Traumatic Brain Injury Manual, Volume

Total Page:16

File Type:pdf, Size:1020Kb

Traumatic Brain Injury Manual, Volume BRAIN INJURY ELECTRONIC RESOURCE MANUAL VOLUME I A: Traumatic Brain Injury Chrystyna Rakoczy, O.D. Committee Chair and Author Kara Gagnon O.D. Past Committee Chair and Author Maria Santullo Richman, O.D. VRS Chair and Committee Member Allen Cohen, O.D. Candice Elam, O.D. Author and committee Author member Brenda Heinke Mon- Michael Peterson, O.D. tecalvo, O.D. Author Author and committee member Matthew Rhodes, O.D. Mitchell Scheiman, O.D. Author Author and committee member ©2013 American Optometric Association. This manual was developed through the efforts of the AOA Vision Rehabilitation Section. Please acknowledge the VRS when quoting from this manual. Table of contents Preface 7 I. Introduction 9 II. Evaluation and Assessment A. Assumptions/Intent 15 B. Equipment list 16 C. Examination approach 17 1. Approach 2. Considerations for TBI patient/Tips for better evaluation 3. Pre-history observation D. TBI History 19 1. TBI narrative 2. Review of visual symptoms 3. Review of vestibular TBI symptoms E. Examination of afferent pathways 26 1. Acuity 2. Contrast sensitivity 3. Color 4. Amsler grid 5. Confrontation visual field 6. Photo stress test 7. Pupil testing and the near reflex F. Examination of efferent pathways 32 1. Lids 2 2. CN VII evaluation (distinguish between supra and infra nuclear) 3. CN V 1 evaluation 4. Ocular stability, position, binocular alignment, and motility: Free Space 5. Accommodation in Free Space 6. Sensory status 7. Retinoscopy/Refraction 8. Phorometry G. Examination of cortical visual function 48 1. Reflex blink to visual threat 2. OKN/ iPad Application 3. Neglect/Inattention testing 4. Agnosias: testing 5. Abnormal spatial sense H. Examination of vestibular function 56 1. Dynamic acuity 2. Oculocephalic maneuver 3. Gaze stabilization/VOR cancellation 4. Sharpened Romberg 5. Fakuda stepping test 6. Tandem gait I. Examination of visual processing and perceptual function 60 1. Chair-side optometric visual perceptual skill screening 2. Visual processing or perceptual skills and tests J. Ocular health examination/Ocular signs of TBI 67 1. Anterior segment 2. Posterior Segment 3 III. Review of Assessment and Diagnosis A. Assumptions/Intent 70 B. Refractive errors 71 C. Oculomotor and accommodative dysfunction 72 1. Eye movement disorders 2. Binocular disorders 3. Accommodative disorders D. Other visual disorders associated with TBI 79 1. Photosensitivity 2. Visual fields deficits 3. Cerebral disorders of vision 4. Illusions and hallucinations 5. Visual disorders associated with vestibular dysfunction IV. Inter-professional Team for the Brain Injured Population 93 V. Glossary 96 VI. Bibliography 112 VII. Appendices 124 A. TBI Vision Symptom Survey B. mTBI specific vision screening C. Glasgow Coma scale D. Rancho los Amigos scale 4 E. Gaze disturbance differential F. Piaget test G. Convergence Insufficiency Symptom Survey Disclaimer Recommendations made in this manual do not represent a standard of care. Instead, the recommendations are intended to assist the clinician in the decision‐making process. Patient care and treatment should always be based on a clinician’s independent professional judgment, given the individual’s circumstances, state laws and regulations. 5 Preface Traumatic brain injury (TBI) is a subsection of acquired brain injury (ABI). Volumes Ia and Ib cover visual dysfunction secondary only to trauma of the brain from external forces. Subsequent volumes planned will cover visual dysfunctions secondary to acquired brain injury due vasculopathic, mass-effect, infectious, inflammatory and neuro-degenerative diseases, and congenital brain malformations. The idea for the Brain Injury Electronic Resource Manual (BIERM) came about with the general population’s recent increased awareness of brain injury and associated visual dysfunctions. In 2007, much attention was brought to this matter when doctors at the Veterans Affairs (VA) Polytrauma Rehabilitation Center in Palo Alto, Calif., published two manuscripts, one titled “Eye and Visual Dysfunction in Traumatic Brain Injury” and the other titled “Visual Impairment and Dysfunction in Combat-Injured Sevicemembers with Traumatic Brain Injury.” These articles played a significant role in the implementation of a VA directive mandating every service member diagnosed with a TBI and treated at any VA Polytrauma Rehabilitation Center to have a very specific and detailed eye exam to rule out ocular trauma and visual dysfunction. The signature injury of the recent and current conflicts in the Middle East was and is TBI, resulting in a huge population base needing to be evaluated. The VA had to set and implement standards for examination and establish VA rehabilitation centers for management