MINTEQA2/PRODEFA2, a Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version 4.0

Total Page:16

File Type:pdf, Size:1020Kb

Load more

MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version 4.0 Prepared for U.S. Environmental Protection Agency National Exposure Research Laboratory Ecosystems Research Division Athens, Georgia by HydroGeoLogic, Inc. Herndon, Virginia and Allison Geoscience Consultants, Inc. Flowery Branch, Georgia June 1998 (revised September 1999) TABLE OF CONTENTS LIST OF FIGURES ......................................................... iv LIST OF TABLES ......................................................... iv SUMMARY ...............................................................v 1. INTRODUCTION AND BACKGROUND .....................................1 1.1 MATHEMATICAL FORMULATION OF MINTEQA2 .....................1 1.2 SUMMARY OF SIGNIFICANT MODIFICATIONS SINCE VERSION 3.0 .....3 1.2.1 Gaussian Model for Dissolved Organic Matter .....................3 1.2.2 Changes to Minimize Violations of Gibb’s Phase Rule ...............4 1.2.3 Other Changes in Model Code .................................4 1.2.4 Database Changes ...........................................4 2. THE GAUSSIAN MODEL FOR DISSOLVED ORGANIC MATTER ................6 2.1 BACKGROUND ..................................................6 2.1.1 Discrete Ligand Models ......................................7 2.1.2 Continuous Distribution Models ................................9 2.1.3 The Gaussian DOM Model ...................................10 2.2 IMPLEMENTATION OF THE GAUSSIAN DOM MODEL IN MINTEQA2 ...16 2.2.1 Calculation of Gradients .....................................17 2.2.2 Modifications in MINTEQA2 Source Code ......................18 2.3 OTHER MODIFICATIONS FOR THE GAUSSIAN DOM MODEL ..........19 2.3.1 Treatment of Charge and Activity Coefficients for Organic Species .....19 3. MODIFICATIONS IN MINTEQA2 TO MINIMIZE VIOLATIONS OF GIBBS PHASE RULE .............................................21 3.1 SOURCE CODE MODIFICATIONS ..................................23 4. OTHER MODIFICATIONS IN MINTEQA2/PRODEFA2 ........................24 4.1 IMPROVEMENT IN EXECUTION SPEED ............................24 4.2 MODIFICATIONS TO MINIMIZE NON-CONVERGENCE ...............25 4.3 MODIFICATIONS FOR MODELING TITRATIONS .....................26 4.4 MODIFICATIONS FOR SPECIALIZED OUTPUT .......................26 ii 4.5 MODIFICATIONS FOR CUSTOMIZED DATABASE FILENAMES .........27 4.6 CORRECTION OF KNOWN ERRORS IN EARLIER VERSIONS ...........27 5. MODIFICATIONS TO THE THERMODYNAMIC DATABASE ...................28 5.1 DATA SOURCES .................................................28 5.1.1 Prioritized List of Sources ...................................29 5.2 DATA REDUCTION ..............................................30 5.2.1 Ionic Strength and Temperature Corrections of Log K ..............30 5.2.2 Expressing the Reaction in Terms of MINTEQA2 Components .......31 5.2.3 Other Data Reduction Methods ...............................32 5.3 QUALITY ASSURANCE EFFORTS ..................................32 5.4 REVIEW AND CORRECTION OF METAL-ORGANIC SPECIES ...........33 5.4.1 Component and Species Names for Organic Species ................34 5.4.2 Database Changes for Metal-Organic Species .....................36 5.5 REVIEW AND UPDATE OF OTHER DATABASE SPECIES ..............36 BIBLIOGRAPHY ..........................................................37 APPENDIX A - THERMODYNAMIC DATA FOR MINTEQA2 V4.0 .................43 APPENDIX B - FORMAT OF THE THERMODYNAMIC DATABASE V4.0 ...........74 iii LIST OF FIGURES Figure 2.1 Illustrating Normal Probability of Occurrence (Concentration) of Ligands Versus Log K within the DOM Mixture ..............................11 Figure 2.2 Bimodal Distribution of Relative Site Concentration Versus Log K ..........12 LIST OF TABLES Table 5.1 Organic Ligands and the Associated MINTEQA2 Component ID No., Name, and Charge ..............................................34 iv SUMMARY This report presents modifications in the geochemical speciation model MINTEQA2 and its associated user interface, PRODEFA2, for version 4.0. The previous release, version 3.11, incorporated changes that were never formally described in model documentation. Important version 3.11 changes that apply to version 4.0 are also described in this document. The basic model theory described in the version 3.0 model documentation is still valid and provides a basic description of the model. The information in this document is intended to supplement that provided in the version 3.0 user manual. Significant changes in the MINTEQA2/PRODEFA2 model since the publication of the version 3.0 user manual include: Incorporation of the Gaussian model for computing trace metal complexation with dissolved organic matter, modifications to minimize the occurrence of violations of Gibbs