Field-Based Effects Measures in SITU ON-LINE TOXICITY BIOMONITORING in WATER: RECENT DEVELOPMENTS

Total Page:16

File Type:pdf, Size:1020Kb

Field-Based Effects Measures in SITU ON-LINE TOXICITY BIOMONITORING in WATER: RECENT DEVELOPMENTS Environmental Toxicology and Chemistry, Vol. 25, No. 9, pp. 2263–2271, 2006 ᭧ 2006 SETAC Printed in the USA 0730-7268/06 $12.00 ϩ .00 Field-Based Effects Measures IN SITU ON-LINE TOXICITY BIOMONITORING IN WATER: RECENT DEVELOPMENTS ALMUT GERHARDT,*† MARY KATE INGRAM,‡ IK JOON KANG,§ and SHIMON ULITZUR࿣ †LimCo International, An der Aa 5, 49477 Ibbenbueren, Germany ‡Lakehead University, Biology Department, 955 Oliver Road, Thunder Bay, Ontario P7A 4K2, Canada §Seiko Electric, Toko 2 chome, Hakata-ku, Fukuoka 812-0008, Japan ࿣CheckLight, P.O. Box 72, Qiryat-Tiv’on 36000, Israel (Received 18 August 2005; Accepted 27 February 2006) Abstract—In situ on-line biomonitoring is an emerging branch of aquatic biomonitoring. On-line biomonitoring systems use behavioral and/or physiological stress responses of caged test organisms exposed in situ either in a bypass system or directly in- stream. Sudden pollution waves are detected by several existing single-species on-line biomonitors, which until now have been placed mostly in streamside laboratories. However, recent achievements have been multispecies biomonitors, mobile biomonitors for direct in-stream use, development of new instruments, new methods for data analysis and alarm generation, biomonitors for use in soil and sediment, and scientific research supporting responses as seen in on-line biomonitors by linking them to other biological and ecological effects. Mobile on-line monitoring platforms containing an array of biomonitors, biosensors, and chemical monitoring equipment might be the future trend, especially in monitoring transboundary rivers at country borders as well as in coastal zones. Keywords—In situ tests On-line biomonitors Biological early warning systems Toxicity monitoring INTRODUCTION line toxicity biomonitoring, is an emerging field that is playing Biomonitoring is a truly interdisciplinary applied science an increasing role in the surveillance of environmental quality, based on both ecology and ecotoxicology [1]. Two types of often as a complement to chemical monitoring [1–3], and biomonitoring methods that integrate these disciplines exist; should be integrated in the European Water Framework Di- trend biomonitoring (using ecological methods and community rective. structure; e.g., diversity indices, similarity indices, species On-line biomonitors frequently use behavior as an endpoint, richness, and percentage of Ephemeroptera, Plecoptera, and which provides a visual and, thus, measurable response at the Trichoptera taxa), and community function (e.g., Functional whole-organism level. This method generates fast and sensitive Feeding Groups) and rapid bioassessment methods (e.g., sap- results that can be integrated into many biological functions roby index, biotic indices, and Biological Monitoring Working [4]. The key is to employ invertebrates or younger life stages Party index). However, other indicator methods might be added that tend to be more sensitive to toxicants and respond more depending on the purpose of biomonitoring, such as fish health rapidly than adult stages or vertebrates, but with the proviso status, macrophytes, or algae; the latter two methods are in- that the effects are nonlethal. valuable for eutrophication monitoring. All these methods are, The basic idea of an automated biological sensor for water- unfortunately, not based on ecotoxicology, and because pol- quality management was first proposed by Cairns et al. [5]. lution is more often caused by chemical contaminant mixtures Automated biomonitors operate on a real-time basis using liv- than by oxygen depletion, we need to improve current eco- ing organisms as sensors, ideally providing a continuous flow toxicological methods for pollution monitoring. Several ap- of information regarding water quality. On-line biomonitors, plicable methods include in situ on-line biomonitoring with continuous (dynamic) biotests, automated biotests, or BEWS so-called biological early warning systems (BEWS) below tox- are characterized by three components: a test organism, an ic effluents or along large rivers, especially at national borders, automated detection system, and an alarm system. The tasks to detect toxicity spikes and to provide data regarding potential of on-line biomonitors are to detect pollution waves by