Novel Proteomics Technologies to Decipher Protease Networks in Cells and Tissues

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Downloaded from orbit.dtu.dk on: Oct 07, 2021 Novel proteomics technologies to decipher protease networks in cells and tissues Savickas, Simonas Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Savickas, S. (2020). Novel proteomics technologies to decipher protease networks in cells and tissues. DTU Bioengineering. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DTU Bioengineering Department of Biotechnology and Biomedicine PhD Thesis 2020 Af Copyright: Simonas Savickas Udgivet af: XXX XXX DTU Rekvireres: www.dtu.dk ISSN: [0000-0000] (elektronisk udgave) ISBN: [000-00-0000-000-0] (elektronisk udgave) ISSN: [0000-0000] (trykt udgave) ISBN: [000-00-0000-000-0] (trykt udgave) Preface This thesis is the result of a PhD project under the supervision of Professor MSO Dr. Ulrich auf dem Keller and Professor Dr. Birte Svensson at Technical University of Denmark Department of Bioengineering. Due to the move of Ulrich auf dem Keller’s laboratory, the experiments were started at ETH Zurich and completed at DTU Bioengineering. This work is subdivided into three sections: a general introduction including three manuscripts that give an overview of mass spectrometry-based degradomics methods and technically introduce a key method. The results section contains four manuscripts describing my experiments. Finally, a general discussion compares findings with the existing published data and provides an outlook how mass spectrometry might be utilized as powerful tool in personalized medicine. I hope you will enjoy reading it. Simonas Savickas Novel proteomics technologies to decipher protease networks in cells and tissues Papers and Manuscripts This PhD thesis contains the following manuscripts: Savickas, S., & auf dem Keller, U. (2017). Targeted degradomics in protein terminomics and protease substrate discovery. Biological chemistry, 399(1), 47-54. Schoof, E. M., Rapin, N., Savickas, S., Gentil, C., Lechman, E., Haile, J. S., ... & Porse, B. T. (2019). A quantitative single-cell proteomics approach to characterize an acute myeloid leukemia hierarchy. bioRxiv, 745679. Savickas, S., Kastl, P., & auf dem Keller, U. (2020). Combinatorial degradomics: Precision tools to unveil proteolytic processes in biological systems. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics, 140392. Bundgaard, L., Savickas, S., & Auf dem Keller, U. (2020). Mapping the N-Terminome in Tissue Biopsies by PCT-TAILS. In ADAMTS Proteases (pp. 285-296). Humana, New York, NY. Savickas, S., Kastl, P., auf dem Keller, U. (2020). Interconnected activities and functions of matrix metalloproteinases at the wound edge. In preparation. Savickas, S., Kastl, P., Schoof, M.E., auf dem Keller, U. (2020). hybrid Parallel Reaction Monitoring (hPRM) a mass spectrometry based technique for semi-discovery research. In preparation Savickas, S., Schoof, M.E., auf dem Keller, U. (2020). Harnessing a novel targeted single-cell proteomics technique to expand the knowledge of primary leukemia hierarchy. In preparation Additional publications that were outside of the scope of this thesis: Sabino, F., Egli, F. E., Savickas, S., Holstein, J., Kaspar, D., Rollmann, M., ... & Auf dem Keller, U. (2018). Comparative degradomics of porcine and human wound exudates unravels biomarker candidates for assessment of wound healing progression in trauma patients. Journal of Investigative Dermatology, 138(2), 413-422. Yip, M. C., Savickas, S., Gygi, S. P., & Shao, S. (2020). ELAC1 Repairs tRNAs Cleaved during Ribosome-Associated Quality Control. Cell reports, 30(7), 2106-2114. Bundgaard, L. B., Agren, M. S., Holstein, P., Savickas, S., Sabino, F. M. R., & auf dem Keller, U. (2018). A SYSTEM-WIDE STUDY OF THE PROTEOME AND PROTEASE CLEAVAGE PRODUCTS IN CHRONIC SKIN ULCERS. Wound Repair and Regeneration, 26(2) Savickas, S.