of these unique visual dysfunctions. At about the same time, the media brought to the attention of the general population the importance of identifying and managing TBI secondary to sports injuries. Boxing, football, soccer and any other contact sports were analyzed. Some athletes with concussive syndrome were followed for mild cognitive impairment or even neurodegenerative disease as a result of their head injury. Ocular motility dysfunction was noted to be a major sequela. Physical and occupational therapists, and optometrists (OD) had long noted visual dysfunction in their stroke patients. A 2008 “Scope of Practice” survey by the AOA found 85.5 percent of ODs saw one or more patients who suffered a neurological insult, a more than 7 percent increase over the previous year’s results. One-third of those ODs noted that most of the referrals came from occupational or physical therapists. Interprofessional referrals continued at the same rate in 2011. Patient examination by neuro-ophthalmologists recognized some of these dysfunctions but failed to support rehabilitation other than the use of prismatic glasses. For many patients, that was all that was needed. Others were left to cope with their visual dysfunctions. Enter optometry: with the unique ability to diagnose AND rehabilitate dysfunctions of the entire visual system. The Vision Rehabilitation Section (VRS) of the American Optometric Association (AOA) decided a resource manual was needed. Members to the committee for brain injury, vision assessment and rehabilitation were co-opted and work on the manual began. As work progressed, committee members realized the field of brain injury related visual dysfunction assessment and rehabilitation is very well established, but its evidence-based rehabilitative techniques and outcome measures were not readily available. “Evidence-based research” was coined in 1988 when the Journal of Clinical Epidemiology first promoted the concept of evidence-based medicine. The term “evidence-based medicine” evolved from that research and in 1996 was officially defined by the Institute of Medicine as “the conscientious and judicious use of current best evidence from clinical care research in the management of individual patients.” I stress “clinical care research.” As early as 1988, Optometry: Journal of the AOA published “The Efficacy of Optometric Vision Therapy,” which provided a comprehensive review of “evidence-based research” on all binocular dysfunctions – including oculomotor dysfunction. This was just the beginning of “evidence-based” research on rehabilitation of oculomotor dysfunction, common in the general population as well as the most common sequela of TBI. Much of the literature to date describes assessment and diagnosis, recognition and categorization of visual dysfunction. A 6 limiting component to all of this research is that patients with TBI often have multiple compounding issues including cognitive deficits and the use of multiple vision affective medications. Consistent with all professions involved with the management of patients with brain injury is the emergence of new or expanded definitions and terminology. Archaic terms are being replaced with newer, less confusing terms found to better describe clinical findings. Within the profession of optometry, “neuro-optometric rehabilitation,” also known as “Brain Injury Vision Assessment and Rehabilitation,” is an emerging sub-specialty. As rehabilitation professionals become more aware of this optometric service and its positive impact on the success of overall rehabilitation for the complex and undeserved TBI population, these terms will become more widely used and understood. In this consensus-based manual, every attempt is made to provide best practices. Some strategies are not verified by sound research, and they are so acknowledged. Some terms are less recognized than others and are noted along with their associated synonyms. All of this points to a discipline that indeed is still young and trying to find its footing to prove that it is sound. Even though research is difficult with this population base, evidenced-based research provides best care information and for the sake of our patients we must all do our part to promote evidence-based research in the area of visual rehabilitation and ultimately provide the best sound care available. Chrystyna Rakoczy, O.D. Chair, Brain Injury Committee Vision Rehabilitation Section American Optometric Association 7 SECTION 1: Introduction Mitchell Scheiman, OD Vision Problems Associated with Traumatic Brain Injury The treatment of vision disorders related to traumatic brain injury (TBI) is one of the more challenging aspects of optometric practice. Patients who survive TBI generally experience multiple problems, including physical, cognitive, behavioral, motor, and sensory anomalies1.
