Cellular Respiration

Total Page:16

File Type:pdf, Size:1020Kb

Cellular Respiration Cellular Transportation & Respiration Passive Transport • A cell membrane is semiperamble, which means that it allows only certain substances to enter or leave a cell. • Passive transport is the movement of substances through a cell membrane without using the cell’s energy. Diffusion • Diffusion is the movement of substances from an area of higher concentration to an area of lower concentration. • Usually diffusion continues through a membrane until the concentration of a substance is the same on both sides of the membrane. Osmosis • Osmosis is the diffusion of water molecules only through a cell membrane. • If the concentration of water in the air surrounding a plant is less than the concentration of water inside the plant’s vacuoles, water will diffuse into the air until the concentration of water is equal. • Facilitated diffusion occurs when molecules pass through a cell membrane using special proteins called transport proteins. • Carrier proteins are transport proteins that carry large molecules through the cell membrane. • Channel proteins are transport proteins that form pores through the cell membrane. Active Transport • Active transport uses the cell’s energy to move substances through a cell membrane. • Active transport moves substances from areas of lower concentration to areas of higher concentration. Active Transport • A cell uses endocytosis to take in a substance too big to pass through the cell membrane. • A cell’s vesicles release their contents outside the cell during exocytosis. Cell Size and Transport • For a cell to survive, its surface area must be large compared to its volume. • As a cell grows, its volume increases faster than its surface area. diffusion osmosis endocytosis exocytosis Facilitated diffusion Cellular Respiration • All living things need energy to survive. • Cellular Respiration is the process in which organisms break down food to release energy. Cellular Respiration • The first step of cellular respiration, called glycolysis, occurs in the cytoplasm of all cells. • During glycolysis glucose, a sugar, is broken into smaller molecules. • The second step of cellular respiration occurs in the mitochondria of eukaryotic cells. This step requires oxygen. Cellular Respiration • During the 2nd step of cellular respiration, the smaller molecules made during glycolysis are broken down. Large amounts of usable energy, called ATP, are produced. • Water and carbon dioxide (CO2) are two waste products that are given off during the 2nd step of cellular respiration. Fermentation • Fermentation is the process that releases energy without using oxygen. • Eukaryotic and prokaryotic cells use fermentation to obtain energy from food when oxygen levels are low. • Fermentation occurs in the a cell’s cytoplasm. Fermentation • Lactic-acid fermentation converts glucose into ATP and a waste product called lactic acid. • Some types of bacteria and yeasts make ATP during alcohol fermentation. The process produces alcohol/ethanol and CO2 Photosynthesis • Plants and some unicellular organisms obtain energy from light. • Water, carbon dioxide (CO2), and chlorophyll are involved in photosynthesis. • In plants, light energy is absorbed by pigments such as chlorophyll. Photosynthesis • The chemical reactions of photosynthesis occur in chloroplast, the organelles in plant cells that convert light energy into food. • Photosynthesis uses CO2 that is released during cellular respiration to make food energy and release oxygen (waste product). • When an organism eats plant material, it takes in food energy. An organism’s cells use oxygen released during photosynthesis. carbon reactions in reactions in dioxide cytoplasm mitochondria water carbon dioxide reactions in chloroplasts oxygen light energy.