phase rule, modifications to allow direct simulation of a titration in one model run, modifications to allow selected output to be written for easy importing to a spreadsheet, modifications to improve model execution speed and convergence, and modifications to improve the thermodynamic database used by the model, including the addition of beryllium (II), cobalt (II and III), molybdenum (VI), and tin (II and IV) compounds. Also, errors in thermodynamic constants associated with certain metal- organic reactions in earlier versions have been corrected in version 4.0, thermodynamic constants for inorganic species have been reviewed and updated, and all reference citations for equilibrium constants have been included in the revised database. In addition, the model has been made Y2K compliant. These and other revisions are described in this document. v CHAPTER 1 INTRODUCTION AND BACKGROUND MINTEQA2 is a equilibrium speciation model that can be used to calculate the equilibrium composition of dilute aqueous solutions in the laboratory or in natural aqueous systems. The model is useful for calculating the equilibrium mass distribution among dissolved species, adsorbed species, and multiple solid phases under a variety of conditions including a gas phase with constant partial pressure. A comprehensive database is included that is adequate for solving a broad range of problems without need for additional user-supplied equilibrium constants. The model employs a pre- defined set of components that includes free ions such as Na+ and neutral and charged complexes 0 + (e.g., H4SiO4 , Cr(OH)2 ). The database of reactions is written in terms of these components as reactants. An ancillary program, PRODEFA2, serves as an interactive pre-processor to help produce the required MINTEQA2 input files. Several modifications important to the user have been made since the last publication of a MINTEQA2/PRODEFA2 user manual (Allison et al.,1991; version 3.0). This document is intended to supplement the basic information provided in the version 3.0 user manual. After a brief introduction and description of MINTEQA2, it describes significant changes since version 3.0. 1.1 MATHEMATICAL FORMULATION OF MINTEQA2 A system of n independent components that can combine to form m species is represented by a set of mass action expressions of the form n &a ' ij Ki 6Si> k Xj (1) j'1 where Ki is the formation constant for species i, {Si} is the activity of species i, Xj is the activity of component j, and aij is the stoichiometric coefficient of component j in species i. Rearranging to express the concentration Ci in terms of the activities of components gives 1 n K a ' i ij Ci k Xj (2) ' (i j 1 where (i represents the activity coefficient of species i. In addition to the mass action expressions, the set of n independent components is governed by n mass balance equations of the form n ' & Yj j aij Ci Tj (3) i'1 where Tj is the known total concentration of component j (an input parameter). Thus, Yj is the difference between the calculated total concentration and the known total concentration of component j. The mathematical solution of the equilibrium problem is the set of component activities that give species concentrations from equation (2) which produce a component mass imbalance of zero in equation (3) for each and every component. The equilibrium problem is solved iteratively— the Xj values are deemed correct and the problem is solved when the Yj values are reduced to an acceptably small value for every component. If this is not the case, new estimates are made for component activities Xj, and the calculations are repeated in a new iteration beginning at Equation (2). MINTEQA2 uses the Newton-Raphson approximation method to estimate the new Xj at each iteration. This method utilizes a Jacobian matrix whose elements represent the partial derivatives of each component mass balance difference Yj with respect to every other component activity Xk where both j and k range from 1 to the number of components (n). Each gradient element of the Jacobian is given by MY n MC ' j ' i uj,k j aij (4) ' MXk i 1 MXk In summary, the mathematical solution to the equilibrium problem is that set of component activities X (using bold symbols to indicate matrix notation for brevity) which results in the set of concentrations C such that each individual of the set of mass balance differences Y is equal to zero. In practice, it is only necessary to find X such that each individual of Y is made less than some tolerance value. The general procedure is to first guess X, then calculate C and Y. If any individual of Y exceeds (in absolute terms) its prescribed tolerance value, a new estimate is made for X, then C and Y are recalculated, and the test is repeated. This
Recommended publications
  • Uranium Mineralization at Lagoa Real, Ba-Brazil: the Role of Fluids in Its Genesis

