Cellana Rota U B B L I C

Total Page:16

File Type:pdf, Size:1020Kb

Cellana Rota U B B L I C Allegato alla pubblicazione “Catalogo Annota to e Atlante iconografico dei molluschi marini del Mediterraneo” Tutti i diritti riservati © 2007 per i rispettivi proprietari. Vietata la duplicazione e riproduzione senza espressa autorizzazione scritta. INFO su: [email protected] – tranne Rimase . 1791 ulle coste di Vers.1.0 , s zione esterna , ma il suo interno e . Fishelson ltura esterna formata da in Mediterraneo el Mediterraneo, vol.1 Gmelin Scu Cellana rota caerulea sensu auct. - | di Suez - Al di fuori del Mediterraneo si trova embre 2007 . Patella caerulea Vive sulle rocce appena sotto il livello sensu auct. - | - sensu auct. - | - , dal contorno ovale e regolare, a forma di cono molto (Gmelin, 1791 : Patella) Winckworth, 1930 iterraneo.com/forum/topic.asp?TOPIC_ID=6319 dieci settori marrone scuro mischiati a chiazze di colore di Israele , Egitto, Grecia Jousseaume, 1888 Reeve, 1842 Pilsbry, 1891 – introdottasi tramite il Canale e Oceano Indiano. Born, 1778 o Savelli, Atlante delle conchiglie marine d - icino Ashdod, ha completamente rimpiazzato la presenza di Patella V . Adams H., 1869 . ulea (Gmelin, 1791) [Patella] r pecie lessepsiana Giannuzzi molto traslucido e non haS mai il colore bluastro di a lungo rara finchèIsraele nel 1999 fu riportata comecae comune da Scheda di Maria Amato aggiornata all’11 nov nel Mardell’acqua. Ross - 1997 p. 34 http://www.ciesm.org/atlas/Cellanarota.php http://www.naturamed Per la sua forma ovale potrebbe ricordare = Patella karachiensis ! Helcioniscus capensis ! Cellana eucosmia ! Patella radiata Conchiglia piuttosto sottile basso con apice leggermentesottili, spostato piane anteriormente. strie radialigiallastro, piuttosto granulose. con Il otto colore esternofondo, è l’interno marrone pallido èl’impronta o muscolare traslucido che epallido. è lascia di trasparire diversoLunghezza colore la da come colora 25 bianco,Pacifico. a marrone 35 oSud arancio mm est Mediterraneo per il Mediterraneo, oltre i 37 mm per l’Indo = Patella variegata = Patella pharaonis Docoglossa Troschel, 1866 Nacelloidea Thiele, 1891 Nacellidae Thiele, 1891 Cellana rota Gastropoda Cuvier, 1797 : di Foto 1 Redattore Riferimenti fotografici Note Comparazione Riferimenti bibliografici Riferimenti on line Descrizione originale Area di distribuzione e habitat Dimensioni Descrizione Scheda descrittiva: Sinonimi Genus Subgenus specie subspecie Superfamilia Familia Subfamilia Scheda tassonomica: Classis Ordo.
Recommended publications
  • Title Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere
    Biogeography in Cellana (Patellogastropoda, Nacellidae) with Title Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species González-Wevar, Claudio A.; Nakano, Tomoyuki; Palma, Author(s) Alvaro; Poulin, Elie Citation PLOS ONE (2017), 12(1) Issue Date 2017-01-18 URL http://hdl.handle.net/2433/218484 © 2017 González-Wevar et al. This is an open access article distributed under the terms of the Creative Commons Right Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Type Journal Article Textversion publisher Kyoto University RESEARCH ARTICLE Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species Claudio A. GonzaÂlez-Wevar1,2*, Tomoyuki Nakano3, Alvaro Palma4, Elie Poulin1 1 GAIA-AntaÂrtica, Universidad de Magallanes, Punta Arenas, Chile, 2 Instituto de EcologõÂa y Biodiversidad Ä a1111111111 (IEB), Departamento de Ciencias EcoloÂgicas, Facultad de Ciencias, Universidad de Chile, Nuñoa, Santiago, Chile, 3 Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto University, a1111111111 Nishimuro, Wakayama, Japan, 4 Universidad Gabriela Mistral, Facultad de IngenierõÂa y Negocios, a1111111111 Providencia, Santiago, Chile a1111111111 a1111111111 * [email protected] Abstract OPEN ACCESS Oceanic islands lacking connections to other land are extremely isolated from sources of Citation: GonzaÂlez-Wevar CA, Nakano T, Palma A, potential colonists and have acquired their biota mainly through dispersal from geographi- Poulin E (2017) Biogeography in Cellana cally distant areas. Hence, isolated island biota constitutes interesting models to infer bio- (Patellogastropoda, Nacellidae) with Special geographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species.