Recommended publications
  • Prevention of Traumatic Corneal Ulcer in South East Asia
    FROM OUR SOUTH ASIA EDITION Prevention of traumatic corneal ulcer in South East Asia S C AE Srinivasan/ (c)M Country Principal Investigator and Lead Principal Investigator with village health workers in Bhutan Dr. M. Srinivasan ciasis, and leprosy, are declining, and (VVHW) of the Government were utilized Director Emeritus, Aravind Eye Care, soon the majority of corneal blindness will to identify ocular injury and treat corneal Madurai, Tamil Nadu India. be due to microbial keratitis. Most abrasion corneal ulcers occur among agricultural Myanmar: Village Health Workers (VHW) workers in developing countries following of the health department Introduction corneal abrasion. India: paid village volunteers were utilized Corneal ulceration is a leading cause of Several non-randomized prevention visual impairment globally, with a dispro- studies conducted before 2000 Inclusion criteria 2 portionate burden in developing (Bhaktapur Eye Study) and during 2002 • Resident of study area countries. It was estimated that 6 million to 2004 in India, Myanmar, and Bhutan • Corneal abrasion after ocular injury, corneal ulcers occur annually in the ten by World Health Organization(WHO), have confirmed by clinical examination with countries of South East Asia Region suggested that antibiotic ointment fluorescein stain and a blue torch encompassing a total population of 1.6 applied promptly after a corneal abrasion • Reported within 48 hours of the injury billion.1 While antimicrobial treatment is could lower the incidence of ulcers, • Subject aged >5 years of age generally effective in treating infection, relative to neighbouring or historic “successful” treatment is often controls.3-4 Prevention of traumatic Exclusion criteria associated with a poor visual outcome.
    [Show full text]
  • Cp-Research-News-2014-06-23
    Monday 23 June 2014 Cerebral Palsy Alliance is delighted to bring you this free weekly bulletin of the latest published research into cerebral palsy. Our organisation is committed to supporting cerebral palsy research worldwide - through information, education, collaboration and funding. Find out more at www.cpresearch.org.au Professor Nadia Badawi Macquarie Group Foundation Chair of Cerebral Palsy PO Box 560, Darlinghurst, New South Wales 2010 Australia Subscribe at www.cpresearch.org/subscribe/researchnews Unsubscribe at www.cpresearch.org/unsubscribe Interventions and Management 1. Iran J Child Neurol. 2014 Spring;8(2):45-52. Associations between Manual Abilities, Gross Motor Function, Epilepsy, and Mental Capacity in Children with Cerebral Palsy. Gajewska E, Sobieska M, Samborski W. OBJECTIVE: This study aimed to evaluate gross motor function and hand function in children with cerebral palsy to explore their association with epilepsy and mental capacity. MATERIAL & METHODS: The research investigating the association between gross and fine motor function and the presence of epilepsy and/or mental impairment was conducted on a group of 83 children (45 girls, 38 boys). Among them, 41 were diagnosed with quadriplegia, 14 hemiplegia, 18 diplegia, 7 mixed form, and 3 athetosis. A neurologist assessed each child in terms of possible epilepsy and confirmed diagnosis in 35 children. A psychologist assessed the mental level (according to Wechsler) and found 13 children within intellectual norm, 3 children with mild mental impairment, 18 with moderate, 27 with severe, and 22 with profound. Children were then classified based on Gross Motor Function Classification System and Manual Ability Classification Scale. RESULTS: The gross motor function and manual performance were analysed in relation to mental impairment and the presence of epilepsy.