    Uranium Mineralization at Lagoa Real, Ba-Brazil: the Role of Fluids in Its Genesis

    2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 Associação Brasileira de Energia Nuclear - ABEN ISBN: 978-85-99141-03-8 URANIUM MINERALIZATION AT LAGOA REAL, BA-BRAZIL: THE ROLE OF FLUIDS IN ITS GENESIS Sônia Pinto Prates, José Marques Correia Neves and Kazuo Fuzikawa Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG) Av. Antonio Carlos 6627 – Campus UFMG - Pampulha 30270-901 Belo Horizonte, MG [email protected] ABSTRACT The Lagoa Real uranium province is situated in the central-south of Bahia state – Brazil and it is presently by far the most important and best known uranium occurrence in Brazil. Nowadays 34 anomalies are known in a 30 Km long and 5 km wide area. An open pit mine was open in Cachoeira Mine, in the north portion of the area, and it is the only uranium mine in operation in Brazil and even in South America as well. The uranium mineralization in the Lagoa Real uranium province occurs in metamorphic rocks named albitites, due to their albite content (over 70%). Uraninite is the main uranium mineral, followed by pechblende, uranophane, torbernite and other uranyl minerals. Uraninite occurs as tiny round and irregular crystals (20 a 30 μm) included or associated to mafic minerals, mainly pyroxene and garnet, and also to amphibole and biotite and sometimes to albite. Some secondary minerals such as, for instance, uranophane, torbernite and tyuyamunite are also found. The main albitites minerals from the Cachoeira mine (plagioclase, garnet, biotite, pyroxene, amphibole and titanite) were studied by means of Infrared Spectroscopy Techniques.
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus

    Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus

    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
  • Mineral Collecting Sites in North Carolina by W

    Mineral Collecting Sites in North Carolina by W

    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
  • Al~Hy and Dehydration of Torbernite

    Al~Hy and Dehydration of Torbernite

    326 The crystallog?.al~hy and dehydration of Torbernite. By A. F. HA~,~.IMOND, ~I.A., F.G.S. Assistant Curator, Museum of Practical Geology, London. [Read November 9, 1915.] I. CRYSTALLOGRAPHY. EASUREMENTS for torbernite have been given by numerous M observers; the results are, however, of rather early date, and althoug h the values for the ratio a:c are generally in fair agreement with the results here stated, the degree of accuracy of these measure- ments is not always indicated. Moreover, sevelml minor difficulties arise, add it has been suggested that some of the early descriptions refer to the allied species, zeunerite ; both species are optically uniaxial and possess almost the same axial ratios; they can, however, be dis- tinguished by means of their refractive indices. The ordinary index of all the specimens here described has been determined by the Becke method ; that for torbernite is 1.591, for the zeunerite from Schneeberg, approximately 1.62. A few torbernites possess a slightly higher index which may be due to the presence of zeunerite in isomorphous mixture, as is suggested by the presence of arsenic in some analyses. It has been possible to examine much of the original material described by L~vy in his catalogue of the Heuland-Turner Collection (3). ]3cfore the early measurements are discussed, an account will be given of measurements made on three well-crystallized specimens of torbernite, with the object of detelunining more closely the crystalline form of this mineral. The Axial Ratio of Torbernite. 3Tecimen No. 11 (fig. 1).--The locality of this specimen is not recorded.
  • Thermal Decomposition of Metatorbernite – a Controlled Rate Thermal Analysis Study

