Organic Reaction Workup Procedures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extraction of Water Samples by Separatory Funnel 1. Scope And
Alpha Analytical, Inc. ID No.:2165 Facility: Mansfield Revision 8 Department: Organic Extractions Published Date:8/9/2013 10:58:53 AM Title: Extraction of Water Samples by Separatory Funnel 3510 Page 1 of 11 Extraction of Water Samples by Separatory Funnel References: EPA 3510C, SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, Update III, 1997. Method 8081B , Reference: SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, Update IV, February 2007. Method 8082A , Reference: SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, Update IV, February 2007. Method 8270D , Reference: SW-846, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, Update IV, February 2007 1. Scope and Application Matrices: This method is applicable to aqueous samples. Definitions: Refer to Alpha Analytical Quality Manual. This method describes the procedure for extracting water-insoluble and lightly water-soluble organic compounds from aqueous samples. The method also describes concentration techniques suitable for preparing the extract for the various determinative methods listed in Table 1. The data report packages present the documentation of any method modification related to the samples tested. Depending upon the nature of the modification and the extent of intended use, the laboratory may be required to demonstrate that the modifications will produce equivalent results for the matrix. Approval of all method modifications is by one or more of the following laboratory personnel before performing the modification: Area Supervisor, Department Supervisor, Laboratory Director, or Quality Assurance Officer. This method is restricted to use by or under the supervision of trained analysts. -
Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling
University of Mary Washington Eagle Scholar Student Research Submissions Spring 5-7-2018 Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Sunder Follow this and additional works at: https://scholar.umw.edu/student_research Part of the Biochemistry Commons Recommended Citation Sunder, Poornima, "Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling" (2018). Student Research Submissions. 226. https://scholar.umw.edu/student_research/226 This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by an authorized administrator of Eagle Scholar. For more information, please contact [email protected]. Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Rachel Sunder Thesis submitted to the faculty of University of Mary Washington in partial fulfillment of the requirements for graduation with Honors in Chemistry (2018) ABSTRACT Click reactions are a highly versatile class of reactions that produce a diverse range of products. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions require an azide and a terminal alkyne and produce a coupled product that is “clicked” through a triazole ring that can have a variety of substituents. In this work, bromo-terminated phosphonate films on copper oxide surfaces were explored as the platform for click coupling, as the terminal azide needed for the reaction can be generated through an in situ SN2 reaction with a terminal bromo group. The reactions were characterized using model reactions in solution before being conducted on modified copper oxide surfaces. -
Living Radical Polymerization of Methyl Methacrylate with a Rhodium(III) Complex--Organic Halide System in Dimethyl Sulfoxide
Polymer Journal, Vol. 38, No. 6, pp. 516–522 (2006) Living Radical Polymerization of Methyl Methacrylate with a Rhodium(III) Complex–Organic Halide System in Dimethyl Sulfoxide y Noriyuki KAMEDA College of Science and Technology, Nihon University, Narashinodai, Funabashi 274-8501, Japan (Received November 24, 2005; Accepted January 19, 2006; Published May 17, 2006) ABSTRACT: The polymerization of methyl methacrylate (MMA) with the rhodium(III) complex dihydrido(1,3- diphenyltriazenido)bis(triphenylphosphine)rhodium(III) [RhH2(Ph2N3)(PPh3)2] as a catalyst and an organic halide (CCl4, BrCCl3, or CBr4) as an initiator in dimethyl sulfoxide (DMSO) was studied. For the CCl4 initiator system, a kinetic study of MMA polymerization indicated that polymerization follows first-order kinetics with respect to the monomer and that the