Different Oviposition Strategies of Closely Related Damselfly Species
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
1 June 2021 Researchgate: Researchgate.Net/Profile
DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication. -
Tesis Doctoral Esther Soler Mo
Facultat de Ciències Biològiques Institut Cavanilles de Biodiversitat i Biologia Evolutiva Programa de Doctorado de Biodiversidad y Biología Evolutiva ESTRUCTURA DE COMUNIDADES DE ODONATA EN SISTEMAS MEDITERRÁNEOS Tesis Doctoral Esther Soler Monzó Directores: Marcos Méndez Iglesias Joaquín Baixeras Almela Valencia, 2015 Marcos Méndez Iglesias, Profesor Titular de Universidad del Departamento de Biología y Geología de la Universidad Rey Juan Carlos, y Joaquín Baixeras Almela, Profesor Titular de Universidad del Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia CERTIFICAN: que el trabajo de investigación desarrollado en la memoria de tesis doctoral: “Estructura de comunidades de Odonata en sistemas mediterráneos”, es apto para ser presentado por Esther Soler Monzó ante el Tribunal que en su día se consigne, para aspirar al Grado de Doctor por la Universidad de Valencia. VºBº Director Tesis VºBº Director Tesis Dr. Marcos Méndez Iglesias Dr. Joaquín Baixeras Almela a Espe. Let the rain come down and wash away my tears Let it fill my soul and drown my tears Let it shatter the walls for a new sun A new day has come A new day has come. CÉLINE DION ποταμοῖς τοῖς αὐτοῖς ἐμβαίνομεν τε καὶ οὐκ ἐμβαίνομεν, εἶμεν τε καὶ οὐκ εἶμεν τε. En los mismos ríos entramos y no entramos, [pues] somos y no somos [los mismos]. HERÁCLITO, en Diels-Kranz, Die Fragmente Vorsokratiker, 22 B12. Agradecimientos Me ha costado mucho tiempo y esfuerzo llegar hasta aquí pero sin la ayuda de mucha gente no lo hubiese conseguido. Así que dedicarles un trocito de papel es lo mínimo que puedo hacer. -
IDF-Report 95 (2016)
IDF International Dragonfly Fund Report Journal of the International Dragonfly Fund 125 Dejan Kulijer, Iva Miljević & Jelena Jakovljev Contribution of the participants of 4th Balkan Odonatological Meeting to the knowledge of Odonata distribution in Bosnia and Herzegovina Published 26.04.2016 95 ISSN 14353393 The International Dragonfly Fund (IDF) is a scientific society founded in 1996 for the impro vement of odonatological knowledge and the protection of species. Internet: http://www.dragonflyfund.org/ This series intends to publish studies promoted by IDF and to facilitate costefficient and ra pid dissemination of odonatological data.. Editorial Work: Milen Marinov, Geert de Knijf & Martin Schorr Layout: Martin Schorr IDFhome page: Holger Hunger Indexed: Zoological Record, Thomson Reuters, UK Printing: Colour Connection GmbH, Frankfurt Impressum: Publisher: International Dragonfly Fund e.V., Schulstr. 7B, 54314 Zerf, Germany. Email: [email protected] Responsible editor: Martin Schorr Cover picture: Cordulegaster heros Photographer: Falk Petzold Published 26.04.2016 Contribution of the participants of 4th Balkan Odonatological Meeting to the knowledge of Odonata distribution in Bosnia and Herzegovina Dejan Kulijer1, Iva Miljević2 & Jelena Jakovljev3 1National Museum of Bosnia and Herzegovina, Zmaja od Bosne 3, 71000 Sarajevo, Bosnia and Herzegovina. Email: [email protected] 2Center for Environment, Cara Lazara 24, 78 000 Banja Luka, Bosnia and Herzegovina. Email: [email protected] 3Univesity of Natural Resources and Life Sciences, Baumgasse 58/19 1030 Vienna, Austria. Email: [email protected] Abstract As a result of increased interest in dragonflies and close cooperation between odo natologists on the Balkan Peninsula, the Balkan Odonatological Meeting (BOOM) has been established in 2011. -
Dragonflies and Damselflies in Your Garden
Natural England works for people, places and nature to conserve and enhance biodiversity, landscapes and wildlife in rural, urban, coastal and marine areas. Dragonflies and www.naturalengland.org.uk © Natural England 2007 damselflies in your garden ISBN 978-1-84754-015-7 Catalogue code NE21 Written by Caroline Daguet Designed by RR Donnelley Front cover photograph: A male southern hawker dragonfly. This species is the one most commonly seen in gardens. Steve Cham. www.naturalengland.org.uk Dragonflies and damselflies in your garden Dragonflies and damselflies are Modern dragonflies are tiny by amazing insects. They have a long comparison, but are still large and history and modern species are almost spectacular enough to capture the identical to ancestors that flew over attention of anyone walking along a prehistoric forests some 300 million river bank or enjoying a sunny years ago. Some of these ancient afternoon by the garden pond. dragonflies were