    Thermal Decomposition of Metatorbernite – a Controlled Rate Thermal Analysis Study

    Journal of Thermal Analysis and Calorimetry, Vol. 79 (2005) 721–725 THERMAL DECOMPOSITION OF METATORBERNITE – A CONTROLLED RATE THERMAL ANALYSIS STUDY R. L. Frost1*, J. Kristóf 2, M. L. Weier1, W. N. Martens1 and Erzsébet Horváth3 1Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia 2Department of Analytical Chemistry, University of Veszprém, 8201 Veszprém, P.O. Box 158, Hungary 3Department of Environmental Engineering and Chemical Technology, University of Veszprém, 8201 Veszprém, P.O. Box 158, Hungary The mineral metatorbernite, Cu[(UO2)2(PO4)]2·8H2O, has been studied using a combination of energy dispersive X-ray analysis, X-ray diffraction, dynamic and controlled rate thermal analysis techniques. X-ray diffraction shows that the starting material in the thermal decomposition is metatorbernite and the product of the thermal treatment is copper uranyl phosphate. Three steps are ob- served for the dehydration of metatorbernite. These occur at 138ºC with the loss of 1.5 moles of water, 155°C with the loss of 4.5 moles of water, 291°C with the loss of an additional 2 moles of water. These mass losses result in the formation of four phases namely meta(II)torbernite, meta(III)torbernite, meta(IV)torbernite and anhydrous hydrogen uranium copper pyrophosphate. The use of a combination of dynamic and controlled rate thermal analysis techniques enabled a definitive study of the thermal decompo- sition of metatorbernite. While the temperature ranges and the mass losses vary from author to author due to the different experi- mental conditions, the results of the CRTA analysis should be considered as standard data due to the quasi-equilibrium nature of the thermal decomposition process.
  • Synthesis, Characterisation and Dissolution of Brannerite. a Uranium Titanate Mineral

    Synthesis, Characterisation and Dissolution of Brannerite. a Uranium Titanate Mineral

    Synthesis, Characterisation and Dissolution of Brannerite. A Uranium Titanate Mineral. A thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Fiona Anne Charalambous Bachelor of Science (Applied Chemistry) (Honours) School of Applied Sciences RMIT UNIVERSITY APRIL 2013 Declaration of Authenticity I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is a result of work which has been carried out since the official commencement date of the approved research program; and, any editorial work, paid or unpaid, carried out by a third party is acknowledged. Fiona Anne Charalambous April 2013 ii Acknowledgments I am grateful to many people for their support during the course of my thesis. Firstly I would like to thank my primary supervisor, Prof. Suresh K. Bhargava; whose patience, kindness, limitless support and academic and industrial experience have been irreplaceable to me. I would like to thank Dr. James Tardio. There are no words to describe the amount of effort you have put into my research project. Your continuous guidance as well as your persevering understanding throughout my PhD has been a pillar of strength (even if you are a bombers supporter!). I really am appreciative of your patience, and the knowledge you have given me to mature into a researcher is unspoken. A thank you must go to Dr. Mark Pownceby from CSIRO. Your approach and knowledge on mineralogy has been indispensable during my PhD.
  • Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus

    Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus

    SpColl £2' 1 Energy I TEl 334 Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus ~ By A. D. Weeks and M. E. Thompson ~ I"\ ~ ~ Trace Elements Investigations Report 334 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AUG 12 1953 Dr. PhilUp L. Merritt, Assistant Director Division of Ra1'r Materials U. S. AtoTILic Energy Commission. P. 0. Box 30, Ansonia Station New· York 23, Nei< York Dear Phil~ Transmitted herewith are six copies oi' TEI-334, "Identification and occurrence oi' uranium and vanadium minerals i'rom the Colorado Plateaus," by A , D. Weeks and M. E. Thompson, April 1953 • We are asking !41'. Hosted to approve our plan to publish this re:por t as a C.i.rcular .. Sincerely yours, Ak~f777.~ W. H. ~radley Chief' Geologist UNCLASSIFIED Geology and Mineralogy This document consists or 69 pages. Series A. UNITED STATES DEPARTMENT OF TEE INTERIOR GEOLOGICAL SURVEY IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM TEE COLORADO PLATEAUS* By A• D. Weeks and M. E. Thompson April 1953 Trace Elements Investigations Report 334 This preliminary report is distributed without editorial and technical review for conformity with ofricial standards and nomenclature. It is not for public inspection or guotation. *This report concerns work done on behalf of the Division of Raw Materials of the u. s. Atomic Energy Commission 2 USGS GEOLOGY AllU MINEFALOGY Distribution (Series A) No. of copies American Cyanamid Company, Winchester 1 Argulllle National La:boratory ., ., .......
  • Zinc-Rich Zincolibethenite from Broken Hill, New South Wales

    Zinc-Rich Zincolibethenite from Broken Hill, New South Wales

    Zinc-rich zincolibethenite from Broken Hill, New South Wales Peter A. Williams', Peter Leverettl, William D. Birch: David E. Hibbs3, Uwe Kolitsch4 and Tamara Mihajlovic4 'School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797 ZDepartmentof Geosciences, Museum Victoria, PO Box 666, Melbourne, VIC 3001 3School of Pharmacy, University of Sydney, Sydney, NSW 2006 41nstitutfiir Mineralogie und Kristallographie, Geozentrum, Universitat Wien, Althanstrasse 14, A-1090 Wien, Austria ABSTRACT Zinc-rich zincolibethenite with the empiricalformula (Zn,,,,,Cu,,) ,, l(P,,~s,,,,) ,, 0,IOHisimplifed formula (Zn,Cu),PO,OH), occurs inferruginousgossunfrom theNo 3 lens, 280RL lmel, Block 14 open cut, Broken Hill, New South Wales, Australia, associated with corkite-hinsdalite, tsumebite, pyromorphite, sampleite, torbernite, dufienite, strengite and beraunite. Zinc-rich libethenite and olivenite are also associated with the zone, together with members of the libethenite-olivenite series. It is possible that solid solution in thephosphateseriesextends to theorthorhombicpolymorphofcompositionZn,P040H.Thecrystalstructureofa B~okenHillsample has been refined to Rl(F) = 0.0227 (single-crystal X-ray intensity data; a = 8.323(1), b = 8.251(1), c = 5.861(1)A, V = 402.5(1)A3; structuralformula Zn(Cu,,,,Zn,,,)i(P,,,~s0,02~OPIOH~.Detailedphysical andchemical dataarepresented, someofwhich supplement the partially incomplete data for type zincolibethenitefiom Zambia. INTRODUCTION An extremely diverse suite of secondary arsenates and Pnnm, witha = 8.3263(3), b = 8.2601(3), c = 5.8771(2) P\, V = phosphates occurstowards thebase of the oxidised zone of 402.52(10)A3 (Z = 4). Synthetic studies by Braithwaiteet al. the Broken Hill ore body (Figure 1). Minerals, including (2005)showed that, in boilingaqueons solution, no excessZn this suite, from the Block 14 and Kintore open cuts have was accommodated by the lattice, despite the fact that the been described in detail by Birch and van der Heyden Pnnm polymorph of Zn2P040His known as a synthetic, (1997).
  • User's Manual for Wateq4f, with Revised Thermodynamic Data