number-average molecular weight (Mn) of the polymers produced increases in direct proportion to the monomer conversion. Monomer-addition experiments showed that after addition of further MMA, the Mn of the polymers continues to increase in direct proportion to the monomer conversion. These results confirmed that the poly- merization of MMA in the CCl4-initiated system proceeds in a living radical manner. In contrast, the systems involving the bromo compounds BrCCl3 or CBr4 did not show such a living radical nature. For all these initiator systems, the polymers produced had broad molecular-weight distributions. The catalytic activities are discussed in relation to the reaction product between RhH2(Ph2N3)(PPh3)2 and DMSO. [doi:10.1295/polymj.PJ2005176] KEY WORDS Living Polymerization / Free Radical Polymerization / Methyl Methacrylate / Rh(III) Complex / Halomethane / Dimethyl Sulfoxide / Molecular Weight / Free-radical polymerization is one of the most In a previous paper,26 the trivalent rhodium com- widely used techniques for producing polymers. -
Synthesis of Polyesters by the Reaction of Dicarboxylic Acids with Alkyl Dihalides Using the DBU Method
Polymer Journal, Vol. 22, No. 12, pp 1043-1050 (1990) Synthesis of Polyesters by the Reaction of Dicarboxylic Acids with Alkyl Dihalides Using the DBU Method Tadatomi NISHIKUBO* and Kazuhiro OZAKI Department of Applied Chemistry, Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221, Japan (Received July 6, 1990) ABSTRACT: Some polyesters with moderate viscosity were synthesized by reactions of dicarboxylic acids with alkyl dihalides using 1,8-diazabicyclo-[5.4.0]-7-undecene (DBU) in aprotic polar solvents such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) under relatively mild conditions. The viscosity and yield of the resulting polymer increased with increasing monomer concentration. Although polymers with relatively high viscosity were obtained when the reaction with p-xylylene dichloride was carried out at 70°C in DMSO, the viscosity of the resulting polymers decreased with increasing reaction temperature when the reaction with m-xylylene dibromide was carried out in DMSO. KEY WORDS Polyester Synthesis/ Dicarboxylic Acids/ Alkyl Dihalides / DBU Method / Mild Reaction Condition / Although poly(ethylene terephthalate) is favorable method for the synthesis of polyes synthesized industrially by transesterification ters because the preparation and purification between dimethyl terephthalate and ethylene of the activated. dicarboxylic acids is un glycol at relatively high temperatures using necessary. certain catalysts, many polyesters are usually Some polyesters have also been prepared8 prepared by the polycondensation of dicarbox by reactions between alkali metal salts of ylic-acid chlorides with difunctional alcohols dicarboxylic-acids and aliphatic dibromides or phenols. These reactions are carried out using phase transfer catalysis (PTC)s, which is under relatively mild conditions; however, the a very convenient method for chemical activated dicarboxylic-acid chlorides must be modification, especially esterification9 or ether prepared and purified before the reaction. -
Part I Principles of Enzyme Catalysis
j1 Part I Principles of Enzyme Catalysis Enzyme Catalysis in Organic Synthesis, Third Edition. Edited by Karlheinz Drauz, Harald Groger,€ and Oliver May. Ó 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA. j3 1 Introduction – Principles and Historical Landmarks of Enzyme Catalysis in Organic Synthesis Harald Gr€oger and Yasuhisa Asano 1.1 General Remarks Enzyme catalysis in organic synthesis – behind this term stands a technology that today is widely recognized as a first choice opportunity in the preparation of a wide range of chemical compounds. Notably, this is true not only for academic syntheses but also for industrial-scale applications [1]. For numerous molecules the synthetic routes based on enzyme catalysis have turned out to be competitive (and often superior!) compared with classic chemicalaswellaschemocatalyticsynthetic approaches. Thus, enzymatic catalysis is increasingly recognized by organic chemists in both academia and industry as an attractive synthetic tool besides the traditional organic disciplines such as classic synthesis, metal catalysis, and organocatalysis [2]. By means of enzymes a broad range of transformations relevant in organic chemistry can be catalyzed, including, for example, redox reactions, carbon–carbon bond forming reactions, and hydrolytic reactions. Nonetheless, for a long time enzyme catalysis was not realized as a first choice option in organic synthesis. Organic chemists did not use enzymes as catalysts for their envisioned syntheses because of observed (or assumed) disadvantages such as narrow substrate range, limited stability of enzymes under organic reaction conditions, low efficiency when using wild-type strains, and diluted substrate and product solutions, thus leading to non-satisfactory volumetric productivities. -