giants, with This booklet will tell you about the wingspans of up to 70 cm. biology and life-cycles of dragonflies and damselflies, help you to identify some common species, and tell you how you can encourage these insects to visit your garden. Male common blue damselfly. Most damselflies hold their wings against their bodies when at rest. BDS Dragonflies and damselflies belong to Dragonflies the insect order known as Odonata, Dragonflies are usually larger than meaning ‘toothed jaws’. They are often damselflies. They are stronger fliers and referred to collectively as ‘dragonflies’, can often be found well away from but dragonflies and damselflies are two water. When at rest, they hold their distinct groups. -
The Impacts of Urbanisation on the Ecology and Evolution of Dragonflies and Damselflies (Insecta: Odonata)
The impacts of urbanisation on the ecology and evolution of dragonflies and damselflies (Insecta: Odonata) Giovanna de Jesús Villalobos Jiménez Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Ph.D.) The University of Leeds School of Biology September 2017 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 1 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G., Dunn, A.M. & Hassall, C., 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol, 113(1): 217–232. I was responsible for the collection and analysis of the data with advice from co- authors, and was solely responsible for the literature review, interpretation of the results, and for writing the manuscript. All co-authors provided comments on draft manuscripts. The work in Chapter 2 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G. & Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61(7): 1337–1346. I was responsible for the data analysis, interpretation of results, and for writing and structuring the manuscript. Data was provided by the British Dragonfly Society (BDS). The co-author provided advice on the data analysis, and also provided comments on draft manuscripts. -
The Phylogeny of the Zygopterous Dragonflies As Based on The
THE PHYLOGENY OF THE ZYGOPTEROUS DRAGON- FLIES AS BASED ON THE EVIDENCE OF THE PENES* CLARENCE HAMILTON KENNEDY, Ohio State University. This paper is merely the briefest outline of the writer's discoveries with regard to the inter-relationship of the major groups of the Zygoptera, a full account of which will appear in his thesis on the subject. Three papers1 by the writer discussing the value of this organ in classification of the Odonata have already been published. At the beginning, this study of the Zygoptera was viewed as an undertaking to define the various genera more exactly. The writer in no wise questioned the validity of the Selysian concep- tion that placed the Zygopterous subfamilies in series with the richly veined '' Calopterygines'' as primitive and the Pro- toneurinae as the latest and final reduction of venation. However, following Munz2 for the Agrioninae the writer was able to pick out here and there series of genera where the devel- opment was undoubtedly from a thinly veined wing to one richly veined, i. e., Megalagrion of Hawaii, the Argia series, Leptagrion, etc. These discoveries broke down the prejudice in the writer's mind for the irreversibility of evolution in the reduction of venation in the Odonata orders as a whole. Undoubt- ably in the Zygoptera many instances occur where a richly veined wing is merely the response to the necessity of greater wing area to support a larger body. As the study progressed the writer found almost invariably that generalized or connecting forms were usually sparsely veined as compared to their relatives. -
(Zygoptera: Lestidae) Reproductive Output
Odonalologica 38(1): 55-59 March I. 2009 SHORT COMMUNICATIONS Adult survival of Sympecma paedisca (Brauer) duringhibernation (Zygoptera: Lestidae) * R. Manger¹& N.J. Dingemanse² 'Stoepveldsingel 55,9403 SM Assen, The Netherlands; — [email protected] 2 Animal Ecology Group, Centre for Ecological and Evolutionary Studies & Department of Behavioural Biology, Behavioural and Cognitive Neurosciences, University of Groningen, PO Box 14,9750 AA Haren, The Netherlands; — [email protected] Received February 28, 2008 / Revised and Accepted August 4, 2008 The survival of hibernating adults was assessed in its winter habitat in the Neth- erlands to gain insight in the potential importance of this life-history phase for the populationdynamicsof this endangered sp. Compared to other odon., monthlysur- 2004 ± = ± vival rates (Dec. - March 2005) were high (mean SE 0.75 0.08),but overall winter survival was low (0.42). Potential causes of mortality duringhibernation are that effective of this in the discussed. The results imply