re- permit violations. Moreover, rapid toxicity tests can be applied cording the ‘‘integrated biological response’’ of the test or- directly in situ based on behavioral measurements (e.g., avoid- ganism to pollution spikes [3]. ance responses) or on survival, growth, genomics, or other metrics. In situ cage exposures are another appropriate method BACKGROUND for long-term exposures. [1]. In 1986, a Sandoz chemical storage building in Basel (Swit- The development of on-line and off-line in situ biotests for zerland) caught fire, spewing approximately 40 tons of insec- toxicological assessment and biomonitoring of water quality ticides and 400 kg of atrazine into the Rhine River, resulting follows the United Nations Agenda 21 (http://www.un.org), in the devastation of a large portion of the river’s biocoenosis which highlights the protection and sustainable management as well as drinking-water production (40 waterworks had to of water as a restricted resource. Biomonitoring, especially on- close for one month) from an already polluted river [6]. Shortly * To whom correspondence may be addressed ([email protected]). after the accident, an automated biomonitoring system, such Presented at the 4th SETAC World Congress, Portland, OR, USA, as the dynamic Daphnia test (a device that electronically mea- November 14–18, 2004. sures Daphnia swimming behavior) [7], located 500 km down- 2263 2264 Environ. Toxicol. Chem. 25, 2006 A. Gerhardt et al. stream detected and reported the event. Samples taken at the of technical errors [3]. The movement of one healthy water time of the alarm showed that the same types of pesticides flea up and down through many light beams, with the re- triggering these alarms were stored in the Sandoz facility. As maining dead water fleas resting on the bottom of the exposure a result of the speed and accuracy of this single monitoring vessel, produced data similar to those of numerous healthy station detection, many European governments mandated ad- water fleas passing through fewer light beams. Video tracking ditional monitoring stations along the river. The BEWS grew has rectified this error by monitoring each individual water into a new paradigm of environmental monitoring, especially flea; however, cross-over swimming is still a problem. Water in large European rivers at country borders. flea tests often use prefiltered test water, which eliminates par- The desired parameters of preformed biomonitors include ticle-bound toxicants. The European Water Framework Direc- full automation, real-time detection and data generation, sen- tive recommends using unfiltered water for testing purposes. sitivity to pollution, rapid response, easy operation, reliable Biomonitors that pretreat the water through filtration will not alarm interpretation, minimal false alarms, and minimal costs, be able to fulfill this demand. The water fleas need to be fed maintenance efforts, and training requirements. The organisms continuously by a stable algae culture, which might represent chosen range from vertebrates (fish) to arthropods (insects, another uncertainty. crustaceans, and daphnids) via oligochaetes to microbes (algae Fish biomonitors also have been among the first biomon- and bacteria). In higher organisms, behavior is the response itors utilized, especially for those systems based on rheotaxis type that generally is recorded with biomonitors. In microbes, [14], in which fish are anticipated to exhibit rheotaxis when physiological responses, such as bioluminescence, have been exposed to pollution waves. The fish then drift downstream to chosen as endpoints. Generally, these systems are part of a potentially more favorable conditions. This behavior can be streamside monitoring station that also includes the ability to seen as an avoidance reaction. This system, especially when detect and measure chemical and physical parameters. Chem- used with Leuciscus idus, is insensitive and generates ethical ical detection often is automated and can include detection of concerns because of the small size of the test aquaria [3]. known pollutants expected to be found as a result of accidental Modern systems are being developed that are based on tracking industrial spills or agricultural runoff. by video groups of fish, using larger aquaria, and recording swimming speed, turning rate, and swarm formation as test BIOMONITORS: STATE OF THE ART parameters. Moreover, some noncontact bioelectric systems Most bacterial biomonitors are based on recording respi- have been developed, recording ventilation