Lava Tube Analog Mission for Lunar Science and Human Performance Studies Samuel W
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
New Candidate Pits and Caves at High Latitudes on the Near Side of the Moon
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2733.pdf NEW CANDIDATE PITS AND CAVES AT HIGH LATITUDES ON THE NEAR SIDE OF THE MOON. 1,2 1,3,4 1 2 Wynnie Avent II and Pascal Lee , S ETI Institute, Mountain View, VA, USA, V irginia Polytechnic Institute 3 4 and State University Blacksburg, VA, USA. M ars Institute, N ASA Ames Research Center. Summary: 35 new candidate pits are identified in Anaxagoras and Philolaus, two high-latitude impact structures on the near side of the Moon. Introduction: Since the discovery in 2009 of the Marius Hills Pit (Haruyama et al. 2009), a.k.a. the “Haruyama Cavern”, over 300 hundred pits have been identified on the Moon (Wagner & Robinson 2014, Robinson & Wagner 2018). Lunar pits are small (10 to 150 m across), steep-walled, negative relief features (topographic depressions), surrounded by funnel-shaped outer slopes and, unlike impact craters, no raised rim. They are interpreted as collapse features resulting from the fall of the roof of shallow (a few Figure 1: Location of studied craters (Polar meters deep) subsurface voids, generally lava cavities. projection). Although pits on the Moon are found in mare basalt, impact melt deposits, and highland terrain of the >300 Methods: Like previous studies searching for pits pits known, all but 16 are in impact melts (Robinson & (Wagner & Robinson 2014, Robinson & Wagner 2018, Wagner 2018). Many pits are likely lava tube skylights, Lee 2018a,b,c), we used imaging data collected by the providing access to underground networks of NASA Lunar Reconnaissance Orbiter (LRO) Narrow tunnel-shaped caves, including possibly complex Angle Camera (NAC). -
EPSC-DPS2011-1845, 2011 EPSC-DPS Joint Meeting 2011 C Author(S) 2011
EPSC Abstracts Vol. 6, EPSC-DPS2011-1845, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Analysis of mineralogy of an effusive volcanic lunar dome in Marius Hills, Oceanus Procellarum. A.S. Arya, Guneshwar Thangjam, R.P. Rajasekhar, Ajai Space Applications Centre, Indian Space Research Organization, Ahmedabad-380 015 (India). Email:[email protected] Abstract found on the lunar surface. As a part of initiation of the study of mineralogy of MHC, an effusive dome Domes are analogous to the terrestrial shield located in the south of Rima Galilaei, near the volcanoes and are among the important volcanic contact of Imbrian and Eratosthenian geological units features found on the lunar surface indicative of is taken up for the present study. The morphology, effusive vents of primary volcanism within Mare rheology and the possible dike parameters have regions. Marius Hills Complex (MHC) is one of the already been studied and reported [5]. most important regions on the entire lunar surface, having a complex geological setting and largest distribution of volcanic constructs with an abundant number of volcanic features like domes, cones and rilles. The mineralogical study of an effusive dome located in the south of Rima Galilaei, near the contact of Imbrian and Eratosthenian geological units is done using hyperspectral band parameters and spectral plots so as to understand the compositional variation, the nature of the volcanism and relate it to the rheology of the dome. Fig. 1: Distribution of dome in MHC (Red-the dome under study, Green- from Virtual Moon Atlas, Magenta [6]) and the Study area showing the dome under study on M3 1. -
A Guideline for a Sustainable Lunar Base Design for Constructed in Lunar Lava Tubes and Their Vertical Skylights