& Kalogeropoulos, K. Bundgaard, L. B., Larsen, C. A., auf dem Keller, U. (2020). High throughput PRM method for rapid biomarker recording in body fluids. In preparation Novel proteomics technologies to decipher protease networks in cells and tissues Summary Precision processing of protein substrates by limited proteolysis has proven to play a key role in maintaining cellular and tissues homeostasis. Over the past years, an enormous amount of information on protease-substrate interactions has been collected and compiled into a complex network termed the protease web. We are only beginning to understand the connectivity of the protease web but have advanced our perception of the dynamics of proteolysis, complementary pathways and compensatory mechanisms. Identification of cell type- and tissue-specific proteolytic patterns in healthy and perturbed systems has gained much attention to promote generation of fundamental hypothesis for underlying mechanisms of responses to perturbations, thereby drawing a holistic picture of key events. However, we need highly reproducible assays to comprehensively monitor the interconnected protease networks within the protease web and to quantitatively assess protease-protease and protease-substrate relations with high specificity and sensitivity and applicability to samples from cells and tissues. In this project, we have developed novel highly specific and sensitive parallel reaction monitoring (PRM) assays to monitor a network of matrix metalloproteinases (MMPs) in complex samples. To concomitantly analyze the MMP activation status, we have specifically targeted peptides that are generated during propeptide removal, thus resulting in activation of the zymogens. These assays have been applied to study interconnected MMP activation on the molecular, cellular and tissue level. We have tested the hypothesis that MMP10 and MMP3 act as activator MMPs of several other family members and mapped and functionally tested MMP3/10-dependent MMP activation cascades in culture supernatants from fibroblasts and keratinocytes. Mouse models with normal, enhanced and ablated MMP10 activity have been analyzed and its function determined as local MMP activator in the skin. With the arrival of new mass spectrometers, we have extended the PRM analysis of the MMP network by developing a hybrid Parallel Reaction Monitoring (hPRM) method. The workflow utilizes the improved power of the instruments to retain PRM sensitivity to investigate the targeted network and concomitantly perform a global proteome analysis for further proteolytic signatures. This new single-shot method confirmed our previous findings of MMP abundances and simultaneously revealed processing of S100A11 by cathepsin D in response to a perturbation. Investigating proteolytic networks in vitro, in cell cultures and in complex tissues disregards the natural heterogeneity of cellular makeup. Thus, ultimately analysis at the single cell level is needed to understand the protease web in multicellular environments. To address this challenge, we have implemented a workflow and tested if we can identify proteases at the protein level in single cells. By combining fluorescence-activated cell sorting (FACS) and an optimized Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS) method, we investigated the proteomic landscape of Leukemia hierarchy. In this single-cell proteomics data set we also identified and Novel proteomics technologies to decipher protease networks in cells and tissues quantified 22 proteases including, but not limited to caspases, aminopeptidase, cathepsins, calpains and proteasome components across three cell types. Due to inherent low abundances, multiple known proteases could not be identified in the previous study. To address this limitation, we further extended our workflow into single-cell targeted proteomics analyses. The upgraded technique combines our optimized SCoPE-MS workflow with internal standard triggered-PRM (IS-PRM) to allow identification and quantification of low-abundance target proteins including proteases. Applying this workflow, we confirmed differential abundances of CD34 and CD38 in Leukemic Blasts, Progenitors and Stem Cells and observed their proportional distribution between the cells. In addition, we monitored HtrA serine proteases (HtrA) 2 and 3 and their flux between the cell types. Thereby, we monitored high abundance of HtrA2 in Leukemic Stem Cells and low levels in Progenitors, which might indicate a role of this protease in modulating differentiation. Having established a workflow for targeted analysis of peptides ultimately opens up the possibility to not only monitor proteases but also proteolytic cleavages by analysis of spanning peptides and neo-termini at the single-cell level. In conclusion, the delineation of protease networks by mass spectrometry-based proteomics methods will elucidate how their components temporally and spatially shape the proteome in complex tissues
Recommended publications
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The