rate, cough rate, ration (bacterial respirometers); however, some use bacterial heart rate, and swimming behavior of different test species growth (i.e., measure turbidity or cell density) or biolumines- [15,16]. Tropical electrical fish exhibit an electrical organ dis- cence via a luminometer [8,9]. Bioelectrodes (bioprobes) are charge that has been used in biomonitoring systems, but this being developed that measure photosynthetic activity of im- parameter is too variable for accurate monitoring of pollutants mobilized green algae or cyanobacteria. Bacterial biomonitors [17]. are useful for monitoring wastewater treatment processes and Smaller running waters are governed predominantly by ben- effluents. Several problems with these
Recommended publications
  • Wisconsin's Water Quality Monitoring Strategy 2015-2020 Page 1 A
    A Product of the 2013‐14 Monitoring Success Workgroup for the Water Division and USEPA Photo by Richard Hurd, Sunset at Big Spring, 05‐11‐2014 Water from Big Spring, in the University of Wisconsin‐Madison Arboretum, Wisconsin’s Water Quality MonitoringFlowing Strategy toward Lake2015 Wingra‐2020 on a spring evening at sunset Page 1 Wisconsin’s Water Monitoring Strategy 2015 to 2020 Water Quality Monitoring Coordination Team Team Sponsor Susan Sylvester, Water Quality Bureau Director Team Leader Tim Asplund, Monitoring Section Chief Monitoring Workgroup Steering Team Tim Asplund, Katie Hein, Lisa Helmuth, Ruth Person, Mike Shupryt Wisconsin Monitoring Workgroup and Contributors Citizen Monitoring: Kris Stepenuck, Laura Herman, Christina Anderson, Lindsey Albright Field Biologists: Mark Hazuga, Jim Amrhein, Mary Gansberg, Jim Kreitlow Fisheries Management: Tim Simonson, Lori Tate, Candy Schrank Groundwater Management: Mel Vollbrecht Lakes and Rivers: Carroll Schaal, Scott Van Egeren, Maureen Ferry Mississippi River Unit: John Sullivan, Sara Strassman, James Fischer Monitoring: Mike Shupryt, Katie Hein, Mike Miller, Tom Bernthal, Elizabeth Haber, Lisa Helmuth, Tom Bernthal Office of the Great Lakes: Andy Fayram, Donalea Dinsmore, Steve Galarneau Science Services: Matt Diebel, John Lyons, Ron Arneson Water Evaluation: Brian Weigel, Aaron Larson, Kristi Minahan, Water Resources Supervisors: Greg Searle, Paul LaLiberte, James Hansen Wastewater: Diane Figiel Water Use: Shaili Pfeiffer, Jeff Helmuth Watershed Management: Corinne Billings, Heidi Kennedy, Pat Trochlell, Cheryl Laatsch USEPA: Ed Hammer, Linda Holst, Pete Jackson EGAD #3200‐2016‐01 This document can be found on the WDNR Website at: http://dnr.wi.gov/topic/surfacewater/monitoring.html The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan.
    [Show full text]
  • Aquatic Biomonitoring Programme for Tweefontein Complex
    Tweefontein Biomonitoring Programme: Wet Season Survey (April 2015) AQUATIC BIOMONITORING PROGRAMME FOR TWEEFONTEIN COMPLEX 2015 POST WET SEASON BIOMONITORING SURVEY Report reference: TFN/A/2015 Prepared by: Dr. P. Kotze (Pr.Sci.Nat. 400413/04) Mr. A. Strydom Clean Stream Biological Services P.O.Box 1358 Malalane 1320 Cell: 082-890-6452 Email: [email protected] Fax: 086-628-6926 Clean Stream Biological Services Tweefontein Biomonitoring Programme: Wet Season Biomonitoring Survey (April 2015) EXECUTIVE SUMMARY This report is based on the results of the biomonitoring and aquatic biodiversity survey conducted during April 2015 on selected sites in the Tweefontein Complex surface rights area. Where applicable, reference is also made previous surveys in order to establish temporal trends. The primary objective of the biomonitoring survey was to monitor the potential impacts of the Tweefontein Complex activities on the receiving water bodies. Sites were selected strategically in the Tweefontein Spruit, Zaaiwater Spruit and its tributaries, pan wetlands and pollution control facilities within the study area. This survey included the application of various protocols, such as aquatic macro-invertebrate sampling (SASS5), habitat assessment and toxicity testing of selected water sources in the study area. Some of the sampling sites were dry at the time of sampling and therefore no biomonitoring protocols could be applied, limiting spatial and temporal trend analyses. The following conclusions were drawn from the April 2015 biomonitoring survey at Tweefontein complex, with reference to long-term trends where applicable: Tweefontein Spruit catchment: Due to the lack of flow during the April 2015 survey selected biomonitoring protocols could not be applied at the biomonitoring sites.
