Clustering Data Streams

Total Page:16

File Type:pdf, Size:1020Kb

Clustering Data Streams Data-Centric Systems and Applications Series editors M.J. Carey S. Ceri Editorial Board A. Ailamaki S. Babu P. Bernstein J.C. Freytag A. Halevy J. Han D. Kossmann I. Manolescu G. Weikum K.-Y. Whang J.X. Yu More information about this series at http://www.springer.com/series/5258 Minos Garofalakis r Johannes Gehrke r Rajeev Rastogi Editors Data Stream Management Processing High-Speed Data Streams Editors Minos Garofalakis Rajeev Rastogi School of Electrical and Amazon India Computer Engineering Bangalore, India Technical University of Crete Chania, Greece Johannes Gehrke Microsoft Corporation Redmond, WA, USA ISSN 2197-9723 ISSN 2197-974X (electronic) Data-Centric Systems and Applications ISBN 978-3-540-28607-3 ISBN 978-3-540-28608-0 (eBook) DOI 10.1007/978-3-540-28608-0 Library of Congress Control Number: 2016946344 Springer Heidelberg New York Dordrecht London © Springer-Verlag Berlin Heidelberg 2016 The fourth chapter in part 4 is published with kind permission of © 2004 Association for Computing Machinery, Inc.. All rights reserved. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Contents Data Stream Management: A Brave New World ............. 1 Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi Part I Foundations and Basic Stream Synopses Data-Stream Sampling: Basic Techniques and Results .......... 13 Peter J. Haas Quantiles and Equi-depth Histograms over Streams ........... 45 Michael B. Greenwald and Sanjeev Khanna Join Sizes, Frequency Moments, and Applications ............ 87 Graham Cormode and Minos Garofalakis Top-k Frequent Item Maintenance over Streams ............. 103 Moses Charikar Distinct-Values Estimation over Data Streams .............. 121 Phillip B. Gibbons The Sliding-Window Computation Model and Results .......... 149 Mayur Datar and Rajeev Motwani Part II Mining Data Streams Clustering Data Streams .......................... 169 Sudipto Guha and Nina Mishra Mining Decision Trees from Streams .................... 189 Geoff Hulten and Pedro Domingos Frequent Itemset Mining over Data Streams ............... 209 Gurmeet Singh Manku v vi Contents Temporal Dynamics of On-Line Information Streams .......... 221 Jon Kleinberg Part III Advanced Topics Sketch-Based Multi-Query Processing over Data Streams ........ 241 Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi Approximate Histogram and Wavelet Summaries of Streaming Data .. 263 S. Muthukrishnan and Martin Strauss Stable Distributions in Streaming Computations ............. 283 Graham Cormode and Piotr Indyk Tracking Queries over Distributed Streams ................ 301 Minos Garofalakis Part IV System Architectures and Languages STREAM: The Stanford Data Stream Management System ....... 317 Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom The Aurora and Borealis Stream Processing Engines ........... 337 Ugur˘ Çetintemel, Daniel Abadi, Yanif Ahmad, Hari Balakrishnan, Magdalena Balazinska, Mitch Cherniack, Jeong-Hyon Hwang, Samuel Madden, Anurag Maskey, Alexander Rasin, Esther Ryvkina, Mike Stonebraker, Nesime Tatbul, Ying Xing, and Stan Zdonik Extending Relational Query Languages for Data Streams ........ 361 N. Laptev, B. Mozafari, H. Mousavi, H. Thakkar, H. Wang, K. Zeng, and Carlo Zaniolo Hancock: A Language for Analyzing Transactional Data Streams ... 387 Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers, and Frederick Smith Sensor Network Integration with Streaming Database Systems ..... 409 Daniel Abadi, Samuel Madden, and Wolfgang Lindner Part V Applications Stream Processing Techniques for Network Management ........ 431 Charles D. Cranor, Theodore Johnson, and Oliver Spatscheck High-Performance XML Message Brokering ............... 451 Yanlei Diao and Michael J. Franklin Fast Methods for Statistical Arbitrage ................... 473 Eleftherios Soulas and Dennis Shasha Contents vii Adaptive, Automatic Stream Mining .................... 499 Spiros Papadimitriou, Anthony Brockwell, and Christos Faloutsos Conclusions and Looking Forward ..................... 