Handout 13: Paper: Semantic File Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Configuring UNIX-Specific Settings: Creating Symbolic Links : Snap
Configuring UNIX-specific settings: Creating symbolic links Snap Creator Framework NetApp September 23, 2021 This PDF was generated from https://docs.netapp.com/us-en/snap-creator- framework/installation/task_creating_symbolic_links_for_domino_plug_in_on_linux_and_solaris_hosts.ht ml on September 23, 2021. Always check docs.netapp.com for the latest. Table of Contents Configuring UNIX-specific settings: Creating symbolic links . 1 Creating symbolic links for the Domino plug-in on Linux and Solaris hosts. 1 Creating symbolic links for the Domino plug-in on AIX hosts. 2 Configuring UNIX-specific settings: Creating symbolic links If you are going to install the Snap Creator Agent on a UNIX operating system (AIX, Linux, and Solaris), for the IBM Domino plug-in to work properly, three symbolic links (symlinks) must be created to link to Domino’s shared object files. Installation procedures vary slightly depending on the operating system. Refer to the appropriate procedure for your operating system. Domino does not support the HP-UX operating system. Creating symbolic links for the Domino plug-in on Linux and Solaris hosts You need to perform this procedure if you want to create symbolic links for the Domino plug-in on Linux and Solaris hosts. You should not copy and paste commands directly from this document; errors (such as incorrectly transferred characters caused by line breaks and hard returns) might result. Copy and paste the commands into a text editor, verify the commands, and then enter them in the CLI console. The paths provided in the following steps refer to the 32-bit systems; 64-bit systems must create simlinks to /usr/lib64 instead of /usr/lib. -
Mac Keyboard Shortcuts Cut, Copy, Paste, and Other Common Shortcuts
Mac keyboard shortcuts By pressing a combination of keys, you can do things that normally need a mouse, trackpad, or other input device. To use a keyboard shortcut, hold down one or more modifier keys while pressing the last key of the shortcut. For example, to use the shortcut Command-C (copy), hold down Command, press C, then release both keys. Mac menus and keyboards often use symbols for certain keys, including the modifier keys: Command ⌘ Option ⌥ Caps Lock ⇪ Shift ⇧ Control ⌃ Fn If you're using a keyboard made for Windows PCs, use the Alt key instead of Option, and the Windows logo key instead of Command. Some Mac keyboards and shortcuts use special keys in the top row, which include icons for volume, display brightness, and other functions. Press the icon key to perform that function, or combine it with the Fn key to use it as an F1, F2, F3, or other standard function key. To learn more shortcuts, check the menus of the app you're using. Every app can have its own shortcuts, and shortcuts that work in one app may not work in another. Cut, copy, paste, and other common shortcuts Shortcut Description Command-X Cut: Remove the selected item and copy it to the Clipboard. Command-C Copy the selected item to the Clipboard. This also works for files in the Finder. Command-V Paste the contents of the Clipboard into the current document or app. This also works for files in the Finder. Command-Z Undo the previous command. You can then press Command-Shift-Z to Redo, reversing the undo command. -
Powershell Integration with Vmware View 5.0
PowerShell Integration with VMware® View™ 5.0 TECHNICAL WHITE PAPER PowerShell Integration with VMware View 5.0 Table of Contents Introduction . 3 VMware View. 3 Windows PowerShell . 3 Architecture . 4 Cmdlet dll. 4 Communication with Broker . 4 VMware View PowerCLI Integration . 5 VMware View PowerCLI Prerequisites . 5 Using VMware View PowerCLI . 5 VMware View PowerCLI cmdlets . 6 vSphere PowerCLI Integration . 7 Examples of VMware View PowerCLI and VMware vSphere PowerCLI Integration . 7 Passing VMs from Get-VM to VMware View PowerCLI cmdlets . 7 Registering a vCenter Server . .. 7 Using Other VMware vSphere Objects . 7 Advanced Usage . 7 Integrating VMware View PowerCLI into Your Own Scripts . 8 Scheduling PowerShell Scripts . 8 Workflow with VMware View PowerCLI and VMware vSphere PowerCLI . 9 Sample Scripts . 10 Add or Remove Datastores in Automatic Pools . 10 Add or Remove Virtual Machines . 11 Inventory Path Manipulation . 15 Poll Pool Usage . 16 Basic Troubleshooting . 18 About the Authors . 18 TECHNICAL WHITE PAPER / 2 PowerShell Integration with VMware View 5.0 Introduction VMware View VMware® View™ is a best-in-class enterprise desktop virtualization platform. VMware View separates the personal desktop environment from the physical system by moving desktops to a datacenter, where users can access them using a client-server computing model. VMware View delivers a rich set of features required for any enterprise deployment by providing a robust platform for hosting virtual desktops from VMware vSphere™. Windows PowerShell Windows PowerShell is Microsoft’s command line shell and scripting language. PowerShell is built on the Microsoft .NET Framework and helps in system administration. By providing full access to COM (Component Object Model) and WMI (Windows Management Instrumentation), PowerShell enables administrators to perform administrative tasks on both local and remote Windows systems. -