    [Show full text]
  • Aquatic Biomonitoring at Greens Creek Mine, 2006 by James D
    Technical Report No. 07-02 Aquatic Biomonitoring at Greens Creek Mine, 2006 by James D. Durst Laura L. Jacobs May 2007 Alaska Department of Natural Resources Office of Habitat Management and Permitting Cover: Benthic macroinvertebrate sampling at Upper Greens Creek Site 48, 2006. ADNR/OHMP photo. The Alaska Department of Natural Resources administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information please write to DNR, 1300 College Road, Fairbanks, Alaska 99701; U.S. Fish and Wildlife Service, 4040 N. Fairfax Drive, Suite 300 Webb, Arlington, VA 22203; or O.E.O., U.S. Department of the Interior, Washington DC 20240. For information on alternative formats for this and other department publications, please contact the department ADA Coordinator at (voice) 907-269-8549 or (TDD) 907-269-8411. Aquatic Biomonitoring at Greens Creek Mine, 2006 Technical Report No. 07-02 by James D. Durst Laura L. Jacobs May 2007 Kerry Howard, Executive Director Office of Habitat Management and Permitting Alaska Department of Natural Resources Juneau, AK Suggested Citation: Durst, James D., and Laura L. Jacobs.
    [Show full text]
  • Ontario Benthos Biomonitoring Network
    ONTARIO BENTHOS BIOMONITORING NETWORK PROTOCOL MANUAL Version 1.0 May 2004 Ontario Benthos Biomonitoring Network Protocol Manual Version 1.0 May 2004 Report prepared by: C. Jones1, K.M. Somers1, B. Craig2, and T. Reynoldson3 1Ontario Ministry of Environment, Environmental Monitoring and Reporting Branch, Biomonitoring Section, Dorset Environmental Science Centre, 1026 Bellwood Acres Road, P.O. Box 39, Dorset, ON, P0A 1E0 2Environment Canada, EMAN Coordinating Office, 867 Lakeshore Road, Burlington, ON, L7R 4A6 3Acadia Centre for Estuarine Research, Box 115 Acadia University, Wolfville, Nova Scotia, B4P 2R6 2 1 Executive Summary The main purpose of the Ontario Benthos Biomonitoring Network (OBBN) is to enable assessment of aquatic ecosystem condition using benthos as indicators of water and habitat quality. This manual is a companion to the OBBN Terms of Reference, which detail the network’s objectives, deliverables, development schedule, and implementation plan. Herein we outline recommended sampling, sample processing, and analytical procedures for the OBBN. To test whether an aquatic system has been impaired by human activity, a reference condition approach (RCA) is used to compare benthos at “test sites” (where biological condition is in question) to benthos from multiple, minimally impacted “reference sites”. Because types and abundances of benthos are determined by environmental attributes (e.g., catchment size, substrate type), a combination of catchment- and site-scale habitat characteristics are used to ensure test sites are compared to appropriate reference sites. A variety of minimally impacted sites must be sampled in order to evaluate the wide range of potential test sites in Ontario. We detail sampling and sample processing methods for lakes, streams, and wetlands.
    [Show full text]
  • Integration of DNA-Based Approaches in Aquatic Ecological Assessment Using Benthic Macroinvertebrates
    water Review Integration of DNA-Based Approaches in Aquatic Ecological Assessment Using Benthic Macroinvertebrates Sofia Duarte 1,2,*, Barbara R. Leite 1,2 , Maria João Feio 3 , Filipe O. Costa 1,2 and Ana Filipa Filipe 4,5 1 Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (B.R.L.); [email protected] (F.O.C.) 2 Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal 3 Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, University of Coimbra, 3000-456 Coimbra, Portugal; [email protected] 4 School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; affi[email protected] 5 CIBIO/InBIO—Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, 4485-661 Vairão, Portugal * Correspondence: [email protected] Abstract: Benthic macroinvertebrates are among the most used biological quality elements for assess- ing the condition of all types of aquatic ecosystems worldwide (i.e., fresh water, transitional, and marine). Current morphology-based assessments have several limitations that may be circumvented by using DNA-based approaches. Here, we present a comprehensive review of 90 publications on the use of DNA metabarcoding of benthic macroinvertebrates in aquatic ecosystems bioassessments. Metabarcoding of bulk macrozoobenthos has been preferentially used in fresh waters, whereas in marine waters, environmental DNA (eDNA) from sediment and bulk communities from deployed Citation: Duarte, S.; Leite, B.R.; Feio, artificial structures has been favored.