529 Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi Data Stream Management: A Brave New World Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi 1 Introduction Traditional data-management systems software is built on the concept of persis- tent data sets that are stored reliably in stable storage and queried/updated several times throughout their lifetime. For several emerging application domains, how- ever, data arrives and needs to be processed on a continuous (24 × 7) basis, without the benefit of several passes over a static, persistent data image. Such continuous data streams arise naturally, for example, in the network installations of large Tele- com and Internet service providers where detailed usage information (Call-Detail- Records (CDRs), SNMP/RMON packet-flow data, etc.) from different parts of the underlying network needs to be continuously collected and analyzed for interest- ing trends. Other applications that generate rapid, continuous and large volumes of stream data include transactions in retail chains, ATM and credit card operations in banks, financial tickers, Web server log records, etc. In most such applications, the data stream is actually accumulated and archived in a database-management system of a (perhaps, off-site) data warehouse, often making access to the archived data prohibitively expensive. Further, the ability to make decisions and infer interesting M. Garofalakis (B) School of Electrical and Computer Engineering, Technical University of Crete, University Campus—Kounoupidiana, Chania 73100, Greece e-mail: [email protected] J. Gehrke Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA e-mail: [email protected] R. Rastogi Amazon India, Brigade Gateway, Malleshwaram (W), Bangalore 560055, India e-mail: [email protected] © Springer-Verlag Berlin Heidelberg 2016 1 M. Garofalakis et al. (eds.), Data Stream Management, Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_1 2 M. Garofalakis et al. Fig. 1 ISP network monitoring data streams patterns on-line (i.e., as the data stream arrives) is crucial for several mission-critical tasks that can have significant dollar value for a large corporation (e.g., telecom fraud detection). As a result, recent years have witnessed an increasing interest in designing data-processing algorithms that work over continuous data streams, i.e., algorithms that provide results to user queries while looking at the relevant data items only once and in a fixed order (determined by the stream-arrival pattern). Example 1 (Application: ISP Network Monitoring) To effectively manage the op- eration of their IP-network services, large Internet Service Providers (ISPs), like AT&T and Sprint, continuously monitor the operation of their networking infras- tructure at dedicated Network Operations Centers (NOCs). This is truly a large-scale monitoring task that relies on continuously collecting streams of usage information from hundreds of routers, thousands of links and interfaces, and blisteringly-fast sets of events at different layers of the network infrastructure (ranging from fiber- cable utilizations to packet forwarding at routers, to VPNs and higher-level trans- port constructs). These data streams can be generated through a variety of network- monitoring tools (e.g., Cisco’s NetFlow [10] or AT&T’s GigaScope probe [5]for monitoring IP-packet flows), For instance, Fig. 1 depicts an example ISP monitoring setup, with an NOC tracking NetFlow measurement streams from four edge routers in the network R1–R4. The figure also depicts a small fragment of the streaming data tables retrieved from routers R1 and R2 containing simple summary informa- tion for IP sessions. In real life, such streams are truly massive, comprising hundreds of attributes and billions of records—for instance, AT&T collects over one terabyte of NetFlow measurement data from its production network each day! Typically, this measurement data is periodically shipped off to a backend data warehouse for off-line analysis (e.g., at the end of the day). Unfortunately, such off-line analyses are painfully inadequate when it comes to critical network- management tasks, where reaction in (near) real-time is absolutely essential. Such tasks include, for instance, detecting malicious/fraudulent
Recommended publications
  • FOCS 2005 Program SUNDAY October 23, 2005
    FOCS 2005 Program SUNDAY October 23, 2005 Talks in Grand Ballroom, 17th floor Session 1: 8:50am – 10:10am Chair: Eva´ Tardos 8:50 Agnostically Learning Halfspaces Adam Kalai, Adam Klivans, Yishay Mansour and Rocco Servedio 9:10 Noise stability of functions with low influences: invari- ance and optimality The 46th Annual IEEE Symposium on Elchanan Mossel, Ryan O’Donnell and Krzysztof Foundations of Computer Science Oleszkiewicz October 22-25, 2005 Omni William Penn Hotel, 9:30 Every decision tree has an influential variable Pittsburgh, PA Ryan O’Donnell, Michael Saks, Oded Schramm and Rocco Servedio Sponsored by the IEEE Computer Society Technical Committee on Mathematical Foundations of Computing 9:50 Lower Bounds for the Noisy Broadcast Problem In cooperation with ACM SIGACT Navin Goyal, Guy Kindler and Michael Saks Break 10:10am – 10:30am FOCS ’05 gratefully acknowledges financial support from Microsoft Research, Yahoo! Research, and the CMU Aladdin center Session 2: 10:30am – 12:10pm Chair: Satish Rao SATURDAY October 22, 2005 10:30 The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics Tutorials held at CMU University Center into `1 [Best paper award] Reception at Omni William Penn Hotel, Monongahela Room, Subhash Khot and Nisheeth Vishnoi 17th floor 10:50 The Closest Substring problem with small distances Tutorial 1: 1:30pm – 3:30pm Daniel Marx (McConomy Auditorium) Chair: Irit Dinur 11:10 Fitting tree metrics: Hierarchical clustering and Phy- logeny Subhash Khot Nir Ailon and Moses Charikar On the Unique Games Conjecture 11:30 Metric Embeddings with Relaxed Guarantees Break 3:30pm – 4:00pm Ittai Abraham, Yair Bartal, T-H.