    [Show full text]
  • 12 Retina Gabriele K
    299 12 Retina Gabriele K. Lang and Gerhard K. Lang 12.1 Basic Knowledge The retina is the innermost of three successive layers of the globe. It comprises two parts: ❖ A photoreceptive part (pars optica retinae), comprising the first nine of the 10 layers listed below. ❖ A nonreceptive part (pars caeca retinae) forming the epithelium of the cil- iary body and iris. The pars optica retinae merges with the pars ceca retinae at the ora serrata. Embryology: The retina develops from a diverticulum of the forebrain (proen- cephalon). Optic vesicles develop which then invaginate to form a double- walled bowl, the optic cup. The outer wall becomes the pigment epithelium, and the inner wall later differentiates into the nine layers of the retina. The retina remains linked to the forebrain throughout life through a structure known as the retinohypothalamic tract. Thickness of the retina (Fig. 12.1) Layers of the retina: Moving inward along the path of incident light, the individual layers of the retina are as follows (Fig. 12.2): 1. Inner limiting membrane (glial cell fibers separating the retina from the vitreous body). 2. Layer of optic nerve fibers (axons of the third neuron). 3. Layer of ganglion cells (cell nuclei of the multipolar ganglion cells of the third neuron; “data acquisition system”). 4. Inner plexiform layer (synapses between the axons of the second neuron and dendrites of the third neuron). 5. Inner nuclear layer (cell nuclei of the bipolar nerve cells of the second neuron, horizontal cells, and amacrine cells). 6. Outer plexiform layer (synapses between the axons of the first neuron and dendrites of the second neuron).
    [Show full text]
  • Long Term Follow-Up of Limbal Transplantation for Unilateral Chemical Injuries: 1997-2014 Nikolaos S
    perim Ex en l & ta a l ic O Tsiklis et al., J Clin Exp Ophthalmol 2016, 7:6 p in l h t C h f Journal of Clinical & Experimental a o DOI: 10.4172/2155-9570.1000621 l m l a o n l o r g u y o J Ophthalmology ISSN: 2155-9570 ResearchResearch Article Article Open Access Long Term Follow-up of Limbal Transplantation for Unilateral Chemical Injuries: 1997-2014 Nikolaos S. Tsiklis1, Dimitrios S. Siganos2, Ahmed Lubbad3, Vassilios P. Kozobolis4 and Charalambos S. Siganos1,3* 1Department of Ophthalmology, Heraklion University Hospital, Greece 2Heraklion, Crete, Vlemma Eye Institute of Athens, Greece 3Laboratory of Vision and Optics, School of Medicine, University of Crete, Greece 4Eye Institute of Thrace, Democritus University, Alexandroupolis, Greece Abstract Purpose: To evaluate the long term results of limbal transplantation (LT) in patients with unilateral total limbal stem cell deficiency (LSCD) after chemical injury. Methods: The study includes 22 eyes of 22 consecutive patients (20 males and 2 females) who presented with total LSCD after unilateral chemical burns and underwent Limbal transplantation (LT) in the Cornea Service of the Depart- ment of Ophthalmology at the Heraklion University Hospital in Crete during the period from 1997 to 2014. All 22 cases underwent Conjunctival Limbal autogaft (CLAU) while in 14 surgeries it was combined with amniotic membrane trans- plantation (AMT). A second stage penetrating keratoplasty (PKP) was performed in 11 cases for visual rehabilitation. The healing time, the changes in VA and the stability of epithelial ocular surface integrity were looked for. Results: One case failed within 3 months of surgery, while the rest 21 eyes after CLAU maintained ocular surface epithelial integrity during the follow up period (7.8 ± 3.5 years), and showed improvement partially or totally in corneal neovascularization, symblepharon and ocular motility.