    [Show full text]
  • Version of the Manuscript
    Accepted Manuscript Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary charac- teristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia, Claudio A. González-Wevar, Elie Poulin, Leyla Cardenas PII: S1055-7903(17)30583-3 DOI: https://doi.org/10.1016/j.ympev.2018.10.036 Reference: YMPEV 6324 To appear in: Molecular Phylogenetics and Evolution Received Date: 15 August 2017 Revised Date: 23 July 2018 Accepted Date: 30 October 2018 Please cite this article as: Gaitán-Espitia, J.D., González-Wevar, C.A., Poulin, E., Cardenas, L., Antarctic and sub- Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.10.036 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Version: 23-07-2018 SHORT COMMUNICATION Running head: mitogenomes Nacella limpets Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda Juan D. Gaitán-Espitia1,2,3*; Claudio A. González-Wevar4,5; Elie Poulin5 & Leyla Cardenas3 1 The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China 2 CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart 7001, TAS, Australia.
    [Show full text]
  • A Molecular Phylogeny of the Patellogastropoda (Mollusca: Gastropoda)
    ^03 Marine Biology (2000) 137: 183-194 ® Spnnger-Verlag 2000 M. G. Harasevvych A. G. McArthur A molecular phylogeny of the Patellogastropoda (Mollusca: Gastropoda) Received: 5 February 1999 /Accepted: 16 May 2000 Abstract Phylogenetic analyses of partiaJ J8S rDNA formia" than between the Patellogastropoda and sequences from species representing all living families of Orthogastropoda. Partial 18S sequences support the the order Patellogastropoda, most other major gastro- inclusion of the family Neolepetopsidae within the su- pod groups (Cocculiniformia, Neritopsma, Vetigastro- perfamily Acmaeoidea, and refute its previously hy- poda, Caenogastropoda, Heterobranchia, but not pothesized position as sister group to the remaining Neomphalina), and two additional classes of the phylum living Patellogastropoda. This region of the Í8S rDNA Mollusca (Cephalopoda, Polyplacophora) confirm that gene diverges at widely differing rates, spanning an order Patellogastropoda comprises a robust clade with high of magnitude among patellogastropod lineages, and statistical support. The sequences are characterized by therefore does not provide meaningful resolution of the the presence of several insertions and deletions that are relationships among higher taxa of patellogastropods. unique to, and ubiquitous among, patellogastropods. Data from one or more genes that evolve more uni- However, this portion of the 18S gene is insufficiently formly and more rapidly than the ISSrDNA gene informative to provide robust support for the mono- (possibly one or more
    [Show full text]
  • The Limpets of Hong Kong with Descriptions of Seven New
    60 DAVID DUDGEON Proceedings, First International Workshop Thompson, C.M. and Sparks, R.E. 1977b. Improbability of dispersal of adult Asiatic on the Malacofauna of clams, Corbicula manilensis via the intestinal tract of migratory waterfowl.American Hong Kong and Southern China, Midland Naturalist 98: 219-213. 23 March — 8 April 1977, Hong Kong Walford, P.R. 1946. A new graphic method of describing growth of animals.Biological Bulletin o f the Marine Biological Laboratory, Woods Hole 90: 141-147. Walne, P.R. 1972. The influence of current speed, body size and water temperature on the’ filtration rate o f five species o f bivalves.Journal o f the Marine Biological Asso­ THE LIMPETS OF HONG KONG WITH DESCRIPTIONS OF ciation of the United Kingdom 52: 345-374. SEVEN NEW SPECIES AND SUBSPECIES J. Christiaens 2 4 2 7 Justus Lipsiuslaan 26 B3 500, Hasselt, Belgium During the course of the malacological workshop the following stations were vistited: Wu Kwai Sha: a pebble beach, a rocky shore and a mangrove. Tolo Channel: Bluff Head (on the northern shore), Gruff Head (on the exposed southern shore) and Channel Rock, surrounded by coral, in the middle of the channel and reached by diving to a depth o f 10 m. Hong Kong Island: the exposed rocky shore at Wah Fu and the beach and bay at Stanley, the islands of Kat 0 Chau and Ping Chau, the last with a south-western shore exposed to heavy surf and sheltered to the north east. Subsequently two supplementary lots of limpets were received from Dr.