    [Show full text]
  • Hierarchical Clustering with Global Objectives: Approximation Algorithms and Hardness Results
    HIERARCHICAL CLUSTERING WITH GLOBAL OBJECTIVES: APPROXIMATION ALGORITHMS AND HARDNESS RESULTS ADISSERTATION SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Evangelos Chatziafratis June 2020 © 2020 by Evangelos Chatziafratis. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/bb164pj1759 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Tim Roughgarden, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Moses Charikar, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Li-Yang Tan I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Gregory Valiant Approved for the Stanford University Committee on Graduate Studies. Stacey F. Bent, Vice Provost for Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format.
    [Show full text]
  • Constraint Clustering and Parity Games
    Constrained Clustering Problems and Parity Games Clemens Rösner geboren in Ulm Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Bonn 2019 1. Gutachter: Prof. Dr. Heiko Röglin 2. Gutachterin: Prof. Dr. Anne Driemel Tag der mündlichen Prüfung: 05. September 2019 Erscheinungsjahr: 2019 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn Abstract Clustering is a fundamental tool in data mining. It partitions points into groups (clusters) and may be used to make decisions for each point based on its group. We study several clustering objectives. We begin with studying the Euclidean k-center problem. The k-center problem is a classical combinatorial optimization problem which asks to select k centers and assign each input point in a set P to one of the centers, such that the maximum distance of any input point to its assigned center is minimized. The Euclidean k-center problem assumes that the input set P is a subset of a Euclidean space and that each location in the Euclidean space can be chosen as a center. We focus on the special case with k = 1, the smallest enclosing ball problem: given a set of points in m-dimensional Euclidean space, find the smallest sphere enclosing all the points. We combine known results about convex optimization with structural properties of the smallest enclosing ball to create a new algorithm. We show that on instances with rational coefficients our new algorithm computes the exact center of the optimal solutions and has a worst-case run time that is polynomial in the size of the input.
    [Show full text]
  • Implementation of Locality Sensitive Hashing Techniques
    Implementation of Locality Sensitive Hashing Techniques Project Report submitted in partial fulfillment of the requirement for the degree of Bachelor of Technology. in Computer Science & Engineering under the Supervision of Dr. Nitin Chanderwal By Srishti Tomar(111210) to Jaypee University of Information and TechnologyWaknaghat, Solan – 173234, Himachal Pradesh i Certificate This is to certify that project report entitled “Implementaion of Locality Sensitive Hashing Techniques”, submitted by Srishti Tomar in partial fulfillment for the award of degree of Bachelor of Technology in Computer Science & Engineering to Jaypee University of Information Technology, Waknaghat, Solan has been carried out under my supervision. This work has not been submitted partially or fully to any other University or Institute for the award of this or any other degree or diploma. Date: Supervisor’s Name: Dr. Nitin Chanderwal Designation : Associate Professor ii Acknowledgement I am highly indebted to Jaypee University of Information Technology for their guidance and constant supervision as well as for providing necessary information regarding the project & also for their support in completing the project. I would like to express my gratitude towards my parents & Project Guide for their kind co-operation and encouragement which help me in completion of this project. I would like to express my special gratitude and thanks to industry persons for giving me such attention and time. My thanks and appreciations also go to my colleague in developing the project and people who have willingly helped me out with their abilities Date: Name of the student: Srishti Tomar iii Table of Content S. No. Topic Page No. 1. Abstract 1 2.