    [Show full text]
  • Differentiate Red Eye Disorders
    Introduction DIFFERENTIATE RED EYE DISORDERS • Needs immediate treatment • Needs treatment within a few days • Does not require treatment Introduction SUBJECTIVE EYE COMPLAINTS • Decreased vision • Pain • Redness Characterize the complaint through history and exam. Introduction TYPES OF RED EYE DISORDERS • Mechanical trauma • Chemical trauma • Inflammation/infection Introduction ETIOLOGIES OF RED EYE 1. Chemical injury 2. Angle-closure glaucoma 3. Ocular foreign body 4. Corneal abrasion 5. Uveitis 6. Conjunctivitis 7. Ocular surface disease 8. Subconjunctival hemorrhage Evaluation RED EYE: POSSIBLE CAUSES • Trauma • Chemicals • Infection • Allergy • Systemic conditions Evaluation RED EYE: CAUSE AND EFFECT Symptom Cause Itching Allergy Burning Lid disorders, dry eye Foreign body sensation Foreign body, corneal abrasion Localized lid tenderness Hordeolum, chalazion Evaluation RED EYE: CAUSE AND EFFECT (Continued) Symptom Cause Deep, intense pain Corneal abrasions, scleritis, iritis, acute glaucoma, sinusitis, etc. Photophobia Corneal abrasions, iritis, acute glaucoma Halo vision Corneal edema (acute glaucoma, uveitis) Evaluation Equipment needed to evaluate red eye Evaluation Refer red eye with vision loss to ophthalmologist for evaluation Evaluation RED EYE DISORDERS: AN ANATOMIC APPROACH • Face • Adnexa – Orbital area – Lids – Ocular movements • Globe – Conjunctiva, sclera – Anterior chamber (using slit lamp if possible) – Intraocular pressure Disorders of the Ocular Adnexa Disorders of the Ocular Adnexa Hordeolum Disorders of the Ocular
    [Show full text]
  • Localisation of Visual Hallucinations
    BRITISH MEDICAL JOURNAL 16 JULY 1977 147 of hypothermia; the duration of cardiac arrest; and the disturbances of sleep or consciousness.4 Hallucinations may be promptness and correctness of treatment. Peterson's pessi- evoked by sensory deprivation, but other factors are usually mistic report from California,8 in which all 15 near-drowned present; thus the "black-patch" delirium that may follow children who had fits, fixed dilated pupils, flaccidity, and loss cataract extraction in the elderly probably results from sensory Br Med J: first published as 10.1136/bmj.2.6080.147 on 16 July 1977. Downloaded from of pain sensation suffered severe anoxic encephalopathy, deprivation and mild senile brain changes and is more frequent may be explained by the high water temperatures there. In when hearing is also impaired.5 warm water the protective effect of hypothermia against brain Hallucinations may be due to focal lesions. Past experiences, damage would be missing. In contrast was the case described the quality of eidetic imagery, and psychodynamic "actors in Trondheim, Norway,9 in which a 5-year-old fell through influence the content of organic hallucinosis,6 and it would be ice in fresh water with an outside temperature of 10° below unwise to lean too heavily on the occurrence and nature of zero centigrade. He was in the water for 22 minutes and was hallucinosis in localising intracranial lesions. Visual hallucina- brought out apparently dead, with widely dilated pupils and tions are a relatively infrequent accompaniment oflesions ofthe bluish white skin. He was warmed up (the method was not calcarine cortex (Brodmann's area 17), which has few thalamo- described) and-despite the risks noted above-was given cortical connections; yet they may occur as a false-localising external cardiac massage without suffering ventricular symptom of frontal or subtentorial lesions.
    [Show full text]
  • Dystonia and Chorea in Acquired Systemic Disorders
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.65.4.436 on 1 October 1998. Downloaded from 436 J Neurol Neurosurg Psychiatry 1998;65:436–445 NEUROLOGY AND MEDICINE Dystonia and chorea in acquired systemic disorders Jina L Janavs, Michael J AminoV Dystonia and chorea are uncommon abnormal Associated neurotransmitter abnormalities in- movements which can be seen in a wide array clude deficient striatal GABA-ergic function of disorders. One quarter of dystonias and and striatal cholinergic interneuron activity, essentially all choreas are symptomatic or and dopaminergic hyperactivity in the nigros- secondary, the underlying cause being an iden- triatal pathway. Dystonia has been correlated tifiable neurodegenerative disorder, hereditary with lesions of the contralateral putamen, metabolic defect, or acquired systemic medical external globus pallidus, posterior and poste- disorder. Dystonia and chorea associated with rior lateral thalamus, red nucleus, or subtha- neurodegenerative or heritable metabolic dis- lamic nucleus, or a combination of these struc- orders have been reviewed frequently.1 Here we tures. The result is decreased activity in the review the underlying pathogenesis of chorea pathways from the medial pallidus to the and dystonia in acquired general medical ventral anterior and ventrolateral thalamus, disorders (table 1), and discuss diagnostic and and from the substantia nigra reticulata to the therapeutic approaches. The most common brainstem, culminating in cortical disinhibi- aetiologies are hypoxia-ischaemia and tion. Altered sensory input from the periphery 2–4 may also produce cortical motor overactivity medications. Infections and autoimmune 8 and metabolic disorders are less frequent and dystonia in some cases. To date, the causes. Not uncommonly, a given systemic dis- changes found in striatal neurotransmitter order may induce more than one type of dyski- concentrations in dystonia include an increase nesia by more than one mechanism.