protection sp. Netherlands of its and habitat. may benefit from protection both breeding wintering INTRODUCTION Changes in species distribution ultimately result from changes in survival and reproductive output (STEARNS, 1992). Our understanding of why species may become less abundantwill therefore in the more or critically depend upon insight key factors affecting these two major fitness components. Identificationof such key factors may greatly enhance our capability of effectively protecting endan- gered species. The aim of this in the factors af- general paper was to improve our insight key fecting the population dynamics of a rare and endangered Dutch odonate, the damselfly Sympecma paedisca. It is, together with S. -
Dragonf Lies and Damself Lies of Europe
Dragonf lies and Damself lies of Europe A scientific approach to the identification of European Odonata without capture A simple yet detailed guide suitable both for beginners and more expert readers who wish to improve their knowledge of the order Odonata. This book contains images and photographs of all the European species having a stable population, with chapters about their anatomy, biology, behaviour, distribution range and period of flight, plus basic information about the vagrants with only a few sightings reported. On the whole, 143 reported species and over lies of Europe lies and Damself Dragonf 600 photographs are included. Published by WBA Project Srl CARLO GALLIANI, ROBERTO SCHERINI, ALIDA PIGLIA © 2017 Verona - Italy WBA Books ISSN 1973-7815 ISBN 97888903323-6-4 Supporting Institutions CONTENTS Preface 5 © WBA Project - Verona (Italy) Odonates: an introduction to the order 6 WBA HANDBOOKS 7 Dragonflies and Damselflies of Europe Systematics 7 ISSN 1973-7815 Anatomy of Odonates 9 ISBN 97888903323-6-4 Biology 14 Editorial Board: Ludivina Barrientos-Lozano, Ciudad Victoria (Mexico), Achille Casale, Sassari Mating and oviposition 23 (Italy), Mauro Daccordi, Verona (Italy), Pier Mauro Giachino, Torino (Italy), Laura Guidolin, Oviposition 34 Padova (Italy), Roy Kleukers, Leiden (Holland), Bruno Massa, Palermo (Italy), Giovanni Onore, Quito (Ecuador), Giuseppe Bartolomeo Osella, l’Aquila (Italy), Stewart B. Peck, Ottawa (Cana- Predators and preys 41 da), Fidel Alejandro Roig, Mendoza (Argentina), Jose Maria Salgado Costas, Leon (Spain), Fabio Pathogens and parasites 45 Stoch, Roma (Italy), Mauro Tretiach, Trieste (Italy), Dante Vailati, Brescia (Italy). Dichromism, androchromy and secondary homochromy 47 Editor-in-chief: Pier Mauro Giachino Particular situations in the daily life of a dragonfly 48 Managing Editor: Gianfranco Caoduro Warming up the wings 50 Translation: Alida Piglia Text revision: Michael L. -
(Zygoptera: Lestidae) Autecology, Ecological
Odonalologica 13 (3): 461-466 September I, 1984 SHORT COMMUNICATIONS Food and time resource partitioningin two coexisting Lestes species (Zygoptera: Lestidae) G. Carchini and P. Nicolai Dipartimento di BiologiaAnimale e dell’Uomo, Università di Roma, Viale dell’Università 32, I-00185 Roma, Italy Received August 12, 1982 / Revised and Accepted January 28, 1983 Two coexisting populations of Lestes virens (Charp.) and L. barbarus (Fab.) at a studied in 1979 and 1980 temporary pond were to investigate a possible partitioning and Results show that larval of time food resources. larval diets are affected by size in both the the concludedthat species. Since life cycles of two species are displaced, it is such displacement facilitates coexistence by reducing food competition. INTRODUCTION Although many studies have been carried out to describe lestid autecology, little informationexists on the ecological relationships among coexisting species conditions. in natural This paper reports on investigations into resource partitioning between two coexisting Lestes species, i.e. L. virens (Charp.) and L. barbarus (Fab.). The fact that the live in a small two species are morphologically very similar, pond which contains water for only a short period, where no other Zygoptera exist and where there are fewer predators than in permanent habitats, would imply a remarkable overlap of respective niches. The fact that the two Lestes populations are abundant and well-established is, therefore, to be ascribed to mechanisms that make coexistence possible. On the basis ofworks by BENKE & BENKE (1975), JOHANNSSON (1978) and JOHNSON & CROWLEY (1980), these mechanisms are thought to consist of spatial, temporal and/or food resource partitioning. -
Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria
Historia naturalis bulgarica, 22: 45-71, 2015 Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria Zdravko Hubenov, Lyubomir Kenderov, Ivan Pandourski Abstract: The role of the Atanasovsko Lake for storage and protection of the specific faunistic diversity, characteristic of the hyper-saline lakes of the Bulgarian seaside is presented. The fauna of the lake and surrounding waters is reviewed, the taxonomic diversity and some zoogeographical and ecological features of the invertebrates are analyzed. The lake system includes from freshwater to hyper-saline basins with fast changing environment. A total of 6 types, 10 classes, 35 orders, 82 families and 157 species are known from the Atanasovsko Lake and the surrounding basins. They include 56 species (35.7%) marine and marine-brackish forms and 101 species (64.3%) brackish-freshwater, freshwater and terrestrial forms, connected with water. For the first time, 23 species in this study are established (12 marine, 1 brackish and 10 freshwater). The marine and marine- brackish species have 4 types of ranges – Cosmopolitan, Atlantic-Indian, Atlantic-Pacific and Atlantic. The Atlantic (66.1%) and Cosmopolitan (23.2%) ranges that include 80% of the species, predominate. Most of the fauna (over 60%) has an Atlantic-Mediterranean origin and represents an impoverished Atlantic-Mediterranean fauna. The freshwater-brackish, freshwater and terrestrial forms, connected with water, that have been established from the Atanasovsko Lake, have 2 main types of ranges – species, distributed in the Palaearctic and beyond it and species, distributed only in the Palaearctic. The representatives of the first type (52.4%) predomi- nate. They are related to the typical marine coastal habitats, optimal for the development of certain species. -
Draft Carpathian Red List of Forest Habitats
CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 1 227.8.20147.8.2014 222:36:052:36:05 © Štátna ochrana prírody Slovenskej republiky, 2014 Editor: Ján Kadlečík Available from: Štátna ochrana prírody SR Tajovského 28B 974 01 Banská Bystrica Slovakia ISBN 978-80-89310-81-4 Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 2 115.9.20145.9.2014 223:10:123:10:12 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) of the Carpathian Mountains . 186 Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 Draft Carpathian Red List of Fish and Lamprey Species . 203 Draft Carpathian Red List of Threatened Amphibians (Lissamphibia) . 209 Draft Carpathian Red List of Threatened Reptiles (Reptilia) . 214 Draft Carpathian Red List of Birds (Aves). 217 Draft Carpathian Red List of Threatened Mammals (Mammalia) . -
An Overview of Molecular Odonate Studies, and Our Evolutionary Understanding of Dragonfly and Damselfly (Insecta: Odonata) Behavior
International Journal of Odonatology Vol. 14, No. 2, June 2011, 137–147 Dragons fly, biologists classify: an overview of molecular odonate studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata) behavior Elizabeth F. Ballare* and Jessica L. Ware Department of Biological Sciences, Rutgers, The State University of New Jersey, 195 University Ave., Boyden Hall, Newark, NJ, 07102, USA (Received 18 November 2010; final version received 3 April 2011) Among insects, perhaps the most appreciated are those that are esthetically pleasing: few capture the interest of the public as much as vibrantly colored dragonflies and damselflies (Insecta: Odonata). These remarkable insects are also extensively studied. Here, we review the history of odonate systematics, with an emphasis on discrepancies among studies. Over the past century, relationships among Odonata have been reinterpreted many times, using a variety of data from wing vein morphology to DNA. Despite years of study, there has been little consensus about odonate taxonomy. In this review, we compare odonate molecular phylogenetic studies with respect to gene and model selection, optimality criterion, and dataset completeness. These differences are discussed in relation to the evolution of dragonfly behavior. Keywords: Odonata; mitochondrion; nuclear; phylogeny; systematic; dragonfly; damselfly Introduction Why study Odonata? The order Odonata comprises three suborders: Anisozygoptera, Anisoptera, and Zygoptera. There are approximately 6000 species of Odonata described worldwide (Ardila-Garcia & Gregory, 2009). Of the three suborders Anisoptera and Zygoptera are by far the most commonly observed and collected, because there are only two known species of Anisozygoptera under the genus Epiophlebia. All odonate nymphs are aquatic, with a few rare exceptions such as the semi-aquatic Pseudocordulia (Watson, 1983), and adults are usually found near freshwater ponds, marshes, rivers (von Ellenrieder, 2010), streams, and lakes (although some species occur in areas of mild salinity; Corbet, 1999).