    [Show full text]
  • Model Checking Large Design Spaces: Theory, Tools, and Experiments
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Model checking large design spaces: Theory, tools, and experiments Rohit Dureja Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Dureja, Rohit, "Model checking large design spaces: Theory, tools, and experiments" (2020). Graduate Theses and Dissertations. 18304. https://lib.dr.iastate.edu/etd/18304 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Model checking large design spaces: Theory, tools, and experiments by Rohit Dureja A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Computer Science Program of Study Committee: Kristin Y. Rozier, Co-major Professor Gianfranco Ciardo, Co-major Professor Samik Basu Robyn Lutz Hridesh Rajan The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Rohit Dureja, 2020. All rights reserved. ii DEDICATION To my family. iii TABLE OF CONTENTS LIST OF FIGURES . vi LIST OF TABLES . .x ABSTRACT . xi CHAPTER 1. INTRODUCTION . .1 1.1 Motivation .
    [Show full text]
  • Detecting Near-Duplicates for Web Crawling
    WWW 2007 / Track: Data Mining Session: Similarity Search Detecting Near-Duplicates for Web Crawling ∗ Gurmeet Singh Manku Arvind Jain Anish Das Sarma Google Inc. Google Inc. Stanford University [email protected] [email protected] [email protected] ABSTRACT Documents that are exact duplicates of each other (due to Near-duplicate web documents are abundant. Two such mirroring and plagiarism) are easy to identify by standard documents differ from each other in a very small portion checksumming techniques. A more difficult problem is the that displays advertisements, for example. Such differences identification of near-duplicate documents. Two such docu- are irrelevant for web search. So the quality of a web crawler ments are identical in terms of content but differ in a small increases if it can assess whether a newly crawled web page portion of the document such as advertisements, counters is a near-duplicate of a previously crawled web page or not. and timestamps. These differences are irrelevant for web In the course of developing a near-duplicate detection sys- search. So if a newly-crawled page Pduplicate is deemed a tem for a multi-billion page repository, we make two research near-duplicate of an already-crawled page P , the crawl en- contributions. First, we demonstrate that Charikar's finger- gine should ignore Pduplicate and all its out-going links (in- printing technique is appropriate for this goal. Second, we tuition suggests that these are probably near-duplicates of P 1 present an algorithmic technique for identifying existing f- pages reachable from ). Elimination of near-duplicates bit fingerprints that differ from a given fingerprint in at most saves network bandwidth, reduces storage costs and im- k bit-positions, for small k.
    [Show full text]
  • Time-Release Cryptography from Minimal Circuit Assumptions
    Time-release Cryptography from Minimal Circuit Assumptions Samuel Jaques∗ Hart Montgomeryy Arnab Royz Abstract Time-release cryptography requires problems that take a long time to solve and take just as long even with significant computational resources. While time-release cryptography originated with the seminal paper of Rivest, Shamir and Wagner (’96), it has gained special visibility recently due to new time-release primitives, like verifiable delay functions (VDFs) and sequential proofs of work, and their novel blockchain applications. In spite of this recent progress, security definitions remain inconsistent and fragile, and foundational treatment of these primitives is scarce. Relationships between the various time-release primitives are elusive, with few connections to standard cryptographic assumptions. We systematically address these drawbacks. We define formal notions of sequential functions, the building blocks of time-release cryptography. The new definitions are robust against change of machine models, making them more amenable to complexity theoretic treatment. We demonstrate the equivalence of various types of sequential functions under standard cryptographic assumptions. The time-release primitives in the literature (such as those defined by Bitansky et al. (ITCS ’16)) imply that these primitives exist, as well as the converse. However, showing that a given construction is a sequential function is a hard circuit lower bound problem. To our knowledge, no results show that standard cryptographic assumptions imply any sequen- tiality. For example, repeated squaring over RSA groups is assumed to be sequential, but nothing connects this conjecture to standard hardness assumptions. To circumvent this, we construct a function that we prove is sequential if there exists any sequential function, without needing any specific knowledge of this hypothetical function.