    The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The

    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
  • PLK-1 Promotes the Merger of the Parental Genome Into A

    PLK-1 Promotes the Merger of the Parental Genome Into A

    RESEARCH ARTICLE PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly Griselda Velez-Aguilera1, Sylvia Nkombo Nkoula1, Batool Ossareh-Nazari1, Jana Link2, Dimitra Paouneskou2, Lucie Van Hove1, Nicolas Joly1, Nicolas Tavernier1, Jean-Marc Verbavatz3, Verena Jantsch2, Lionel Pintard1* 1Programme Equipe Labe´llise´e Ligue Contre le Cancer - Team Cell Cycle & Development - Universite´ de Paris, CNRS, Institut Jacques Monod, Paris, France; 2Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria; 3Universite´ de Paris, CNRS, Institut Jacques Monod, Paris, France Abstract Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN- 1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development. *For correspondence: [email protected] Introduction Competing interests: The After fertilization, the haploid gametes of the egg and sperm have to come together to form the authors declare that no genome of a new diploid organism.
  • DECIPHER: Harnessing Local Sequence Context to Improve Protein Multiple Sequence Alignment Erik S

    DECIPHER: Harnessing Local Sequence Context to Improve Protein Multiple Sequence Alignment Erik S

    Wright BMC Bioinformatics (2015) 16:322 DOI 10.1186/s12859-015-0749-z RESEARCH ARTICLE Open Access DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment Erik S. Wright1,2 Abstract Background: Alignment of large and diverse sequence sets is a common task in biological investigations, yet there remains considerable room for improvement in alignment quality. Multiple sequence alignment programs tend to reach maximal accuracy when aligning only a few sequences, and then diminish steadily as more sequences are added. This drop in accuracy can be partly attributed to a build-up of error and ambiguity as more sequences are aligned. Most high-throughput sequence alignment algorithms do not use contextual information under the assumption that sites are independent. This study examines the extent to which local sequence context can be exploited to improve the quality of large multiple sequence alignments. Results: Two predictors based on local sequence context were assessed: (i) single sequence secondary structure predictions, and (ii) modulation of gap costs according to the surrounding residues. The results indicate that context-based predictors have appreciable information content that can be utilized to create more accurate alignments. Furthermore, local context becomes more informative as the number of sequences increases, enabling more accurate protein alignments of large empirical benchmarks. These discoveries became the basis for DECIPHER, a new context-aware program for sequence alignment, which outperformed other programs on largesequencesets. Conclusions: Predicting secondary structure based on local sequence context is an efficient means of breaking the independence assumption in alignment. Since secondary structure is more conserved than primary sequence, it can be leveraged to improve the alignment of distantly related proteins.
  • Deep Profiling of Protease Substrate Specificity Enabled by Dual Random and Scanned Human Proteome Substrate Phage Libraries

    Deep Profiling of Protease Substrate Specificity Enabled by Dual Random and Scanned Human Proteome Substrate Phage Libraries

    Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries Jie Zhoua, Shantao Lib, Kevin K. Leunga, Brian O’Donovanc, James Y. Zoub,d, Joseph L. DeRisic,d, and James A. Wellsa,d,e,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158; bDepartment of Biomedical Data Science, Stanford University, Stanford, CA 94305; cDepartment of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; dChan Zuckerberg Biohub, San Francisco, CA 94158; and eDepartment of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158 Edited by Benjamin F. Cravatt, Scripps Research Institute, La Jolla, CA, and approved August 19, 2020 (received for review May 11, 2020) Proteolysis is a major posttranslational regulator of biology inside lysate and miss low abundance proteins and those simply not and outside of cells. Broad identification of optimal cleavage sites expressed in cell lines tested that typically express only half their and natural substrates of proteases is critical for drug discovery genomes (13). and to understand protease biology. Here, we present a method To potentially screen a larger and more diverse sequence that employs two genetically encoded substrate phage display space, investigators have developed genetically encoded substrate libraries coupled with next generation sequencing (SPD-NGS) that phage (14, 15) or yeast display libraries (16, 17). Degenerate DNA allows up to 10,000-fold deeper sequence coverage of the typical six- sequences (up to 107) encoding random peptides were fused to a to eight-residue protease cleavage sites compared to state-of-the-art phage or yeast coat protein gene for a catch-and-release strategy synthetic peptide libraries or proteomics.
  • (DDD) Project: What a Genomic Approach Can Achieve