50th International Conference on Environmental Systems ICES-2021-186 12-15 July 2021 A Guideline for a Sustainable Lunar Base Design for Constructed in Lunar Lava Tubes and Their Vertical Skylights Masato Sakurai1, Asuka Shima2, Isao Kawano3, Junichi Haruyama4 Japan Aerospace Exploration Agency (JAXA), Chofu-shi, Tokyo, 182-8522, Japan. and Hiroyuki Miyajima5 International University of Health and Welfare, Narita Campus 1, 4-3, Kōzunomori, Narita, Chiba, 286-8686 Japan The lunar surface is a hostile environment subject to harmful radiation and meteorite impacts. A recently discovered lava tube avoids these risks and, as it undergoes only slight temperature changes, it is a promising location for constructing a lunar base. JAXA engages in research in regenerative ECLSS (Environmental Control Life Support Systems), particularly addressing water and air recycling and treating organic waste. Overcoming these challenges is essential for long-term lunar habitation. This paper presents a guideline for a sustainable lunar base design. Nomenclature ECLSS = Environmental Control Life Support System HTV = H-II Transfer Vehicle ISS = International Space Station JAXA = Japan Aerospace Exploration Agency JSASS = Japan Society for Aeronautical and Space Science MHH = Marius Hills Hole MIH = Mare Ingenii Hole MTH = Mare Tranquillitatis Hole SELENE = Selenological and Engineering Explorer UZUME = Unprecedented Zipangu Underworld of the Moon Exploration (name of the research group for vertical holes) SDGs = Sustainable Development Goals SELENE = Selenological and Engineering Explorer I. Introduction uture space exploration will extend beyond low Earth orbit and dramatically expand in scope. In particular, F industrial activities are planned for the Moon with the development of infrastructure that includes lunar bases. This paper summarizes our study of the construction of a crewed permanent settlement, which will be essential to support long-term habitation, resource utilization, and industrial activities on the Moon. -
Analysis of Lava Tubes and Skylights in the Lunar Exploration Context
EPSC Abstracts Vol. 7 EPSC2012-632-1 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Analysis of Lava Tubes and Skylights in the Lunar Exploration Context E. Martellato, B. Foing, J. Benkhoff ESA/ESTEC, Keplerlaan 1, 2201 Noordwijk ZH, The Netherlands (corresponding author: [email protected], [email protected]) collapsed sections of roofs ([6]). Skylights could Abstract originate as enlargement of pre-existing fractures, for instance following a moonquake ([8]), or as The past and current scientific activities related to the incompleting crusting over the melted lava flow (e.g., future robotic and human exploration of the Moon [4]), or as collapse of the lava tubes ceiling caused by have stressed the importance of lava tubes as random meteoroids impacts (e.g., [6]). convenient settlements in an inhospitable planet, providing a natural shielding to a variety of natural 2. Observations hazards with minimizing costs of the construction of manned bases. The detection of lava tubes could be In our analysis, we consider two skylights candidates favoured by the presence of skylights, which also detected by the Terrain Camera onboard the Japanese represent a way to access to these underground orbiter SELenological and Engineering Explorer structures. In this context, we analyze one of the (SELENE) ([9], [10]), and then observed at higher proposed mechanism of skylights formation, that is resolution by Lunar Reconnaissance Orbiter Camera random impacts craters, by comparing crater- (LROC) onboard the NASA spacecraft Lunar geometry argumentations ([11]) with numerical Reconnaissance Orbiter (LRO) ([2]). modelling outcomes. A first pit is located on the Marius Hills region 1. -
GRAIL-Identified Gravity Anomalies In
Solar System Exploration Division, GSFC Code 690 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and volcanic/magmatic structures on the Moon Ariel N. Deutsch1, Gregory A. Neumann2, James W. Head1 1Department of Earth, Environmental and Planetary Sciences, Brown University, 2NASA Goddard Space Flight Center Introduction: Lunar gravity anomalies. Positive Bouguer gravity anomalies. • Four distinctive positive Bouguer gravity anomalies are • Previous work has suggested that these four positive gravity anomalies may be due to: -Subsurface volcanic sills [2]. • New, higher-resolution GRAIL data [3] allow for the re- analysis of these anomalies. • Understanding the subsurface density structures that contribute to these anomalies is important in order to discuss regional impact and volcanic histories, and the evolution of the lunar crust in Oceanus Procellarum. Objectives. 1. Constrain subsurface structures that contribute to the . four positive Bouguer gravity anomalies. 