    [Show full text]
  • Moses Charikar Stanford University
    Moses Charikar Stanford University Friday, March 22, 2019 3:00 pm Luddy Hall, Rm. 1106 Importance Sampling in High Dimensions via Hashing Abstract: Locality sensitive hashing (LSH) is a popular technique for nearest neighbor search in high dimensional data sets. Recently, a new view at LSH as a biased sampling technique has been fruitful for density estimation problems in high dimensions. Given a set of points and a query point, the goal (roughly) is to estimate the density of the data set around the query. One way to formalize this is by kernel density estimation: Given a function that decays with distance and represents the "influence" of a data point at the query, sum up this influence function over the data set. Yet another way to formalize this problem is by counting the number of data points within a certain radius of the query. While these problems can easily be solved by making a linear pass over the data, this can be prohibitive for large data sets and multiple queries. Can we preprocess the data so as to answer queries efficiently? This talk will survey several recent papers that use locality sensitive hashing to design unbiased estimators for such density estimation problems and their extensions. This talk will survey joint works with Arturs Backurs, Piotr Indyk, Vishnu Natchu, Paris Syminelakis and Xian (Carrie) Wu. Biography: Moses Charikar is the Donald E. Knuth professor of Computer Science at Stanford University. He obtained his PhD from Stanford in 2000, spent a year in the research group at Google, and was on the faculty at Princeton from 2001-2015.
    [Show full text]
  • Approximation Algorithms for Grammar-Based
    Approximation Algorithms for Grammar-Based Data Compression by Eric Lehman Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2002 © Eric Lehman, MMII. All rights reserved. The author hereby grants to MIT permission to reproduce and E'AKER distribute publicly paper and electronic copies of this thesis dm STSITTUCE in whole or in part. ArPR 1 6 2002 LIBRARIES Author ............... Department of Electrical Engineering and Computer Science February 1, 2002 Certified by ....................... Madhu Sudan Associate Professor of Electrical Enginjering and Computer Science Thesjs Supevisor Accepted by ............. ...... Arthur C. Smith Chairman, Department Committee on Graduate Students 2 Approximation Algorithms for Grammar-Based Data Compression by Eric Lehman Submitted to the Department of Electrical Engineering and Computer Science on February 1, 2002, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract This thesis considers the smallest grammar problem: find the smallest context-free grammar that generates exactly one given string. We show that this problem is intractable, and so our objective is to find approximation algorithms. This simple question is connected to many areas of research. Most importantly, there is a link to data compression; instead of storing a long string, one can store a small grammar that generates it. A small grammar for a string also naturally brings out under- lying patterns, a fact that is useful, for example, in DNA analysis. Moreover, the size of the smallest context-free grammar generating a string can be regarded as a computable relaxation of Kolmogorov complexity.