    User's Manual for Wateq4f, with Revised Thermodynamic Data

    USER'S MANUAL FOR WATEQ4F, WITH REVISED THERMODYNAMIC DATA BASE AND TEST CASES FOR CALCULATING SPECIATION OF MAJOR, TRACE, AND REDOX ELEMENTS IN NATURAL WATERS By James W. Ball and D. Kirk Nordstrom ______________________________________________________________________________ U.S. GEOLOGICAL SURVEY Open-File Report 91-183 Menlo Park, California 1991 Revised and reprinted - April, 2001 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: Copies of this report can be purchased from: Regional Hydrologist U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section 345 Middlefield Road Federal Center, Bldg. 810 Menlo Park, California 94025 Box 25425 Denver, Colorado 80225 ii CONTENTS Page Abstract .......................................................................... 1 Introduction ....................................................................... 2 Background ................................................................. 2 Purpose and scope............................................................ 2 Acknowledgments ............................................................ 3 Solute speciation calculations ......................................................... 3 Saturation indices................................................................... 4 Limits............................................................................ 4 Thermodynamic data................................................................
  • Mineral Replacement Reactions in Naturally Occurring Hydrated Uranyl Phosphates from the Tarabau Deposit: Examples in the Eu-Ba Uranyl Phosphate System

    Mineral Replacement Reactions in Naturally Occurring Hydrated Uranyl Phosphates from the Tarabau Deposit: Examples in the Eu-Ba Uranyl Phosphate System

    Mineral replacement reactions in naturally occurring hydrated uranyl phosphates from the Tarabau deposit: Examples in the eu-Ba uranyl phosphate system Andre Jarge Pinto a,*, Mario A. Gon<;alves a, Catia Prazeres b, Jose Manuel Astilleros c,d, Maria Joao Batista b • Department afGeology and CREMINERjIARSys, FacultyafSc iences, University of Lisbon, Ed, (6, 1759-016 Lisbon, Portugal b LNEG, National Laboratory for Energy and Geology,Bairro do Zambuja� Ap, 7586,2611-901 Amadora, Portugal c Department o!Crystallography and Mineralogy,Faculty a[Geological Sciences, UniversityComplutense af Madrid, Cl Jose Antonio Novais2, Madrid 28040, Spain d Institute ofGeosciences (UCM-CSIC), Cl Jose Antonio Novais2, Madrid 28040, Spain ABSTRACT Uranyl phosphates are a mineral group which include a wide range of different species, each containing spe­ cific cations within the hydrated interlayer, and often display a geochemicaljmineralogical relationship with Fe(III) oxy-hydroxides. The environmental relevance of these V-phases arises from their low solubility at most surface and groundwater conditions, where they can ultimately control aqueous V levels. In the present work, samples of naturally occurring uranyl phosphates from the Tarabau site, included in the Nisa deposit, located in central-eastern Portugal, are studied with X-ray diffraction (XRD), Electron Micro­ probe (EMP) and Scanning Electron Microscopy, with the purpose of i) identifying uranyl phosphate mineral Keywords: paragenesis, ii) assessing chemical homogeneity and stoichiometry of the most relevant phases and iii) unra­ Uranyl phosphate veling possible textural features of mineral reequilibration processes. XRD studies revealed that the analyzed Mineral replacement samples comprehend metatorbernite-like structures, consistent withCu(V02h(P04h ·8H20 formula.
  • Unclassified Unclassified