2. Discuss the hidden impact and volcanic histories of . the Moon. Methods. Results: Filled and buried impact craters. RESULTS: MANTLE UPWELLING • Six geologic end-member scenarios are explored to 20 200 1. Filled and Buried Impact 2. Southern Aristarchus Plateau analyze the four observed gravitational anomalies. 15 Model 3 10 GRAIL 100 • Impact crater parameters [e.g., 4] are estimated to C Gravity 5 B from uplift Gravity from A 0 0 km -3 km km ρ = 3150 kg m -5 mGal mGal • Analyses of the generation, ascent, and eruption of -3 mGal ρ = 2800 kg m crater -10 Surface topography -100 -3 of subsurface magmatic structures and also the . -15 ∆ρ = 600 kg m Highland crust -20 -200 Mantle interpretation of surface volcanic features. -
Determining the Structural Stability of Lunar Lava Tubes
46th Lunar and Planetary Science Conference (2015) 2174.pdf DETERMINING THE STRUCTURAL STABILITY OF LUNAR LAVA TUBES. D. M. Blair1*, L. Chappaz2, R. Sood2, C. Milbury1, H. J. Melosh1, K. C. Howell2, and A. M. Freed1. 1,* Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA, [email protected]; 2School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA. Introduction: Recent in-depth analysis of lunar wider lava tube or a thinner roof, but do not quantify gravity data from the Gravity Recovery And Interior what difference an arched roof would make. Laboratory (GRAIL) spacecraft has suggested the In caves on Earth that occur in bedded rock, failure possibility of lava tubes on the Moon with diameters in of the cave’s roof tends to occur one bed at a time, excess of 1 km [1, 2]. Could such features be progressing upwards [9]. This means that the structurally stable? What is the theoretical maximum mechanical “roof thickness” of a lava tube should be size of a lunar lava tube? Here we attempt to address considered to be the thickness of the flows that form those questions and improve on prior estimates of the the roof and not the total depth at which the tube is same by using modern numerical modeling techniques. buried. Lava flows thicknesses on the moon vary over Background: The presence of sublunarean voids a broad range, from 1–14 m in the skylights in Mare has recently been confirmed via the observation of Tranquilitatis and elsewhere [5] to ~80–600 m in "skylights" in several lunar maria [3, 4, 5]. -
GRAIL-Identified Gravity Anomalies in Oceanus Procellarum: Insight Into 2 Subsurface Impact and Magmatic Structures on the Moon 3 4 Ariel N
1 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into 2 subsurface impact and magmatic structures on the Moon 3 4 Ariel N. Deutscha, Gregory A. Neumannb, James W. Heada, Lionel Wilsona,c 5 6 aDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 7 02912, USA 8 bNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 9 cLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 10 11 Corresponding author: Ariel N. Deutsch 12 Corresponding email: [email protected] 13 14 Date of re-submission: 5 April 2019 15 16 Re-submitted to: Icarus 17 Manuscript number: ICARUS_2018_549 18 19 Highlights: 20 • Four positive Bouguer gravity anomalies are analyzed on the Moon’s nearside. 21 • The amplitudes of the anomalies require a deep density contrast. 22 • One 190-km anomaly with crater-related topography is suggestive of mantle uplift. 23 • Marius Hills anomalies are consistent with intruded dike swarms. 24 • An anomaly south of Aristarchus has a crater rim and possibly magmatic intrusions. 25 26 Key words: 27 Moon; gravity; impact cratering; volcanism 1 28 Abstract 29 30 Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter 31 (~90–190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central 32 Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of 33 Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic 34 complex (north and south). Each is characterized by distinct surface geologic features suggestive 35 of ancient impact craters and/or volcanic/plutonic activity. -
Development and Field Testing of Moonraker: a Four-Wheel Rover in Minimal Design