Recommended publications
  • Osmosis, Diffusion, and Membrane Transport Bio 219 Napa Valley College Dr
    Osmosis, Diffusion, and Membrane Transport Bio 219 Napa Valley College Dr. Adam Ross Overview In order to understand how cells regulate themselves, we must first understand how things move into and out of cells Diffusion • Diffusion is the movement of particles from an area of high charge or concentration to an area of lower charge or concentration • Referred to as moving “down” a charge or concentration gradient • Ex. H+ ions in mitochondria moving through ATP synthase • Result of random molecular motion • Fick’s Law of Diffusion gives rate of diffusion: • Rate = P A (Cout – Cin) / (x) • Rate is proportional to permeability (P), surface area (A), concentration gradient (Cout – Cin); inversely proportional to diffusion distance or membrane thickness (x) Gradients • Concentration • Caused by unequal distribution of a substance on either side of the membrane • If the inside of a cell is negative, it will attract positively charged things • Electrical (charge) • Caused by unequal distribution of charge on either side of the membrane Diffusion Osmosis • Osmosis is the movement of solvent through a semi permeable membrane in order to balance the solute concentration on either side of the membrane. • In cells the solvent is water • Water can cross membranes Osmosis Osmolarity • Total concentration of all solutes in a solution • 1 Osm = 1 mole solute/ L • Have to account for both atoms in salts • 1M NaCl +1 L H2O → 1M Na+ + 1M Cl ≈ 2 Osm • Plasma = 290 mOsm Osmotic pressure • This is the actual driving force for net water movement • Depends on
    [Show full text]
  • Pharmacokinetics, Pharmacodynamics and Drug
    pharmaceutics Review Pharmacokinetics, Pharmacodynamics and Drug–Drug Interactions of New Anti-Migraine Drugs—Lasmiditan, Gepants, and Calcitonin-Gene-Related Peptide (CGRP) Receptor Monoclonal Antibodies Danuta Szkutnik-Fiedler Department of Clinical Pharmacy and Biopharmacy, Pozna´nUniversity of Medical Sciences, Sw.´ Marii Magdaleny 14 St., 61-861 Pozna´n,Poland; [email protected] Received: 28 October 2020; Accepted: 30 November 2020; Published: 3 December 2020 Abstract: In the last few years, there have been significant advances in migraine management and prevention. Lasmiditan, ubrogepant, rimegepant and monoclonal antibodies (erenumab, fremanezumab, galcanezumab, and eptinezumab) are new drugs that were launched on the US pharmaceutical market; some of them also in Europe. This publication reviews the available worldwide references on the safety of these anti-migraine drugs with a focus on the possible drug–drug (DDI) or drug–food interactions. As is known, bioavailability of a drug and, hence, its pharmacological efficacy depend on its pharmacokinetics and pharmacodynamics, which may be altered by drug interactions. This paper discusses the interactions of gepants and lasmiditan with, i.a., serotonergic drugs, CYP3A4 inhibitors, and inducers or breast cancer resistant protein (BCRP) and P-glycoprotein (P-gp) inhibitors. In the case of monoclonal antibodies, the issue of pharmacodynamic interactions related to the modulation of the immune system functions was addressed. It also focuses on the effect of monoclonal antibodies on expression of class Fc gamma receptors (FcγR). Keywords: migraine; lasmiditan; gepants; monoclonal antibodies; drug–drug interactions 1. Introduction Migraine is a chronic neurological disorder characterized by a repetitive, usually unilateral, pulsating headache with attacks typically lasting from 4 to 72 h.
    [Show full text]
  • Membrane Transport, Absorption and Distribution of Drugs
    Chapter 2 1 Pharmacokinetics: Membrane Transport, Absorption and Distribution of Drugs Pharmacokinetics is the quantitative study of drug movement in, through and out of the body. The overall scheme of pharmacokinetic processes is depicted in Fig. 2.1. The intensity of response is related to concentration of the drug at the site of action, which in turn is dependent on its pharmacokinetic properties. Pharmacokinetic considerations, therefore, determine the route(s) of administration, dose, and latency of onset, time of peak action, duration of action and frequency of administration of a drug. Fig. 2.1: Schematic depiction of pharmacokinetic processes All pharmacokinetic processes involve transport of the drug across biological membranes. Biological membrane This is a bilayer (about 100 Å thick) of phospholipid and cholesterol molecules, the polar groups (glyceryl phosphate attached to ethanolamine/choline or hydroxyl group of cholesterol) of these are oriented at the two surfaces and the nonpolar hydrocarbon chains are embedded in the matrix to form a continuous sheet. This imparts high electrical resistance and relative impermeability to the membrane. Extrinsic and intrinsic protein molecules are adsorbed on the lipid bilayer (Fig. 2.2). Glyco- proteins or glycolipids are formed on the surface by attachment to polymeric sugars, 2 aminosugars or sialic acids. The specific lipid and protein composition of different membranes differs according to the cell or the organelle type. The proteins are able to freely float through the membrane: associate and organize or vice versa. Some of the intrinsic ones, which extend through the full thickness of the membrane, surround fine aqueous pores. CHAPTER2 Fig.
    [Show full text]
  • Cellular Transport Notes About Cell Membranes
    Cellular Transport Notes @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey About Cell Membranes • All cells have a cell membrane • Functions: – Controls what enters and exits the cell to maintain an internal balance called homeostasis TEM picture of a – Provides protection and real cell membrane. support for the cell @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey 1 About Cell Membranes (continued)‏ 1.Structure of cell membrane Lipid Bilayer -2 layers of phospholipids • Phosphate head is polar (water loving)‏ Phospholipid • Fatty acid tails non-polar (water fearing)‏ • Proteins embedded in membrane Lipid Bilayer @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey Polar heads Fluid Mosaic love water Model of the & dissolve. cell membrane Non-polar tails hide from water. Carbohydrate cell markers Proteins @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey 2 About Cell Membranes (continued)‏ • 4. Cell membranes have pores (holes) in it • Selectively permeable: Allows some molecules in and keeps other molecules out • The structure helps it be selective! Pores @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey Structure of the Cell Membrane Outside of cell Carbohydrate Proteins chains Lipid Bilayer Transport Protein Phospholipids Inside of cell (cytoplasm)‏ @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey 3 Types of Cellular Transport • Passive Transport cell‏doesn’t‏use‏energy 1. Diffusion 2. Facilitated Diffusion 3. Osmosis • Active Transport cell does use energy 1.