    [Show full text]
  • Article • a Case Series in Optometric Management of Diverse Vertical
    Article • A Case Series in Optometric Management of Diverse Vertical Deviations Darah McDaniel-Chandler, OD • Southern College of Optometry Memphis, Tennessee ABSTRACT Background: Vertical deviations present in diverse patient populations with a multitude of puzzling symptoms and complaints. Many patients with vertical deviations have visited numerous doctors looking for an explanation for their symptoms of dizziness, headaches, motion sickness, and double vision. Vertical deviations may be apparent in the clinical optometric exam sequence, but at other times, additional testing must be performed to uncover a vertical heterophoria, including fixation disparity, vertical vergences, a period of diagnostic occlusion, or Maddox rod. Case Report: Three case reports are reviewed with diverse presentations of vertical deviations. The first case report outlines Patient A, a 51-year-old female who presented with dizziness along with a latent hyperphoria that was not apparent on the initial clinical examination. The second case report outlines Patient B, a 52-year-old female who presented with a longstanding large-angle vertical strabismus with strabismic amblyopia in the right eye. The third case report outlines Patient C, a 61-year-old female who presented with intermittent vertical diplopia following a cerebrovascular accident. The three cases all underwent vision therapy or vision therapy in combination with prismatic correction, and all three cases experienced symptom reduction following treatment with optometric vision rehabilitation. Conclusion:
    [Show full text]
  • CE Pediatric Headaches Monterey Handout
    9/9/13 Objectives Is it real? Is it their eyes? Describe types of headache found in the pediatric Evaluating children with headaches population including migraine, tension-type headaches, chronic daily headaches, sinus headaches and headaches that occur secondary to CNS pathology. Identify presenting symptoms associated with pediatric Rachel A. “Stacey” Coulter, OD, MS patients diagnosed with brain tumors. Dipl, Binocular Vision, Perception, and Compare pediatric to adult migraine. Pediatric Optometry Nova Southeastern University Types of pediatric headache Tension headache Characteristics Band-like sensation around head with neck or shoulder pain May last for days Continuous pain; occurs on palpation posterior neck muscles #1 cause of tension headache- stress Associated with school; straight A students at- risk Poor eating habits, lack of sleep, depression, bullying classmates, family problems Sinus headache Pediatric migraine Characteristics Characteristics Pulsating Throbbing HA worse in morning Bilateral or unilateral Pain varies with head position Moderate to severe in intensity May have referred pain With aura 14-30% of children Hx nasal discharge, congestion Reversible aura develops (4 minutes) Fever may be present lasts up to one hr pain 1 hr after aura • May be accompanied by vomiting or photophobia Lasts 1-48 hrs Aggravated by physical activity 1 9/9/13 Pediatric headache Secondary to CNS pathology Meningitis May follow on the heels of a flu-like illness Pathologies Hallmark sxs - Fever, headache
    [Show full text]
  • Traumatic Glaucoma Mimicking Primary Open Angle Glaucoma
    Traumatic glaucoma mimicking primary open angle glaucoma Xiaoming Duan ( [email protected] ) Research article Keywords: Traumatic glaucoma, Primary angle glaucoma, Trabecular pigmentation, Angle recession, Iridodialysis Posted Date: July 24th, 2019 DOI: https://doi.org/10.21203/rs.2.11863/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/9 Abstract Backgrounds To retrospectively analyze the clinical and ocular features in eyes with traumatic glaucoma misdiagnosed as primary open angle glaucoma (POAG). Methods We reviewed nineteen eyes with traumatic glaucoma misdiagnosed and collected their ocular and supplementary examination results. Results The outpatient age was 47.1±12.8 years old. The traumatic history was from 1 to 40 years. The history of hand or stone was present about 21.1% of patients, followed by balls (15.8%) and wooden stick (15.8%). The peak IOPs were 33.0±10.6mmHg. Iridodialysis was seen in 2 patients. Trabecular pigmentation grade more than 3 was noticed in 15 patients. Angle recession was found in all patients. No patient was found lens location and fundus damage. Conclusions Patients with long traumatic history, mild ocular signs and insidious symptoms were more likely to be misdiagnosed. It might be more prudent to diagnose as POAG while there was signicant difference in the condition of both eyes. Background Glaucoma is characterized by retinal ganglion cell degeneration, alterations in optic nerve head topography, and associated visual eld (VF) loss. It was known as a group of diseases, not a single disease. It was divided into many types, including in primary, secondary and developmental glaucoma.