Development and Field Testing of Moonraker: a Four-Wheel Rover in Minimal Design Kazuya Yoshida*, Nathan Britton*, John Walker* *Dept. of Aerospace Engineering, Tohoku University, Japan e-mail: yoshida, nathan, [email protected] Abstract A light-weight, four-wheel rover was developed as a research test platform for a low cost lunar exploration that could be conducted commercially near future. The name of the platform is MoonRaker, The purpose of the Moon- Raker development is investigate control techniques and physical performance for a lunar rover with minimal size, such as less than 10 kg. In this paper, the authors de- scribe the design, development and field testing results of the MoonRaker project. 1 Introduction In the Space Robotics Laboratory, Tohoku University, Japan, we developed a light-weight, four-wheel rover as Figure 1. An image of a lava tube skylight, a research test platform for a low cost lunar exploration Marius Hills Hole acquired by Lunar that could be conducted commercially near future. As a Reconnaissance Orbiter Narrow Angle case study, the requirements for the Google Lunar X-Prize Camera (M122584310LE). (GLXP) is considered. In the GLXP, more-than-500 m of traverse across the surface of the Moon and transmission of high quality video images to the Earth are set as the ing for water ice or Helium-3, But one of the most exciting minimum requirements [1]. targets for lunar exploration is potential caves on the sur- ffi As a technical partner of Team Hakuto, an o cial face of the moon. team of the GLXP challenge in Japan, the Space Robotics In recent years, researchers have speculated that un- Laboratory has been working on the development of mo- derground tubes or caves, similar to those found on Earth bile robots (rovers) for wheel-based traverse on the lunar in volcanic areas, may exist on the moon. -
Detection of Buried Empty Lunar Lava Tubes Using Grail Gravity Data
47th Lunar and Planetary Science Conference (2016) 1509.pdf DETECTION OF BURIED EMPTY LUNAR LAVA TUBES USING GRAIL GRAVITY DATA. R. Sood1, L. Chappaz1, H. J. Melosh1,2, K. C. Howell1, and C. Milbury2. 1School of Aeronautics and Astronautics, Purdue Uni- versity, West Lafayette, Indiana 47907, [email protected], 2Earth, Atmospheric and Planetary Science, Purdue University, West Lafayette, Indiana 47907. Introduction: As a part of NASA's Discovery Program, the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were launched in September 2011. The sister spacecraft, Ebb and Flow, mapped lunar gravity to an unprecedented precision [1]. High resolu- tion data is currently being utilized to gain a greater understanding of the Moon's interior. Through gravita- tional analysis of the Moon, subsurface features, such as potential buried empty lava tubes, have also been detected [2]. Lava tubes are of interest as possible hu- man habitation sites safe from cosmic radiation, mi- crometeorite impacts and temperature extremes. The existence of such natural caverns is now supported by Kaguya's discoveries [3] of deep pits that may poten- tially be openings to empty lava tubes. In the current investigation, GRAIL gravity data collected at different altitudes is utilized to detect the presence and extent of candidate empty lava tubes beneath the surface of the Figure 1: Free-air and Bouguer cross-correlation maps lunar maria. and free-air/Bouguer correlation along with regional Detection Strategy: Previous work done by Chap- topography in the vicinity of Marius Hills skylight. paz et al., (2014) makes use of two detection strategies based on gradiometry and cross-correlation to detect rrelation between free-air and Bouguer maps where a subsurface features. -
Detection of Lunar Lava Tubes by Lunar Radar Sounder Onboard Selene (Kaguya)
Lunar and Planetary Science XLVIII (2017) 1711.pdf DETECTION OF LUNAR LAVA TUBES BY LUNAR RADAR SOUNDER ONBOARD SELENE (KAGUYA). J. Haruyama1, T. Kaku1,2, R. Shinoda1,2, W. Miyake2, A. Kumamoto3, K. Ishiyama1, T. Nishibori1, K. Yamamoto1, K. Kurosawa4, A.I. Suzuki1, S.T. Crites1, T. Michikami5, Y. Yokota6, R. Sood7, H. J. Melosh7,8, L. Chappaz, K.C. Howell. 1Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan), 2Engineering Department, Tokai Universi- ty, 3Science Department, Tohoku University, 4Planetary Exploration Research Center, Chiba Institute of Technolo- gy, 5Faculty of Engineering, Kindai University, 6Faculty of Science, Kochi University, 7School of Aeronautics and Astronautics, Purdue University, 8Earth, Atmospheric and Planetary Science, Purdue University . E- Mail:haruyama.junichi_at_jaxa.jp (change “_at_” to @). Introduction: In 2009, three huge pits were dis- aperture radar (SAR) processing[9] with a synthetic covered on the Moon in image data acquired by the aperture of 5 km. The data set is available via the SELENE Terrain Camera. Their diameters and depths JAXA/SELENE (Kaguya) data archive.