    [Show full text]
  • Aquatic Biomonitoring at Greens Creek Mine, 2002 by Laura Jacobs Phyllis Weber Scannell Bill Morris
    Technical Report No. 03-04 Aquatic Biomonitoring At Greens Creek Mine, 2002 by Laura Jacobs Phyllis Weber Scannell Bill Morris April 2003 Alaska Department of Fish and Game Habitat and Restoration Division The Alaska Department of Fish and Game administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title I1 of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information please write to ADF&G, P.O. Box 25526, Juneau, AK 99802-5526; U.S. Fish and Wildlife Service, 4040 N. Fairfax Drive, Suite 300 Webb, Arlington, VA 22203; or O.E.O., U.S. Department of the Interior, Washington DC 20240. For information on alternative formats for this and other department publications, please contact the department ADA Coordinator at (voice) 907-465-4120, (TDD) 907-465-3646, or (FAX) 907-465-2440. Aquatic Biomonitoring at Greens Creek Mine Technical Report No. 03-04 Laura Jacobs Phyllis Weber Scannell Bill Morris Kerry Howard Director Habitat and Restoration Division Alaska Department of Fish and Game Juneau, AK TABLE OF CONTENTS List of Tables ....................................................................................................................
    [Show full text]
  • An Overview of DNA-Based Applications for the Assessment of Benthic Macroinvertebrates Biodiversity in Mediterranean Aquatic Ecosystems
    diversity Review An Overview of DNA-Based Applications for the Assessment of Benthic Macroinvertebrates Biodiversity in Mediterranean Aquatic Ecosystems Eftychia Tzafesta 1 , Francesco Zangaro 1,2 , Valeria Specchia 1 and Maurizio Pinna 1,2,* 1 Department of Biological and Environmental Sciences and Technologies, DiSTeBA, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; [email protected] (E.T.); [email protected] (F.Z.); [email protected] (V.S.) 2 Research Centre for Fisheries and Aquaculture of Aquatina di Frigole, DiSTeBA, University of Salento, 73100 Lecce, Italy * Correspondence: [email protected] Abstract: The loss of aquatic biodiversity is increasing at a rapid rate globally. There is a worldwide effort to protect, preserve and restore aquatic ecosystems. For efficient biodiversity monitoring and reliable management tools, comprehensive biodiversity data are required. The abundance and species diversity of benthic macroinvertebrates are commonly used as indicators of the aquatic ecosystem condition. Currently, macroinvertebrate species biodiversity assessment is based on morpho-taxonomy, which could be enhanced by recent advances in DNA-based tools for species identification. In particular, DNA metabarcoding has the potential to identify simultaneously many different taxa in a pool of species and to improve aquatic biomonitoring significantly, especially for Citation: Tzafesta, E.; Zangaro, F.; indicator species. This review is focused on the current state of DNA-based aquatic biomonitoring Specchia, V.; Pinna, M. An Overview using benthic macroinvertebrates in the Mediterranean region. of DNA-Based Applications for the Assessment of Benthic Keywords: aquatic ecosystems; biomonitoring; eDNA; macroinvertebrates; Mediterranean ecoregion; Macroinvertebrates Biodiversity in DNA metabarcoding Mediterranean Aquatic Ecosystems. Diversity 2021, 13, 112.