    [Show full text]
  • Patterns and Processes in the Biogeography of the Limpet Nacella (Mollusca: Patellogastropoda) Across the Southern Ocean Claudio A
    Journal of Biogeography (J. Biogeogr.) (2017) 44, 861–874 ORIGINAL Following the Antarctic Circumpolar ARTICLE Current: patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean Claudio A. Gonzalez-Wevar1,2*, Mathias Hune€ 2, Nicolas I. Segovia2, Tomoyuki Nakano3, Hamish G. Spencer4, Steven L. Chown5, Thomas Saucede6, Glenn Johnstone7,Andres Mansilla1 and Elie Poulin2 1Universidad de Magallanes, Bulnes 01890, ABSTRACT Punta Arenas, Chile, 2Instituto de Ecologıa y Aim We use an integrative biogeographical approach to further understand the Biodiversidad (IEB), Departamento de evolution of an important Southern Ocean marine benthic element, the limpet Ciencias Ecologicas, Universidad de Chile, Las Palmeras 3425, Nu~ noa,~ Santiago, Chile, 3Seto genus Nacella (Mollusca: Patellogastropoda). Marine Biological Laboratory, Field Science Location Southern Ocean. Education and Research Centre, Kyoto University, Wakayama 649-2211, Japan, Methods We used multi-locus time-calibrated phylogeny of Nacella at the 4Allan Wilson Centre, Department of Zoology, scale of the whole Southern Ocean to elucidate the underlying processes University of Otago, Dunedin 9054, New involved in the origin and diversification of the genus. Zealand, 5School of Biological Sciences, Results Divergence-time estimates suggest that soon after its origin during the Monash University, Melbourne, VIC 3800, mid-Miocene (c. 12.5 Ma), Nacella separated into two main lineages currently Australia, 6Biogeosciences, UMR CNRS 6282, distributed in (1) South America and (2) Antarctica and the sub-Antarctic Universite de Bourgogne, Dijon 21000, islands. We identified two pulses of diversification, during the late Miocene (8 France, 7Australian Antarctic Division, < Kingston TAS 7050, Australia to 5.5 Ma) and the Pleistocene ( 1 Ma).
    [Show full text]
  • Shell Microstructure of the Patellid Gastropod Collisella Scabra (Gould): Ecological and Phylogenetic Implications
    THE VELIGER The Veliger 48(4):235-242(January 25,2007) O CMS, Inc.,2005 Shell Microstructure of the Patellid Gastropod Collisella scabra (Gould): Ecological and Phylogenetic Implications SARAH E. GILMAN* Section of Evolution and Ecology, and Center for Population Biology, University of California, Davis, Davis, cA 95616-8755 Abstract. Shell microstructure has a long history of use in both taxonomic and ecological research on molluscs. I report here on a study of the microstructure of Collisella scabra, also known as Macclintockia scabra and Lottia scabra. I used a combination of SEM and light microscopy of acetate peels, whole shells, and shell fragments to examine the shell layers and microstructure. Regular growth bands were not present in most shells examined. Several shells showed multiple bands of myostracum, which indicate periods of extreme rates of size change, and may be evidence of abiotic stress. This study also suggests that shell layers previously described as "modified foliated" are "irregular complex crossed lamellar," with both fibrous and foliated second order structures. The presence of fibrous shell structures, in addition to other shared morphological characters noted by previous authors, suggests an affinity with the Lottiidae rather than the Nacellidae. INTRODUCTION scabra shells, and 2) to verify the earlier shell microstructure descriptions, including phylogenetic Shell microstructure has a long history of use in both implications. taxonomic and ecological research on molluscs. Shell growth bands are commonly used as records of individual growth (Frank, 1975; Hughes, 1986; Arnold MATERIALS AND METHODS et al., 1998) and for reconstructing environmental conditions (Rhoads &LuIz,l980; Jones, 1981;Kirby et Collection and Preparation of Shells al., 1998).