Transition Metal Hydrides That Mediate Catalytic Hydrogen Atom Transfers
Transition Metal Hydrides that Mediate Catalytic Hydrogen Atom Transfers Deven P. Estes Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Deven P. Estes All Rights Reserved ABSTRACT Transition Metal Hydrides that Mediate Catalytic Hydrogen Atom Transfers Deven P. Estes Radical cyclizations are important reactions in organic chemistry. However, they are seldom used industrially due to their reliance on neurotoxic trialkyltin hydride. Many substitutes for tin hydrides have been developed but none have provided a general solution to the problem. Transition metal hydrides with weak M–H bonds can generate carbon centered radicals by hydrogen atom transfer (HAT) to olefins. This metal to olefin hydrogen atom transfer (MOHAT) reaction has been postulated as the initial step in many hydrogenation and hydroformylation reactions. The Norton group has shown MOHAT can mediate radical cyclizations of α,ω dienes to form five and six membered rings. The reaction can be done catalytically if 1) the product metalloradical reacts with hydrogen gas to reform the hydride and 2) the hydride can perform MOHAT reactions. The Norton group has shown that both CpCr(CO)3H and Co(dmgBF2)2(H2O)2 can catalyze radical cyclizations. However, both have significant draw backs. In an effort to improve the catalytic efficiency of these reactions we have studied several potential catalyst candidates to test their viability as radical cyclization catalysts. I investigate the hydride CpFe(CO)2H (FpH). FpH has been shown to transfer hydrogen atoms to dienes and styrenes. I measured the Fe–H bond dissociation free energy (BDFE) to be 63 kcal/mol (much higher than previously thought) and showed that this hydride is not a good candidate for catalytic radical cyclizations. -
Recyclable Catalysts for Alkyne Functionalization
molecules Review Recyclable Catalysts for Alkyne Functionalization Leslie Trigoura 1,2 , Yalan Xing 1,* and Bhanu P. S. Chauhan 2,* 1 Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, NJ 07470, USA; [email protected] 2 Engineered Nanomaterials Laboratory, Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Road, Wayne, NJ 07470, USA * Correspondence: [email protected] (Y.X.); [email protected] (B.P.S.C.); Tel.: +1-973-720-2470 (B.P.S.C.) Abstract: In this review, we present an assessment of recent advances in alkyne functionalization reactions, classified according to different classes of recyclable catalysts. In this work, we have in- corporated and reviewed the activity and selectivity of recyclable catalytic systems such as polysiloxane- encapsulated novel metal nanoparticle-based catalysts, silica–copper-supported nanocatalysts, graphitic carbon-supported nanocatalysts, metal organic framework (MOF) catalysts, porous organic frame- work (POP) catalysts, bio-material-supported catalysts, and metal/solvent free recyclable catalysts. In addition, several alkyne functionalization reactions have been elucidated to demonstrate the success and efficiency of recyclable catalysts. In addition, this review also provides the fundamental knowl- edge required for utilization of green catalysts, which can combine the advantageous features of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis. Keywords: green catalysts; nanosystems; nanoscale catalysts; catalyst modulation; alkyne functional- ization; coupling reactions Citation: Trigoura, L.; Xing, Y.; 1. Introduction Chauhan, B.P.S. Recyclable Catalysts for Alkyne Functionalization. Alkyne functionalization methods constitute one of the most relevant topics in organic Molecules 2021, 26, 3525. https:// synthesis and has resulted in numerous advancements over several years. -