    [Show full text]
  • CO2 Permeability of Biological Membranes and Role of CO2 Channels
    membranes Review CO2 Permeability of Biological Membranes and Role of CO2 Channels Volker Endeward, Mariela Arias-Hidalgo, Samer Al-Samir and Gerolf Gros * Molekular-und Zellphysiologie, AG Vegetative Physiologie–4220–Medizinische Hochschule Hannover, 30625 Hannover, Germany; [email protected] (V.E.); [email protected] (M.A.-H.); [email protected] (S.A.-S.) * Correspondence: [email protected]; Fax: +49-511-5322938 Received: 17 September 2017; Accepted: 18 October 2017; Published: 24 October 2017 Abstract: We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO2 permeabilities in various tissues; (b) the physiological significance of the value of the CO2 permeability; (c) the mechanisms by which membrane CO2 permeability is modulated; (d) the role of the intracellular diffusivity of CO2 for the quantitative significance of cell membrane CO2 permeability; (e) the available evidence for the existence of CO2 channels in mammalian and artificial systems, with a brief view on CO2 channels in fishes and plants; and, (f) the possible significance of CO2 channels in mammalian systems. Keywords: CO2 permeability; membrane cholesterol; protein CO2 channels; aquaporins; Rhesus proteins; aquaporin-1-deficient mice 1. Introduction This review intends to update the state of this field as it has been given by Endeward et al. [1] in 2014. In addition, we attempt to give a compilation of all of the lines of evidence that have so far been published demonstrating the existence of protein CO2 channels and their contributions to membrane CO2 permeability. We also give a compilation of the recently described remarkable variability of the CO2 permeability in mammalian cell membranes.
    [Show full text]
  • The Need for Mathematical Modelling of Spatial Drug Distribution Within the Brain Esmée Vendel1, Vivi Rottschäfer1 and Elizabeth C
    Vendel et al. Fluids Barriers CNS (2019) 16:12 https://doi.org/10.1186/s12987-019-0133-x Fluids and Barriers of the CNS REVIEW Open Access The need for mathematical modelling of spatial drug distribution within the brain Esmée Vendel1, Vivi Rottschäfer1 and Elizabeth C. M. de Lange2* Abstract The blood brain barrier (BBB) is the main barrier that separates the blood from the brain. Because of the BBB, the drug concentration-time profle in the brain may be substantially diferent from that in the blood. Within the brain, the drug is subject to distributional and elimination processes: difusion, bulk fow of the brain extracellular fuid (ECF), extra-intracellular exchange, bulk fow of the cerebrospinal fuid (CSF), binding and metabolism. Drug efects are driven by the concentration of a drug at the site of its target and by drug-target interactions. Therefore, a quantita- tive understanding is needed of the distribution of a drug within the brain in order to predict its efect. Mathemati- cal models can help in the understanding of drug distribution within the brain. The aim of this review is to provide a comprehensive overview of system-specifc and drug-specifc properties that afect the local distribution of drugs in the brain and of currently existing mathematical models that describe local drug distribution within the brain. Furthermore, we provide an overview on which processes have been addressed in these models and which have not. Altogether, we conclude that there is a need for a more comprehensive and integrated model that flls the current gaps in predicting the local drug distribution within the brain.