[10] are several tens of meters or more.[1-3] They are possi- Results: Figure 1 shows an A-scan diagram (pow- ble skylight holes opening on large subsurface caverns ers of received echo vs elevation of subsurface reflect- such as lava tubes, [1] by analogy with similar pits found ing the echo). The echo power was normalized to be on Mars.[4] This possibility was enhanced significantly zero dB for a standard surface echo level, and to be 0 by LRO oblique observations; large openings were km in elevation for the mean radius of 1737.4 km. -
Technologies Enabling Exploration of Skylights, Lava Tubes and Caves
Technologies Enabling Exploration of Skylights, Lava Tubes and Caves NASA Innovative Advanced Concepts (NIAC) Phase I FOR OFFICE OF THE CHIEF TECHNOLOGIST NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANT NUMBER: NNX11AR42G AWARD DATE: SEPTEMBER 15, 2011 END DATE: SEPTEMBER 14, 2012 FINAL REPORT BY ASTROBOTIC TECHNOLOGY 4551 FORBES AVE #300 PITTSBURGH, PA 15213-3524 WILLIAM WHITTAKER, PRINCIPAL INVESTIGATOR Abstract Robotic exploration of skylights and caves can seek out life, investigate geology and origins, and open the subsurface of other worlds to humankind. However, exploration of these features is a daunting venture. Planetary voids present perilous terrain that requires innovative technologies for access, exploration, and modeling. This research developed technologies for venturing underground and conceived mission architectures for robotic expeditions that explore skylights, lava tubes and caves. The investigation identified effective designs for mobile robot architecture to explore sub-planetary features. Results provide insight into mission architectures, skylight reconnaissance and modeling, robot configuration and operations, and subsurface sensing and modeling. These are developed as key enablers for robotic missions to explore planetary caves. These results are compiled to generate “Spelunker”, a prototype mission concept to explore a lunar skylight and cave. The Spelunker mission specifies safe landing on the rim of a skylight, tethered descent of a power and communications hub, and autonomous cave exploration by hybrid -
D a R K N E S S V I S I B L E : I N S T R U M E N Tat
DARKNESS VISIBLE: INSTRUMENTATION AND THERMAL DESIGN TO ACCESS THE HIDDEN MOON Jeffrey E. Van Cleve1, Jonathan D. 1 2 In poetic language, people often talk about “The Dark Side of the Moon,” while their astronomical meaning is the “Far Side of the Moon.” In this workshop, we are literally discussing the dark Weinberg , Clive R. Neal , Richard 3 1 Moon – the entire Moon during the 14-day lunar night at the equator, and the regions of eternal darkness in polar craters that are rich in volatiles1 which may be rich in volatiles for use as C. Elphic , Gary Mills , Kevin resources, and as a valuable record of the Moon’s history. The dark Moon has been hidden for most of the history of spaceflight, as no human missions and few robotic missions have persisted Weed1, David Glaister1 through even one lunar night, and no missions whatsoever have landed in the permanently-shadowed regions. In this poster, we discuss “Night” mission concepts, previously developed by the 1 authors with NASA funding, that remain directly relevant to NASA robotic and human science and exploration of the Moon - a long-lived (> 6 y) lunar geophysical network and a Discovery-class Ball Aerospace, Boulder CO mission for the in-situ investigation of volatiles in the lunar polar cold traps. We also discuss Ball instrument and thermal technology enabling survival, situational awareness, and operations in 2Notre Dame the dark Moon, including low-light and thermal cameras, flash lidars, advanced multi-layer insulation (MLI), and phase-change material “hockey pucks” that can damp out thermal transients to 3 help moving platforms scuttle through dark regions for 24 h or so on their way between illuminated area such as “the peaks of eternal light” near the lunar south pole, without expending NASA-Ames precious stored electrical power for heat.