Teacher Training Workshop for Educators of Students Who Are Blind Or Low Vision
Supalo et al.: Teacher Training Workshop for Educators of Students Who Are Blind or Low Vision Vol. 13, No. 1- Spring, 2009 Journal of Science Education for Students with Disabilities Teacher Training Workshop for Educators of Students Who Are ● , Danielle Dwyer, Heather, L. Eberhart, Blind or Low Vision Natasha Bunnag, Thomas E. Mallouk Cary A. Supalo, Danielle Dwyer, Heather L. Eberhart, Natasha Bunnag, and Thomas E. Mallouk Abstract: The Independent Laboratory Access for the Blind (ILAB) project has developed a suite of speech accessible tools for students who are blind or low vision to use in secondary and post- secondary science laboratory classes. The following are illustrations of experiments designed to be used by educators to introduce them to the ILAB tools, and to demonstrate how these tools can be incorporated into standard laboratory experiments. Information about the Lawrence Hall of Science’s SAVI/SELPH curriculum is also discussed. INTRODUCTION A 1993 study found that over 2/3 of graduates from the schools for the blind were unem- Residential schools for the blind have pro- ployed and a significant percentage received vided educational services to students who uncompetitive wages (6). In addition, only are blind or low vision (BLV) for well over 2.7% of the workforce in the science, technol- 100 years (1). In 1975, the passage of public ogy, engineering, and mathematics professions law 94-142 (Education of All Handicapped are physically disabled, and, of this percent- Children Act, later renamed the Individuals age, only a small number are blind (2). Provid- with Disabilities Education Act) started the ing blind and visually impaired students with trend for students who are blind to enter the the opportunity to work in a science labora- mainstream classroom (2). -
Ruthenium(II) Carbonyl Complexes Containing Chalconates and Triphenylphosphine/Arsine
J. Chem. Sci. Vol. 123, No. 5, September 2011, pp. 567–576. c Indian Academy of Sciences. Ruthenium(II) carbonyl complexes containing chalconates and triphenylphosphine/arsine P VISWANATHAMURTHI∗ and M MUTHUKUMAR Department of Chemistry, Periyar University, Salem 636 011, India e-mail: [email protected] MS received 1 October 2010; revised 25 March 2011; accepted 19 May 2011 Abstract. A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type 1−4 [RuCl(CO)(EPh3)(B)(L )] (4–15) (E = PorAs;B= PPh3,AsPh3 or Py; L = 2 -hydroxychalcone) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (1–3) (E = PorAs;B= PPh3,AsPh3 or Py) with equimolar chalcone in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (IR, electronic, 1H, 31P{1H}, and 13C NMR) methods. On the basis of data obtained, an octahedral structure has been assigned for all the complexes. The complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant and were also found to be efficient transfer hydro- genation catalysts. The antifungal properties of the ligands and their complexes have also been examined and compared with standard Bavistin. Keywords. Ruthenium(II) complexes; spectroscopic studies; catalytic oxidation; catalytic transfer hydrogenation, antifungal study. 1. Introduction and its operational simplicity, transition-metal catalysed hydrogenation, either with isopropyl alcohol or with a Among the platinum group metals, ruthenium has been formic acid/triethylamine mixture as a hydride source, extensively studied in terms of its coordination and has emerged as an attractive alternative to asymmet- organometallic chemistry due to their stability, struc- ric hydrogenation with H2. -
Organometallic Chemistry BASIC PRINCIPLES, APPLICATIONS, and a FEW CASE STUDIES
Safety Moment TYLER LAB GROUP MEETING 1 Safety Moment TYLER LAB GROUP MEETING 2 Metal Hydrides: Benchtop vs. Box Hydride = :H- Hydrides are powerful Lewis bases and reducing agent ◦ Exothermically form H2 (this should scare you) ◦ Heating leads to faster reactivity ◦ H evolution leads to rapid increase in pressure2 ◦ Uncontrolled reactions easily cause runaway exotherm, class D fire, explosion, and death/unemployment LiAlH is the #1 chemical cause of fatality in chemical4 industry 3 Metal Hydrides: “I want to commit the murder I was imprisoned for†.” LiAlH4 ◦ Insanely irritating (serious safety hazard) ◦ Extremely moisture sensitive (don’t leave out for >2 minutes) ◦ Ethereal mixtures are