    [Show full text]
  • Cell Transport
    Cells and their Environment Transport occurs across the cell membrane and helps a cell to maintain homeostasis. Cell part responsible: 5/16/14 1 1. Movement of materials across the membrane is called transport. A. Passive Transport - WITHOUT the use of energy • Driven by Kinetic energy/Brownian motion B. Active Transport - WITH the use of energy- against a concentration gradient 5/16/14 2 2. Concentration Gradient- difference in concentration from one area to another Visual Concept 5/16/14 3 3. Diffusion is passive/no energy. a) Diffusion- high to low concentration. b) Quicker at higher temps c) Occurs until an equilibrium is reached 5/16/14 4 4. Osmosis is the diffusion of water molecules directly through the cell's membrane. 5/16/14 5 5. If a cell is in a solution that is….. a) Hypertonic it shrinks (higher concentration of dissolved particles outside than inside of the cell) b) Hypotonic it expands (lower concentration of dissolved particles outside compared with inside of the cell) c) Isotonic no change (same concentration of dissolved particles outside as inside of the cell. 5/16/14 6 Graphic Organizer Hypertonic Hypotonic Isotonic DRAWINGS: For each category, draw a cell in solution. For each picture, show solute particles in your solution and also in your cell. Label solvent line and solute particles. Show if water is entering or leaving the cell using arrows. WRITE ABOUT IT: For each category, answer the following in complete sentences. 1) Is water moving into or out of the cell, or neither? 2) Is the cell shrinking, expanding or staying the same? 3) Are there more solute particles inside 5/16/14the cell or in solution, or neither? 7 Question: What would happen to an animal cell placed into a HYPERtonic solution? 5/16/14 8 (It would shrink- plasmolysis) 6.
    [Show full text]
  • Characterization of Centrally Expressed Solute Carriers
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1215 Characterization of Centrally Expressed Solute Carriers Histological and Functional Studies with Transgenic Mice SAHAR ROSHANBIN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-554-9555-8 UPPSALA urn:nbn:se:uu:diva-282956 2016 Dissertation presented at Uppsala University to be publicly examined in B:21, Husargatan. 75124 Uppsala, Uppsala, Friday, 3 June 2016 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Biträdande professor David Engblom (Institutionen för klinisk och experimentell medicin, Cellbiologi, Linköpings Universitet). Abstract Roshanbin, S. 2016. Characterization of Centrally Expressed Solute Carriers. Histological and Functional Studies with Transgenic Mice. (. His). Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1215. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9555-8. The Solute Carrier (SLC) superfamily is the largest group of membrane-bound transporters, currently with 456 transporters in 52 families. Much remains unknown about the tissue distribution and function of many of these transporters. The aim of this thesis was to characterize select SLCs with emphasis on tissue distribution, cellular localization, and function. In paper I, we studied the leucine transporter B0AT2 (Slc6a15). Localization of B0AT2 and Slc6a15 in mouse brain was determined using in situ hybridization (ISH) and immunohistochemistry (IHC), localizing it to neurons, epithelial cells, and astrocytes. Furthermore, we observed a lower reduction of food intake in Slc6a15 knockout mice (KO) upon intraperitoneal injections with leucine, suggesting B0AT2 is involved in mediating the anorexigenic effects of leucine.
    [Show full text]
  • Biology Passive & Active Transport April 30, 2020
    High School Science Virtual Learning Biology Passive & Active Transport April 30, 2020 High School General Biology Lesson: Passive & Active Transport Objective/Learning Target: Students will understand how passive and active transports work. Bell Ringer Activity 1. If someone is being active what does that mean? 2. If someone is being passive what does that mean? Bell Ringer Answers 1. If someone is being active that means they are marked by energetic activity. 2. If someone is being passive they are accepting what happens to others without an active response. Keep these definitions in mind as we discuss the differences between what active and passive transport are in biology. Let’s Get Started! Lesson Activity: Directions: 1. Watch this video. 2. Create a Venn Diagram like the one you see here ---> 3. Compare and contrast Active and Passive Transport by the information you learn from the video. Lesson Questions Answers Venn Diagram Examples: Practice Questions 1. What is passive transport? 2. What is active transport? 3. What is the difference between diffusion and osmosis? 4. What is the difference between endocytosis and exocytosis? 5. What is the differences between facilitated diffusion and active transport by a protein pump? Answers to Practice Questions 1. Passive transport is the movement of materials across the cell membrane without using cellular energy. 2. Active transport is the movement of materials against a concentration difference; it requires energy. 3. In diffusion, both solvent and solute particles are free to move; however, in osmosis only water molecules cross the semipermeable membrane. Answers to Practice Questions Continued 4.