    (DDD) Project: What a Genomic Approach Can Achieve

    The Deciphering Development Disorders (DDD) project: What a genomic approach can achieve RCP ADVANCED MEDICINE, LONDON FEB 5TH 2018 HELEN FIRTH DM FRCP DCH, SANGER INSTITUTE 3,000,000,000 bases in each human genome Disease & developmental Health & development disorders Fascinating facts about your genome! –~20,000 protein-coding genes –~30% of genes have a known role in disease or developmental disorders –~10,000 protein altering variants –~100 protein truncating variants –~70 de novo mutations (~1-2 coding ie. In exons of genes) Rare Disease affects 1 in 17 people •Prior to DDD, diagnostic success in patients with rare paediatric disease was poor •Not possible to diagnose many patients with current methodology in routine use– maximum benefit in this group •DDD recruited patients with severe/extreme clinical features present from early childhood with high expectation of genetic basis •Recruitment was primarily of trios (ie The Doctor Sir Luke Fildes (1887) child and both parents) ~ 90% Making a genomic diagnosis of a rare disease improves care •Accurate diagnosis is the cornerstone of good medical practice – informing management, treatment, prognosis and prevention •Enables risk to other family members to be determined enabling predictive testing with potential for surveillance and therapy in some disorders February 28th 2018 •Reduces sense of isolation, enabling better access to support and information •Curtails the diagnostic odyssey •Not just a descriptive label; identifies the fundamental cause of disease A genomic diagnosis can be a gateway to better treatment •Not just a descriptive label; identifies the fundamental cause of disease •Biallelic mutations in the CFTR gene cause Cystic Fibrosis • CFTR protein is an epithelial ion channel regulating absorption/ secretion of salt and water in the lung, sweat glands, pancreas & GI tract.
  • Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I

    Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I

    EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR.
  • Global Cellular Response to Chemotherapy- Induced

    Global Cellular Response to Chemotherapy- Induced

    RESEARCH ARTICLE elife.elifesciences.org Global cellular response to chemotherapy- induced apoptosis Arun P Wiita1,2, Etay Ziv3,4, Paul J Wiita5, Anatoly Urisman1,6, Olivier Julien1, Alma L Burlingame1, Jonathan S Weissman3,7, James A Wells1,3* 1Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States; 2Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States; 3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States; 4Department of Radiology, University of California, San Francisco, San Francisco, United States; 5Department of Physics, The College of New Jersey, Ewing, United States; 6Department of Pathology, University of California, San Francisco, San Francisco, United States; 7Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States Abstract How cancer cells globally struggle with a chemotherapeutic insult before succumbing to apoptosis is largely unknown. Here we use an integrated systems-level examination of transcription, translation, and proteolysis to understand these events central to cancer treatment. As a model we study myeloma cells exposed to the proteasome inhibitor bortezomib, a first-line therapy. Despite robust transcriptional changes, unbiased quantitative proteomics detects production of only a few critical anti-apoptotic proteins against a background of general translation inhibition. Simultaneous ribosome profiling further reveals potential translational regulation of stress response genes. Once the apoptotic machinery is engaged, degradation by caspases is largely independent of upstream bortezomib effects. Moreover, previously uncharacterized non-caspase proteolytic events also participate in cellular deconstruction. Our systems-level data also support co-targeting the anti-apoptotic regulator HSF1 to promote cell death by bortezomib.
  • Human Genome Sequence 2/3 Complete