    [Show full text]
  • Macroinvertebrates and the Assessment of Water Quality Enviroscience, Inc
    Macroinvertebrates and the Assessment of Water Quality EnviroScience, Inc. • Ecological services firm based in northern Ohio • >100 biologists, environmental scientists and engineers specializing in aquatic biomonitoring, aquatic toxicity testing, wetland/stream restoration, invasive species, restoration and regulatory compliance • Existing clients include State, federal and local governmental agencies (WV DOT, OH, FL, PennDOT, U.S.EPA, US Army Corp of Engineers), major industries and corporations across the U.S. (CSX, AEP, Reliant Energy, Mittal Steel) and many of the Nation’s largest engineering firms (Leidos, TetraTech, Arcadis and others) Effective Tools to evaluate the Quality of effluents- • Chemical testing • Toxicity Testing • Biological – Aquatic communities Whole Effluent Toxicity Testing . Whole Effluent Toxicity (WET) Testing - surrogate laboratory species . WET testing – mimics what is occurring in the stream by testing effluent with the receiving water in a controlled laboratory setting WET Testing Overview What does WET testing accomplish? • Addresses unknown combinations of toxicants • Predicts the potential for an effluent to have an adverse effect on the in-stream aquatic population. Acute and Chronic values Limitations: This tool is restricted to laboratory tests on surrogate species Traditional Methods - Limitations • Chemical Water Sampling and WET tests – Snap shot in time (TDS, BOD, metals, etc.) • Sediment Sampling (Chemical and toxicity) – Delineates specific areas, but not entire system The Role of Aquatic Ecology in Environmental Assessments to Evaluate Water Quality Aquatic Ecology • Is the study of relationships between organisms in (freshwater) ecosystems • Streams • Macroinvertebrates • Fish • Rivers • Algae • Lakes • Periphyton • Amphibians • Mussels • Studying these factors to evaluate the health of a body of water is called biological assessment Biocriteria .
    [Show full text]
  • Aquatic Ecosystem Assessment for Rivers
    Aquatic Research and Monitoring Section Science and Research Branch Ministry of Natural Resources Aquatic Research Series 2013-06 Aquatic Ecosystem Assessments for Rivers Robert A. Metcalfe, Robert W. Mackereth, Brian Grantham, Nicholas Jones, Richard S. Pyrce, Tim Haxton, James J. Luce, Ryan Stainton Ontario.ca/aquaticresearch Aquatic Research and Monitoring Section Science and Research Branch Ministry of Natural Resources Aquatic Research Series 2013-06 Aquatic Ecosystem Assessments for Rivers Robert A. Metcalfe, Robert W. Mackereth, Brian Grantham, Nicholas Jones, Richard S. Pyrce, Tim Haxton, James J. Luce, Ryan Stainton November 2013 Aquatic Ecosystem Assessments for Rivers © 2013, Queen’s Printer for Ontario Printed in Ontario, Canada ISBN 978-1-4606-3215-4 (PDF) This publication was produced by: Aquatic Research and Monitoring Section Ontario Ministry of Natural Resources 2140 East Bank Drive Peterborough, Ontario K9J 8M5 Online link to report can be found at: Ontario.ca/aquaticresearch This document is for scientific research purposes and does not represent the policy or opinion of the Government of Ontario. This technical report should be cited as follows: Metcalfe, R.A., Mackereth, R.W., Grantham, B., Jones, N., Pyrce, R.S., Haxton, T., Luce, J.J., Stainton, R., 2013. Aquatic Ecosystem Assessments for Rivers. Science and Research Branch, Ministry of Natural Resources, Peterborough, Ontario. 210 pp. Cover photo: Robert Metcalfe Cette publication hautement spécialisée Aquatic Ecosystem Assessments for Rivers n’est disponible qu’en anglais en vertu du Règlement 411/97, qui en exempte l’application de la Loi sur les services en français. Pour obtenir de l’aide en français, veuillez communiquer avec le ministère des Richesses naturelles au [email protected].