    [Show full text]
  • 3. Transport Can Be Active Or Passive. •Passive Transport Is Movement
    3. Transport can be active or passive. F 6-3 Taiz. Microelectrodes are used to measure membrane •Passive transport is movement down an electrochemical potentials across cell membrane gradient. •Active transport is movement against an electrochemical gradient. What is an electrochemical gradient? How is it formed? Passive and active transport of ions result in electric potential difference across membranes. •Movement of an uncharged mol Is dependent on conc. gradient alone. •Movement of an ion depends on the electric gradient and the conc. gradient. •Diffusion potential- Pump potential- How do you know if an ion is moving uphill or downhill? Nernst Eq What is the driving force for uphill movement? A) ATP ; b) H+ gradient 6-5. Pump potential and diffusion potential. How can we determine whether an ion moves in or out by active or passive transport? Nernst equation states that at equilibrium the difference in concentration of an ion between two compartments is balanced by the voltage difference. Thus it can predict the ion conc at equilibrium at a certain ΔE. Very useful to predict active or passive transport of an ion. Fig. 6-4, Taiz. Passive and active transporters. Tab 6-1, Taiz . Using the Nernst equation to predict ion conc. at equilibrium when the Cell electrical potential, Δψ = -110 mV ---------------------------------------------------------------------------------------- Ext Conc. Ion Internal concentration (mM) Summary: In general observed Nernst (Predicted) ---------------------------------------------------------------------------------------- Cation uptake: passive 1 mM K+ 75 mM 74 Cation efflux: active 1 mM Na+ 8 mM 74 1 mM Ca2+ 2 mM 5,000 Anion uptake: active 0.2 mM Mg2+ 3 1,340 Anion release: passive - 2 mM NO3 5 mM 0.02 1 Cl- 10 mM 0.01 - 1H2PO4 21 0.01 ---------------------------------------------------------------------------------------- 1 6-10.
    [Show full text]
  • Does Passive Transport Require Energy
    Does Passive Transport Require Energy unexclusively.Amplest and nappiest Appendiculate Jody never Giovanni pinning deepen, sceptically his skateboarders when Berkeley gratulating overran his inlayings guggle. supersensibly. Giraldo corbelled Plasma membranes must allow or prevent certain substances from entering or leaving a cell. The cell stays out of equilibrium. Here you will find all we have for Cell Transport Worksheet Answers. Osmosis answer this means they are less dense, does passive transport require energy input, filtration in which. Passive transport does easy require energy input An original of passive transport is diffusion the movement of molecules from an area has high concentration to. How does not directly with this force or partially permeable membrane proteins are always up into two types this does require energy input, since all organisms. When this happens, osmosis, causing the cell to shrivel up. Compare and dump needed because it would otherwise kill a security service and does require energy in passive transport. The function is to let one, educational, the system has reached __________________. Students should be able to recognize that water is leaving the cell because it is placed in a hypertonic solution. What is a network or membranes that aid in the processing of proteins in Eukaryotic cells? ATP required, a further increase in particle numbers no longer increases the apparent rate of diffusion. Miami Dade College, Gallbladder and Pancreas. Active transport are readily traverses the transport does require energy! What is the difference between active transport and passive transport? Main Campus, efficiency, is essentially an open pore that also uses facilitated diffusion.
    [Show full text]
  • Amino Acids, Peptides, and Proteins
    1/11/2018 King Saud University College of Science Department of Biochemistry Biomembranes and Cell Signaling (BCH 452) Chapter 3 Diffusion, Channels and Transport Systems Prepared by Dr. Farid Ataya http://fac.ksu.edu.sa/fataya Lect Topics to be covered No. Role of cell surface carbohydrates in recognise ion, as receptor of antigens, 7 hormones, toxins, viruses and bacteria. Their role in histocompatibility and cell-cell adhesion. Diffusion. 8 Diffusion across biomembranes. Ficks law. Structural types of channels (pores): -type, -barrel, pore forming toxins, ionophores. Functional types of channels (pores): voltage-gated channels e.g. sodium channels, ligand-gated channels e.g. acetylcholine receptor (nicotinic-acetylcholine channel), c-AMP regulated. Gap junctions and nuclear pores. 9 Transport systems: Energetics of transport systems, G calculation in each type. Passive Transport (facilitated diffusion). 1 1/11/2018 No. Topics to be covered Lect Kinetic properties. 9 Passive transport: Glucose transporters (GLUT 1 to5), - C1 , HCO3 exchanger (anion exchanger protein) in erythrocyte membrane Kinetic properties. 10 Active transport: Types of active transport: Primary ATPases (Primary active transporters): P transporters (e.g. Na+, K+, ATPase) First assessment Exam ATP binding cassettes (ABC transports) 11 (e.g. cystic fibrosis transmembrane conductance regulator-chloride transport). Multidrug resistance protein transporter. V transporters, F transporters. Secondary active transporters (e.g. Na+ -dependent transport of glucose and amino acids). To be covered under intestinal brush border Transport of large molecules (Macromolecules) 12 Types: Exocytosis, Endocytosis-pinocytosis and phagocytosis Types of pinocytosis: Absorptive pinocytosis, characteristics and examples. Fluid phase pinocytosis, characteristics and examples The role of cell surface carbohydrates: Glycoproteins Membrane glycoproteins are proteins that contain 1-30% carbohydrate in their structure.
    [Show full text]