    [Show full text]
  • IMPACTS of SELECTIVE and NON-SELECTIVE FISHING GEARS
    Comparative study of significant molluscans dwelling at two sites of Jiwani coast, Pakistan Item Type article Authors Ghani, Abdul; Nuzhat, Afsar; Riaz, Ahmed; Shees, Qadir; Saifullah, Saleh; Samroz, Majeed; Najeeb, Imam Download date 03/10/2021 01:08:27 Link to Item http://hdl.handle.net/1834/41191 Pakistan Journal of Marine Sciences, Vol. 28(1), 19-33, 2019. COMPARATIVE STUDY OF SIGNIFICANT MOLLUSCANS DWELLING AT TWO SITES OF JIWANI COAST, PAKISTAN Abdul Ghani, Nuzhat Afsar, Riaz Ahmed, Shees Qadir, Saifullah Saleh, Samroz Majeed and Najeeb Imam Institute of Marine Science, University of Karachi, Karachi 75270, Pakistan. email: [email protected] ABSTRACT: During the present study collectively eighty two (82) molluscan species have been explored from Bandri (25 04. 788 N; 61 45. 059 E) and Shapk beach (25 01. 885 N; 61 43. 682 E) of Jiwani coast. This study presents the first ever record of molluscan fauna from shapk beach of Jiwani. Amongst these fifty eight (58) species were found belonging to class gastropoda, twenty two (22) bivalves, one (1) scaphopod and one (1) polyplachopora comprised of thirty nine (39) families. Each collected samples was identified on species level as well as biometric data of certain species was calculated for both sites. Molluscan species similarity was also calculated between two sites. For gastropods it was remain 74 %, for bivalves 76 %, for Polyplacophora 100 % and for Scapophoda 0 %. Meanwhile total similarity of molluscan species between two sites was calculated 75 %. Notable identified species from Bandri and Shapak includes Oysters, Muricids, Babylonia shells, Trochids, Turbinids and shells belonging to Pinnidae, Arcidae, Veneridae families are of commercial significance which can be exploited for a variety of purposes like edible, ornamental, therapeutic, dye extraction, and in cement industry etc.
    [Show full text]
  • Molecular Phylogeny and Historical Biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean
    Molecular Phylogenetics and Evolution 56 (2010) 115–124 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean Claudio A. González-Wevar a, Tomoyuki Nakano b, Juan I. Cañete c, Elie Poulin a,* a Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile b Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Japan c Departamento de Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile article info abstract Article history: The evolution and the historical biogeography of the Southern Ocean marine benthic fauna are closely Received 14 September 2009 related to major tectonic and climatic changes that occurred in this region during the last 55 million years Revised 29 January 2010 (Ma). Several families, genera and even species of marine organisms are shared between distant biogeo- Accepted 1 February 2010 graphic provinces in this region. This pattern of distribution in marine benthic invertebrates has been Available online 6 February 2010 commonly explained by vicariant speciation due to plate tectonics. However, recent molecular studies have provided new evidence for long-distance dispersion as a plausible explanation of biogeographical Keywords: patterns in the Southern Ocean. True limpets of the genus Nacella are currently distributed in different Antarctic Circumpolar Current biogeographic regions of the Southern Ocean such as Antarctica, Kerguelen Province, southern New Zea- Cellana Middle-Miocene climatic transition land Antipodean Province, North-Central Chile and South American Magellanic Province.
    [Show full text]
  • Alien Species in the Mediterranean Sea by 2010
    Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O.
    [Show full text]
  • Marine Molluscs in Environmental Monitoring II
    Helgol Mar Res (2003) 57:206–211 DOI 10.1007/s10152-003-0155-1 ORIGINAL ARTICLE Vladimir Bresler · Ofer Mokady · Lev Fishelson · Tamar Feldstein · Avigdor Abelson Marine molluscs in environmental monitoring II. Experimental exposure to selected pollutants Received: 24 September 2002 / Revised: 30 May 2003 / Accepted: 12 June 2003 / Published online: 7 August 2003 Springer-Verlag and AWI 2003 Abstract In an effort to establish biomonitoring pro- Keywords Cadmium · DDT · Littoral molluscs · grammes for routine and emergency monitoring of littoral Mediterranean Sea · Red Sea marine habitats, organismal responses are examined in two ways: firstly, in controlled, laboratory studies, where the response may be accurately characterized; secondly, Introduction in field-collected specimens, with the hope of obtaining evidence regarding disturbances such as the ones caused In recent decades, coastal zones worldwide have experi- by anthropogenic pollution. In many cases, there is a gap enced accelerated urban and industrial development between the two types of studies, and different species leading to increasingly heavy effluent loads on littoral and experimental and/or analytical procedures are used. marine ecosystems. One of the prominent symptoms of In a series of recent studies, we have examined responses ecosystem deterioration is a decline or disappearance of of field-collected molluscs, and interpreted our findings populations of sensitive species. However, other species with respect to pollution. Here, we report a complemen- in the same habitat sometimes display a remarkable tary study, in which molluscs collected from reference resistance, which may be attributed to a range of and polluted sites were exposed to cadmium or DDT preventive responses, enabling them to withstand envi- under controlled laboratory conditions.