    [Show full text]
  • The Biological Assessment and Rehabilitation of the World's Rivers
    water Review The Biological Assessment and Rehabilitation of the World’s Rivers: An Overview Maria João Feio 1,* , Robert M. Hughes 2,3, Marcos Callisto 4 , Susan J. Nichols 5 , Oghenekaro N. Odume 6 , Bernardo R. Quintella 7,8 , Mathias Kuemmerlen 9 , Francisca C. Aguiar 10 , Salomé F.P. Almeida 11 , Perla Alonso-EguíaLis 12, Francis O. Arimoro 13 , Fiona J. Dyer 5 , Jon S. Harding 14 , Sukhwan Jang 15, Philip R. Kaufmann 3,16, Samhee Lee 17, Jianhua Li 18, Diego R. Macedo 19 , Ana Mendes 20 , Norman Mercado-Silva 21 , Wendy Monk 22 , Keigo Nakamura 23 , George G. Ndiritu 24 , Ralph Ogden 25, Michael Peat 26, Trefor B. Reynoldson 27, Blanca Rios-Touma 28 , Pedro Segurado 8 and Adam G. Yates 29 1 Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, University of Coimbra, 3000-456 Coimbra, Portugal 2 Amnis Opes Institute, Corvallis, OR 97333, USA; [email protected] 3 Department of Fisheries & Wildlife, Oregon State University, Corvallis, OR 97331, USA 4 Laboratory of Ecology of Benthos, Department of Genetic, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, CEP 31270-901 Belo Horizonte, MG, Brazil; [email protected] 5 Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, 2601 Canberra, Australia; [email protected] (S.J.N.); fi[email protected] (F.J.D.) 6 Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown 6140, South
    [Show full text]
  • Ambient Biomonitoring Network
    NJ Department of Environmental Protection Water Monitoring and Standards AMBIENT BIOMONITORING NETWORK Atlantic Water Region Watershed Management Areas 12, 13, 14, 15, and 16 Round 3 Benthic Macroinvertebrate Data Volume 1 of 2 October 2010 State of New Jersey NJ Department of Environmental Protection Chris Christie, Governor Bob Martin, Commissioner Kim Guadagno, Lt. Governor NJ Department of Environmental Protection Water Resource Management John Plonski, Assistant Commissioner Water Monitoring and Standards Leslie J. McGeorge, Administrator Bureau of Freshwater & Biological Monitoring Alfred L. Korndoerfer, Jr., Chief October 2010 AMBIENT BIOMONITORING NETWORK Atlantic Water Region Watershed Management Areas 12, 13, 14, 15, and 16 Round 3 Benthic Macroinvertebrate Data Volume 1 of 2 Water Monitoring Report Prepared By: Water Monitoring & Standards Bureau of Freshwater and Biological Monitoring Sampling and Data Analysis: Victor Poretti, Project Manager-Sampling Coordination Dean Bryson, Project Manager-Laboratory Operations Thomas Miller Anna Signor Report Preparation: Thomas Miller Map Preparation: John Sell Edited By: Alfred Korndoerfer Leslie McGeorge Alena Baldwin-Brown [cover photo: Site AN0168, Haynes Creek at Himmelein Rd, Burlington County, NJ.] AMBIENT BIOMONITORING NETWORK Watershed Management Areas 12, 13, 14, 15, and 16 Atlantic Water Region Round 3 Benthic Macroinvertebrate Data Volume 1 of 2 TABLE OF CONTENTS page Executive Summary 1 Introduction 3 Rationale for Biological Monitoring 3 Advantages of Using Benthic Macroinvertebrates
    [Show full text]
  • STATE of KNOWLEDGE
    SOK 9: Monitoring the Health of the Greater Mekong’s Rivers STATE of KNOWLEDGE Monitoring the Health of the Greater Mekong’s Rivers Compiled by: Chris Dickens, Amy Cox, Robyn Johnston, Supatra Davison, Derin Henderson, PJ Meynell, Victor Shinde Why monitor river ecology? We monitor rivers for many reasons. Most obviously, river hydrology is monitored so that we know how much water Box 1: Biomonitoring and the Sustainable Development there is and how much of this is available for our use. But Goals (SDGs) the health of these river ecosystems is also important for The SDGs were adopted by the United Nations General Assembly the societies that depend on them. A ‘healthy’ river in 2015. There are 193 countries in the General Assembly, ecosystem generally means ‘good’ water quality, adequate including all Greater Mekong countries. Target 6.6 of the SDGs water volumes, thriving biota and diverse habitats, all states; “By 2020 protect and restore water-related ecosystems, coming together as a functional whole. By monitoring including mountains, forests, wetlands, rivers, aquifers and lakes,” which has a single Indicator, “Change in the extent of river ecosystems, we can also see how they change and water-related ecosystems over time.” track how these changes might have repercussions for people. Thinking about river ‘health’ is useful because it is 2017 was the first year that data was collected for this indicator a metaphor that people understand, allowing them to and the data will form the baseline for future monitoring in order envision a ‘sick’ or ‘healthy’ river ecosystem. Globally, this to detect trends.
    [Show full text]