−;I): A ! Ab is exact. An injective resolution of A 2 A is a quasi-isomorphism in Ch(A) A ! I• = (I0 ! I1 ! I2 !··· ) where all of the Ii are injective, and where we think of A as a complex concentrated in degree zero. If every A 2 A embeds into some injective object, we say that A has enough injectives { in this situation it is a theorem that every object admits an injective resolution. So, for A 2 A choose an injective resolution A ! I• and define the pth right derived functor of F applied to A by RpF (A) := Hp(F (I•)): Remark • You might worry about whether or not this depends upon our choice of injective resolution for A { it does not, up to canonical isomorphism. -
Lecture 3. Resolutions and Derived Functors (GL)
Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring. -
Arithmetic Duality Theorems
Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126 -
Duality, Part 1: Dual Bases and Dual Maps Notation
Duality, part 1: Dual Bases and Dual Maps Notation F denotes either R or C. V and W denote vector spaces over F. Define ': R3 ! R by '(x; y; z) = 4x − 5y + 2z. Then ' is a linear functional on R3. n n Fix (b1;:::; bn) 2 C . Define ': C ! C by '(z1;:::; zn) = b1z1 + ··· + bnzn: Then ' is a linear functional on Cn. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. Then ' is a linear functional on P(R). Examples: Linear Functionals Definition: linear functional A linear functional on V is a linear map from V to F. In other words, a linear functional is an element of L(V; F). n n Fix (b1;:::; bn) 2 C . Define ': C ! C by '(z1;:::; zn) = b1z1 + ··· + bnzn: Then ' is a linear functional on Cn. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. Then ' is a linear functional on P(R). Linear Functionals Definition: linear functional A linear functional on V is a linear map from V to F. In other words, a linear functional is an element of L(V; F). Examples: Define ': R3 ! R by '(x; y; z) = 4x − 5y + 2z. Then ' is a linear functional on R3. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. -
Orientations for DT Invariants on Quasi-Projective Calabi-Yau 4-Folds
Orientations for DT invariants on quasi-projective Calabi{Yau 4-folds Arkadij Bojko∗ Abstract For a Calabi{Yau 4-fold (X; !), where X is quasi-projective and ! is a nowhere vanishing section of its canonical bundle KX , the (derived) moduli stack of compactly supported perfect complexes MX is −2-shifted symplectic and thus has an orientation ! bundle O !MX in the sense of Borisov{Joyce [11] necessary for defining Donaldson{ Thomas type invariants of X. We extend first the orientability result of Cao{Gross{ Joyce [15] to projective spin 4-folds. Then for any smooth projective compactification Y , such that D = Y nX is strictly normal crossing, we define orientation bundles on the stack MY ×MD MY and express these as pullbacks of Z2-bundles in gauge theory, constructed using positive Dirac operators on the double of X. As a result, we relate the ! orientation bundle O !MX to a gauge-theoretic orientation on the classifying space of compactly supported K-theory. Using orientability of the latter, we obtain orientability of MX . We also prove orientability of moduli spaces of stable pairs and Hilbert schemes of proper subschemes. Finally, we consider the compatibility of orientations under direct sums. 1 Introduction 1.1 Background and results Donaldson-Thomas type theory for Calabi{Yau 4-folds has been developed by Borisov{ Joyce [11], Cao{Leung [22] and Oh{Thomas [73] . The construction relies on having Serre duality Ext2(E•;E•) =∼ Ext2(E•;E•)∗ : for a perfect complex E•. This gives a real structure on Ext2(E•;E•), and one can take 2 • • its real subspace Ext (E ;E )R.