pyrophoric! DiBuAl-H ◦ Pyrophoric – it will explode upon exposure to oxygen NaEt3BH ◦ Pyrophoric in solution LiH and NaH ◦ Can be handled on the benchtop (not >2 minutes) ◦ Parrafin oil dispersions much safer KH ◦ Pyrophoric if not in a dispersion ◦ Handle with extreme care! † Sirius Black, Harry Potter and the Prisoner of Azkaban 4 Metal Hydrides: “I want to commit the murder I was imprisoned for†.” CaH2 ◦ Very safe to handle on the benchtop Pt-H, Pd-H, Ni-H ◦ All very pyrophoric NaBH4 ◦ Very safe in general Other hydrides ◦ Treat as pyrophoric ◦ Transition metal hydrides vary in hydridic strength ◦ General rule of thumb: if it does hydrogenations, it is probably pyrophoric ◦ If they’re in organics of any kind, they are probably pyrophoric † Sirius Black, Harry Potter and the Prisoner of Azkaban 5 Organometallic Chemistry BASIC PRINCIPLES, APPLICATIONS, -
Extraction Read 5.1 & 2.18 & 2.21 in Your Lab Text. Extraction Is A
Extraction Read 5.1 & 2.18 & 2.21 in your lab text. Extraction is a separation technique based on differences in solubilities of substances in two immiscible solvents (usually water and a water insoluble organic solvent). solubility in solvent 1 Kc = partition coefficient = ------------------------ solubility in solvent 2 example: Given compound A, K (ether:water) = 4.0, how much of A can be extracted from a solution of 10.0 g of A in 100 mL of water with a single portion of 100 mL of ether? X / 100 mL ether Kc = 4.0 = ------------------------------- (10.0 - X) / 100 mL water X = 8.0 grams of A extracted into the ether -same as above, but extract two times with 50 mL of ether each time. X / 50 mL ether first extraction: Kc = 4.0 = ------------------------- (10.0 - X) / 100 mL water X = 6.67 grams of A extracted Y / 50 mL ether second extraction: Kc = 4 0 = ----------------------------- (3.33 - Y) / 100 mL water Y = 2.22 grams of A extracted total extracted = X + Y = 6.67 + 2.22 = 8.89 grams ==> multiple extractions with smaller amounts of solvent are more efficient than a single extraction with the same total amount of solvent. DRYING: an organic liquid that has been in contact with water is "wet" (contains some water). To "dry" it, use an inorganic drying agent. See Table 2.1 in your lab text. EXTRACTION AND WASHING The processes of extraction and washing are mechanically the same. Extraction refers to the recovery of a desired substance from a complex mixture, while washing denotes the removal of unwanted material. -
Supplementary Information Antimicrobial Activities Of
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017 Supplementary Information Antimicrobial Activities of Phosphonium Containing Polynorbornenes Ceren Suer,[a] Ceren Demir,[a] Nihan A. Unubol,[b] Ozlem Yalcin,[c] Tanil Kocagoz,[b] and Tarik Eren*[a] S1 1. Materials Furan, maleic anhydride, 3-Bromopropylamine hydrobromide, trimethylphosphine, triethylphosphine, tripropylphosphine, tri-tert-butyl phosphine, triphenylphosphine and tris (4-methoxyphenyl) phosphine, tetrahydrofuran, dichloromethane, petroleum ether, ethyl acetate, diethyl ether, chloroform, hexane, dimethyl sulfoxide, N,N-dimethylformamide, pentane, ethylvinyl ether, 3-bromopyridine, 2,2,2-trifluoroethanol were purchased from Aldrich and used as received. Grubbs second generation catalyst were purchased from Aldrich. Grubbs third generation catalyst [(H2-Imes)(3-Br-py)2-(Cl)2Ru=CHPh] was freshly prepared according to the previously reported procedure.1 All other reagents including buffers and salts were obtained from Aldrich. 2. Instrumentation 1H NMR (500 MHz) and 13C NMR (75 MHz) spectra were recorded using a Bruker Avance III 500 MHz spectrometer. 31P NMR spectra were recorded using a The Varian Mercury VX 400 MHz BB spectrometer. The appropriate frequencies using either residual CDCl3, D2O or DMSO- 1 13 31 d6 as internal reference (for H and C) or 85 % H3PO4 as external reference (for P) were applied for the analysis of NMR data. Determination of surface charge density values were recorded using Malwern Zetasizer Nano ZS (633 nm wavelength, 175 scattering angle, 172,2 toluene count rate). Viscotek GPCmax were analyzed using gel permeation chromatography (GPC) with a triple detection system. Triple detection consists of refractive index (RI), right angle light scattering (LS), and viscosimetry (VIS) detectors, which were calibrated with PEO (22 kDa standard solution.