    [Show full text]
  • Vet Oracle Teleneurology: Client Factsheet
    Client Factsheet Paroxysmal Dyskinesia Paroxysmal Dyskinesia: A little bit of background Paroxysmal dyskinesias (PDs) are episodic movement disorders in which abnormal movements are present only during attacks. Although increasingly being recognised, they are often poorly characterised in veterinary literature and are commonly mistaken for an epileptic seizure, both by owners and by vets. The term ‘paroxysmal’ indicates that the signs occur suddenly against a background of normality. The term ‘dyskinesia’ broadly refers to a movement of the body that is involuntary, which means that the animal has no control over the movement and remains fully aware of its surroundings. Between attacks, affected animals are totally normal and there is no loss of consciousness during the attacks, though some animals may find the episodes disconcerting and do not respond normally. The attacks can last anything from a few minutes to a couple of hours and can sometime occur multiple times in a day. What causes Paroxysmal Dyskinesia? Most neurologists consider that PD results from dysfunction an area of the brain called the basal nuclei (often call the basal ganglia) and the cerebellum which is a fundamental part of the brain that involves in coordinating movement. Nerve cells in the basal nuclei play an important role in initiating and controlling movement. It is thought that abnormal signal from the cerebellum causes abnormal activity of the basal nuclei, which results in spontaneous and uncontrolled muscle activity and, therefore, movement and posture. The underlying cause of many PDs is unknown, with the majority being described as idiopathic (meaning of unknown cause) and presumed to be related to abnormal brain signalling between different parts involved with movement or its feedback control.
    [Show full text]
  • G:\All Users\Sally\COVD Journal\COVD 37 #3\Maples
    Essay Treating the Trinity of Infantile Vision Development: Infantile Esotropia, Amblyopia, Anisometropia W.C. Maples,OD, FCOVD 1 Michele Bither, OD, FCOVD2 Southern College of Optometry,1 Northeastern State University College of Optometry2 ABSTRACT INTRODUCTION The optometric literature has begun to emphasize One of the most troublesome and long recognized pediatric vision and vision development with the advent groups of conditions facing the ophthalmic practitioner and prominence of the InfantSEE™ program and recently is that of esotropia, amblyopia, and high refractive published research articles on amblyopia, strabismus, error/anisometropia.1-7 The recent institution of the emmetropization and the development of refractive errors. InfantSEE™ program is highlighting the need for early There are three conditions with which clinicians should be vision examinations in order to diagnose and treat familiar. These three conditions include: esotropia, high amblyopia. Conditions that make up this trinity of refractive error/anisometropia and amblyopia. They are infantile vision development anomalies include: serious health and vision threats for the infant. It is fitting amblyopia, anisometropia (predominantly high that this trinity of early visual developmental conditions hyperopia in the amblyopic eye), and early onset, be addressed by optometric physicians specializing in constant strabismus, especially esotropia. The vision development. The treatment of these conditions is techniques we are proposing to treat infantile esotropia improving, but still leaves many children handicapped are also clinically linked to amblyopia and throughout life. The healing arts should always consider anisometropia. alternatives and improvements to what is presently The majority of this paper is devoted to the treatment considered the customary treatment for these conditions.
    [Show full text]