    Human Genome Sequence 2/3 Complete

    Human Genome Sequence 2/3 Complete March 29, 2000 Two Thirds of Human DNA Script Deciphered by Human Genome Project; Public Consortium To Complete “Working Draft” in June The Human Genome Project international consortium announced today that two billion of the three billion “letters” that constitute the genetic instruction book of humans have been deciphered and deposited into GenBank. GenBank, the public database of DNA sequence operated by the National Institutes of Health, is accessible freely and without restrictions to all scientists in industry and academia. The two billionth “letter,” or base pair, was deposited earlier this month by the Wellcome Trust’s Sanger Centre in Great Britain. The “letter” was a “T,” the abbreviation for thymine, one of the four chemicals or bases that make up DNA. The 2,178,076,000 unique base pairs now in GenBank have been mapped to their locations on the 24 human chromosomes. The Human Genome Project is on track to complete the “working draft,” which will include 90 percent of the human DNA sequence, with an accuracy of 99.9 percent, in June. The Human Genome Project worldwide will invest an estimated $250 million in producing the working draft. The finished, stand-the-test of time version of the human DNA sequence will be ready on or before 2003. Just four months ago, the Human Genome Project reached the one-billionth base pair milestone. “It’s good news that we’re moving so fast but it’s even better news that researchers throughout the world are using this data now to investigate the genetic underpinnings of health and diseases ranging from Alzheimer’s to diabetes,” said Dr.
  • ATM Orchestrates the DNA-Damage Response to Counter Toxic Non-Homologous End-Joining at Broken Replication Forks

    ATM Orchestrates the DNA-Damage Response to Counter Toxic Non-Homologous End-Joining at Broken Replication Forks

    ARTICLE https://doi.org/10.1038/s41467-018-07729-2 OPEN ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks Gabriel Balmus 1,2,3, Domenic Pilger 1, Julia Coates1, Mukerrem Demir1, Matylda Sczaniecka-Clift1, Ana C. Barros2, Michael Woods2, Beiyuan Fu2, Fengtang Yang 2, Elisabeth Chen 2, Matthias Ostermaier4, Tatjana Stankovic5, Hannes Ponstingl 2, Mareike Herzog1,2, Kosuke Yusa2, Francisco Munoz Martinez1, Stephen T. Durant 6, Yaron Galanty 1, Petra Beli 4, David J. Adams2, Allan Bradley2, Emmanouil Metzakopian2,3, Josep V. Forment 1,6 & Stephen P. Jackson 1 1234567890():,; Mutations in the ATM tumor suppressor gene confer hypersensitivity to DNA-damaging chemotherapeutic agents. To explore genetic resistance mechanisms, we performed genome-wide CRISPR-Cas9 screens in cells treated with the DNA topoisomerase I inhibitor topotecan. Thus, we here establish that inactivating terminal components of the non- homologous end-joining (NHEJ) machinery or of the BRCA1-A complex specifically confer topotecan resistance to ATM-deficient cells. We show that hypersensitivity of ATM-mutant cells to topotecan or the poly-(ADP-ribose) polymerase (PARP) inhibitor olaparib reflects delayed engagement of homologous recombination at DNA-replication-fork associated single-ended double-strand breaks (DSBs), allowing some to be subject to toxic NHEJ. Preventing DSB ligation by NHEJ, or enhancing homologous recombination by BRCA1-A complex disruption, suppresses this toxicity, highlighting a crucial role for ATM in preventing toxic LIG4-mediated chromosome fusions. Notably, suppressor mutations in ATM-mutant backgrounds are different to those in BRCA1-mutant scenarios, suggesting new opportunities for patient stratification and additional therapeutic vulnerabilities for clinical exploitation.
  • JUN-AN CHEN 陳俊安, Ph.D. Jachen@Imb.Sinica.Edu.Tw

    JUN-AN CHEN 陳俊安, Ph.D. [email protected]

    JUN-AN CHEN 陳俊安, Ph.D. [email protected] Institute of Molecular Biology Academia Sinica, Taipei, Taiwan, 11529 Tel: +886-2-2788-0460 Fax: +886-2-2782-6085 Lab Website http://www.imb.sinica.edu.tw/~jachen/ ORCID ID orcid.org/0000-0001-9870-3203 EDUCATION University of Cambridge 2002~2006 PhD, The Wellcome Trust Cancer Research UK Gurdon Institute, UK. National Taiwan University (NTU) 1997~1999 MSc, Institute of Biochemical Sciences, Taiwan. National Chung Cheng University (NCCU) 1993~1997 BSc, Department of Chemistry, Taiwan. CAREER/ACADEMIC POSITIONS Associate Research Fellow: 2019~present Principal Investigator, Institute of Molecular Biology, Academia Sinica, Taiwan. Assistant Research Fellow: 2012~2019 Principal Investigator, Institute of Molecular Biology, Academia Sinica, Taiwan. Postdoctoral Fellow: 2007~2012 Supervised by Dr. Hynek Wichterle, Columbia University, USA. PhD student: 2002~2006 Supervised by Dr. Enrique Amaya, The Wellcome Trust/CR UK Gurdon Institute, University of Cambridge, UK. Teaching Instructor: 2001~2002 Institute of Biochemical Sciences, National Taiwan University, Taiwan. PROFESSIONAL HONORS & RECOGNITION Academia Sinica Junior Research Investigators Award (年輕學者著作獎) 2018 Academia Sinica Career Development Award (前瞻計畫) 2018~2023 Taiwan National Science Council Talented Investigator Fellowship 2012~2015 Academia Sinica Investigator Fellowship (新聘學術獎) 2012~2014 Taiwan National Science Council Postdoctoral Fellowship 2008~2009 The Wellcome Trust Scholarship 2002~2006 Taiwan International PhD Scholarship
  • Strategic Plan 2011-2016