    [Show full text]
  • Rajeev Motwani
    THEORY OF COMPUTING, Volume 8 (2012), pp. 55–68 www.theoryofcomputing.org SPECIAL ISSUE IN HONOR OF RAJEEV MOTWANI Rajeev Motwani (1962-2009) Prabhakar Raghavan∗ Received: September 13, 2010; published: March 31, 2012. Abstract: Rajeev Motwani was a pre-eminent theoretical computer scientist of his genera- tion, a technology thought leader, an insightful venture capitalist, and a mentor to some of the most influential entrepreneurs in Silicon Valley in the first decade of the 21st century. This article presents an overview of Rajeev’s research, and provides a window to his early life and the various influences that shaped his research and professional career—it is a small celebration of his wonderful life and many achievements. ACM Classification: K.2/People, F.2.2 AMS Classification: 01A70, 68-00 Key words and phrases: biography 1 Early Life and Education Rajeev Motwani was born on March 24, 1962 in the Indian city of Jammu to Lieutenant Colonel Hotchand Motwani, an officer in the Indian Army, and Namita Motwani (nee´ Sushila). His family included brothers Sanjeev and Suneev. Given his father’s army career, Rajeev’s family moved often and lived in various parts of India before settling down in New Delhi. Those who knew Rajeev as a young boy remember him as an avid reader. When Rajeev was seven, his father was stationed in the scenic town of Devlali near Mumbai, India. His family would walk a kilometer to the local library to get books, and the seven-year-old Rajeev would be seen reading the books ∗Based on contributions by Sanjeev Arora, Gautam Bhargava, Piotr Indyk, Asha Jadeja, Sanjeev Motwani, Prabhakar Raghavan, and G.
    [Show full text]
  • Practical Hash Functions for Similarity Estimation and Dimensionality Reduction
    Practical Hash Functions for Similarity Estimation and Dimensionality Reduction Søren Dahlgaard Mathias Bæk Tejs Knudsen University of Copenhagen / SupWiz University of Copenhagen / SupWiz [email protected] [email protected] Mikkel Thorup University of Copenhagen [email protected] Abstract Hashing is a basic tool for dimensionality reduction employed in several aspects of machine learning. However, the perfomance analysis is often carried out under the abstract assumption that a truly random unit cost hash function is used, without concern for which concrete hash function is employed. The concrete hash function may work fine on sufficiently random input. The question is if they can be trusted in the real world where they may be faced with more structured input. In this paper we focus on two prominent applications of hashing, namely similarity estimation with the one permutation hashing (OPH) scheme of Li et al. [NIPS’12] and feature hashing (FH) of Weinberger et al. [ICML’09], both of which have found numerous applications, i.e. in approximate near-neighbour search with LSH and large-scale classification with SVM. We consider the recent mixed tabulation hash function of Dahlgaard et al. [FOCS’15] which was proved theoretically to perform like a truly random hash function in many applications, including the above OPH. Here we first show im- proved concentration bounds for FH with truly random hashing and then argue that mixed tabulation performs similar when the input vectors are not too dense. Our main contribution, however, is an experimental comparison of different hashing schemes when used inside FH, OPH, and LSH.
    [Show full text]
  • STOC ’98 to Qualify for the Early Registration Fee, Your Registra- Tion Application Must Be Postmarked by Thursday, April 30, 1998
    Registration for STOC '98 To qualify for the early registration fee, your registra- tion application must be postmarked by Thursday, April 30, 1998. The non-student registration fee in- cludes the Saturday night reception, the Sunday night STOC '98 business meeting, the Monday night banquet, coffee breaks, lunches, and a copy of the proceedings. The student fee includes all of the above except the banquet. Mail the form below, along with credit card informa- tion or a check or money order in U.S. currency drawn through a U.S. bank, made payable to ACM/STOC'98. STOC '98 Computer Science Program University of Texas at Dallas P.O. Box 830688, EC 31 Richardson, TX 75083{0688 Name Address Email Phone FAX Special Needs (Please specify) Affiliation (as you wish it to appear on your name tag): The 30th Annual Please circle one amount below and fill in your member- ACM Symposium on ship number if appropriate: # . Theory of Computing Registrants in the \Other" category will automatically become SIGACT members for a period of one year. Fee (US$) after April 30 ACM or SIGACT Member 315 390 Student 125 190 Dallas, Texas Other 390 465 May 24 { May 26, 1998 Check your dietary preference: Kosher 2 Vegetarian 2 No Restriction 2 Number of additional proceedings $54 each: Number of additional Banquet tickets $55 each: Total included: $ Sponsored by ACM SIGACT Credit Card Information (if applicable): VISA / MasterCard / American Express (circle) with support from Microsoft one Card # Exp. Date: Signature Hotel Reservations Deadline: April 30, 1998 The conference will be held at the Fairmont Hotel, Dal- las, Texas.
    [Show full text]