    Unclassified Unclassified

    I-507 UNCLASSIFIED Subject Category: GEOLOGY AND MINERALOGY DEPARTMENT OF THE INTERIOR CONTRIBUTION TO THE CRYSTALLOGRAPHY OF URANIUM MINERALS By Gabrielle Donnay J. D. H. Donnay This report is preliminary and has not been edited or reviewed for conformity with U. S. Geological Survey standards and nomenclature. April 1955 United State s. Geological Survey . Washington, D. C. Prepared by the Geological Survey for the UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service, Oak Ridge, Tennessee 33376 UNCLASSIFIED The Atomic Energy Commission makes no representation or warranty as to the accuracy or usefulness of the Information or statements contained in this report, or that the use of any Information, apparatus, method or process disclosed In this report may not Infringe privately-owned rights. The Commission assumes no liability with respect to the use of, or for damages resulting from the use of, any Information, apparatus, method or process disclosed In this report. This report has been reproduced directly from the best available copy. Printed in USA, Price 30 cents. Available from the Office of Technical Services, Department of Commerce, Wash­ ington 25, D. C. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY CONTRIBUTION TO THE CRYSTALLOGRAPHY OF URANIUM MINERALS* By GabrieUe Donnay and J. D. H. Donnay April 1955 Trace Elements Investigations Report 507 *This report concerns vork done partly on "behalf of the Division of Raw Materials of the U. -S. Atomic Energy Commission. CONTENTS Page Abstract ..»..•. »...«..... D o..».«o.<»..o.«-...*...«-*o.. ..••«.. •••.. **• IntrOdUCtiOn »o»o«o»»oooooo»ooooooooco»ooo.oo.ooo. oooo.ooo... 5 An integrating precession technique ooooo.ooo..oo.
  • THE MAGNETIC PROPERTIES of METATORBERNITE JOSE M. DIAZ Depaftonento De Fisica, Universidad Nacional, Bogota, Colombia HORACIO A

    THE MAGNETIC PROPERTIES of METATORBERNITE JOSE M. DIAZ Depaftonento De Fisica, Universidad Nacional, Bogota, Colombia HORACIO A

    Canad.ion Mineralo gist Vol.23, pp. 643-646(198s) THE MAGNETIC PROPERTIES OF METATORBERNITE JOSE M. DIAZ Depaftonentode Fisica,Universidad Nacional, Bogota, Colombia HORACIO A. FARACH AND CHARLES P. POOLE, JR. Departmentof Physicsand Astronomy, Universityof South Carolina,Columbio, South Carolina29208, U.S.A. AssrRAcr with the chemical formula Cu(UOTPO)r.8HrO and the structure sketchedon Figure 1, crystallizesin the The electron-spin-resonancespectra arising from the tetragonal syslem, space group PL/nmm (Doo7), IICu in metatorbernite exhibit strongly anisotropiq g- with two formula units per cell. Its crystal structure factors and linewidths. The anisotropy is explarnedin terms (Frondelet al. 1956,Ross & Evans1964, 1965, Ross of the magnetic interactions, which are stong within the et al. 1964, Makarov & Tobelko 1960) has IICu planes containing the copper atoms and waker between enclosedin a squareplanar configuration, wilh HrO planes. the qroleculesproviding very short Cu-O distances(1.91 presenceof Keywords: metatorbernite,g-factor anisotropy, electron- A). these qhort distancesindicate the spin resonance,magnetic interactions. very strong covalent bonds bdtweenthe copper and oxygen atoms. We selectedfor study large, well-formed crystals SoMNa.a,rns of metatorbernite on display at the McKissick . Museum of The University of South Carolina. They Les spectresde r6sonnancede spin dlectronique prove- weretaken from the Wisemanmine in SprucePine' IICu nant du de la mdtatorbernite se caract€risentpar des Mitchell Co., North Carolina in June 1932. facteurs-g et des largeurs de raie fortement anisofiopes. structuresoftorbernite and metatorberniteare par The L'anisotropie s'explique les interactions magudtiques: mainly in the number of water les plans qui les de very similar, differing fortes dans contiennent atomes cuivre, number of water faible entre ces plans.