    Strategic Plan 2011-2016

    Strategic Plan 2011-2016 Wellcome Trust Sanger Institute Strategic Plan 2011-2016 Mission The Wellcome Trust Sanger Institute uses genome sequences to advance understanding of the biology of humans and pathogens in order to improve human health. -i- Wellcome Trust Sanger Institute Strategic Plan 2011-2016 - ii - Wellcome Trust Sanger Institute Strategic Plan 2011-2016 CONTENTS Foreword ....................................................................................................................................1 Overview .....................................................................................................................................2 1. History and philosophy ............................................................................................................ 5 2. Organisation of the science ..................................................................................................... 5 3. Developments in the scientific portfolio ................................................................................... 7 4. Summary of the Scientific Programmes 2011 – 2016 .............................................................. 8 4.1 Cancer Genetics and Genomics ................................................................................ 8 4.2 Human Genetics ...................................................................................................... 10 4.3 Pathogen Variation .................................................................................................. 13 4.4 Malaria
  • The Caenorhabditis Elegans CDT-2 Ubiquitin Ligase Is Required for Attenuation of EGFR Signalling in Vulva Precursor Cells Gino B Poulin1*, Julie Ahringer2

    The Caenorhabditis Elegans CDT-2 Ubiquitin Ligase Is Required for Attenuation of EGFR Signalling in Vulva Precursor Cells Gino B Poulin1*, Julie Ahringer2

    Poulin and Ahringer BMC Developmental Biology 2010, 10:109 http://www.biomedcentral.com/1471-213X/10/109 RESEARCH ARTICLE Open Access The Caenorhabditis elegans CDT-2 ubiquitin ligase is required for attenuation of EGFR signalling in vulva precursor cells Gino B Poulin1*, Julie Ahringer2 Abstract Background: Attenuation of the EGFR (Epidermal Growth Factor Receptor) signalling cascade is crucial to control cell fate during development. A candidate-based RNAi approach in C. elegans identified CDT-2 as an attenuator of LET-23 (EGFR) signalling. Human CDT2 is a component of the conserved CDT2/CUL4/DDB1 ubiquitin ligase complex that plays a critical role in DNA replication and G2/M checkpoint. Within this complex, CDT2 is responsible for substrate recognition. This ubiquitin ligase complex has been shown in various organisms, including C. elegans, to target the replication-licensing factor CDT1, and the CDK inhibitor p21. However, no previous link to EGFR signalling has been identified. Results: We have characterised CDT-2’s role during vulva development and found that it is a novel attenuator of LET-23 signalling. CDT-2 acts redundantly with negative modulators of LET-23 signalling and CDT-2 or CUL-4 downregulation causes persistent expression of the egl-17::cfp transgene, a marker of LET-23 signalling during vulva development. In addition, we show that CDT-2 physically interacts with SEM-5 (GRB2), a known negative modulator of LET-23 signalling that directly binds LET-23, and provide genetic evidence consistent with CDT-2 functioning at or downstream of LET-23. Interestingly, both SEM-5 and CDT-2 were identified independently in a screen for genes involved in receptor-mediated endocytosis in oocytes, suggesting that attenuation of LET-23 by CDT-2 might be through regulation of endocytosis.