    [Show full text]
  • Marine Molluscs in Environmental Monitoring III
    Helgol Mar Res (2003) 57:212–219 DOI 10.1007/s10152-003-0156-0 ORIGINAL ARTICLE Tamar Feldstein · Yoel Kashman · Avigdor Abelson · Lev Fishelson · Ofer Mokady · Vladimir Bresler · Yigal Erel Marine molluscs in environmental monitoring III. Trace metals and organic pollutants in animal tissue and sediments Received: 24 September 2002 / Revised: 30 May 2003 / Accepted: 12 June 2003 / Published online: 25 July 2003 Springer-Verlag and AWI 2003 Abstract Concentrations of trace elements and organic effects between these compounds and between them and pollutants were determined in marine sediments and metals can lead to acute toxicity. molluscs from the Mediterranean and Red Sea coasts of Israel. Two bivalve species (Donax trunculus, Pteria Keywords Chemical monitoring · Marine pollution · aegyptia), two gastropod species (Patella caerulea, Heavy metals · Trace elements · Bio-concentration Cellana rota) and sediments were sampled at polluted and relatively clean, reference, sites. Along the Mediter- ranean coast of Israel, sediments and molluscs from Haifa Introduction Bay stations were enriched with both organic and trace element contaminants. In the Red Sea, differences More than half the world’s population lives within 60 km between the polluted and reference sites were less of the shoreline, and this could rise to three-quarters by pronounced. Bio-concentration factors indicate a signif- the year 2020. Adverse anthropogenic effects on the icant concentration of Zn, As, Cd, Sn and Pb in animal coastal environment include eutrophication, heavy metals, tissue relative to the concentrations of these elements in organic and microbial pollution and oil spills (Kingston the sediments. In contrast, Ce, La and U were not 1992; Costello and Read 1994; Muir et al.
    [Show full text]
  • Out of Antarctica: Quaternary Colonization of Sub-Antarctic Marion Island by the Limpet Genus Nacella (Patellogastropoda: Nacellidae)
    Polar Biol DOI 10.1007/s00300-014-1620-9 ORIGINAL PAPER Out of Antarctica: quaternary colonization of sub-Antarctic Marion Island by the limpet genus Nacella (Patellogastropoda: Nacellidae) Claudio A. Gonza´lez-Wevar • Steven L. Chown • Simon Morley • Nestor Coria • Thomas Sauce´de • Elie Poulin Received: 29 January 2014 / Revised: 3 November 2014 / Accepted: 12 November 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract The distribution of the Southern Ocean near- Nacella concinna and its sub-Antarctic relative Nacella shore marine benthic fauna is the consequence of major delesserti from Marion Island stands against this tenet. geologic, oceanographic, and climatic changes during the Here, we performed new phylogenetic reconstructions in last 50 Ma. As a result, a main biogeographic principle in Nacella with special emphasis on the relationship between the Southern Ocean is the clear distinction of the Antarctic N. concinna and N. delesserti. Similarly, we performed biota. The Antarctic Polar Front (APF) represents an population-based analyses in N. concinna and N. delesserti important barrier between Antarctica and other sub-Ant- to further understand the genetic legacy of the Quaternary arctic provinces. However, the high degree of genetic glacial cycles. Phylogenetic reconstructions recognized N. affinity between populations of the Antarctic limpet concinna and N. delesserti as two closely but distinct monophyletic entities and therefore as valid evolutionary units. The cladogenetic process separating them occurred This article is an invited contribution on Life in Antarctica: *0.35 Ma and is consistent with the origin of Marion Boundaries and Gradients in a Changing Environment as the main Island (*0.45 Ma).
    [Show full text]