Where Do You Want to Go Today? Escalating
Where Do You Want to Go Today? ∗ Escalating Privileges by Pathname Manipulation Suresh Chari Shai Halevi Wietse Venema IBM T.J. Watson Research Center, Hawthorne, New York, USA Abstract 1. Introduction We analyze filename-based privilege escalation attacks, In this work we take another look at the problem of where an attacker creates filesystem links, thereby “trick- privilege escalation via manipulation of filesystem names. ing” a victim program into opening unintended files. Historically, attention has focused on attacks against priv- We develop primitives for a POSIX environment, provid- ileged processes that open files in directories that are ing assurance that files in “safe directories” (such as writable by an attacker. One classical example is email /etc/passwd) cannot be opened by looking up a file by delivery in the UNIX environment (e.g., [9]). Here, an “unsafe pathname” (such as a pathname that resolves the mail-delivery directory (e.g., /var/mail) is often through a symbolic link in a world-writable directory). In group or world writable. An adversarial user may use today's UNIX systems, solutions to this problem are typ- its write permission to create a hard link or symlink at ically built into (some) applications and use application- /var/mail/root that resolves to /etc/passwd. A specific knowledge about (un)safety of certain directories. simple-minded mail-delivery program that appends mail to In contrast, we seek solutions that can be implemented in the file /var/mail/root can have disastrous implica- the filesystem itself (or a library on top of it), thus providing tions for system security. -
A Searchable-By-Content File System
A Searchable-by-Content File System Srinath Sridhar, Jeffrey Stylos and Noam Zeilberger May 2, 2005 Abstract Indexed searching of desktop documents has recently become popular- ized by applications from Google, AOL, Yahoo!, MSN and others. How- ever, each of these is an application separate from the file system. In our project, we explore the performance tradeoffs and other issues encountered when implementing file indexing inside the file system. We developed a novel virtual-directory interface to allow application and user access to the index. In addition, we found that by deferring indexing slightly, we could coalesce file indexing tasks to reduce total work while still getting good performance. 1 Introduction Searching has always been one of the fundamental problems of computer science, and from their beginnings computer systems were designed to support and when possible automate these searches. This support ranges from the simple-minded (e.g., text editors that allow searching for keywords) to the extremely powerful (e.g., relational database query languages). But for the mundane task of per- forming searches on users’ files, available tools still leave much to be desired. For the most part, searches are limited to queries on a directory namespace—Unix shell wildcard patterns are useful for matching against small numbers of files, GNU locate for finding files in the directory hierarchy. Searches on file data are much more difficult. While from a logical point of view, grep combined with the Unix pipe mechanisms provides a nearly universal solution to content-based searches, realistically it can be used only for searching within small numbers of (small-sized) files, because of its inherent linear complexity. -
An Incremental Path Towards a Safer OS Kernel
An Incremental Path Towards a Safer OS Kernel Jialin Li Samantha Miller Danyang Zhuo University of Washington University of Washington Duke University Ang Chen Jon Howell Thomas Anderson Rice University VMware Research University of Washington LoC Abstract Incremental Progress Tens of Linux Safe Linux Linux has become the de-facto operating system of our age, Millions FreeBSD but its vulnerabilities are a constant threat to service availabil- Hundreds of Singularity ity, user privacy, and data integrity. While one might scrap Thousands Biscuit Linux and start over, the cost of that would be prohibitive due Theseus Thousands RedLeaf seL4 to Linux’s ubiquitous deployment. In this paper, we propose Hyperkernel Safety an alternative, incremental route to a safer Linux through No Type Ownership Functional proper modularization and gradual replacement module by Guarantees Safety Safety Verification module. We lay out the research challenges and potential Figure 1: Our vision and the current state of systems. solutions for this route, and discuss the open questions ahead. security vulnerabilities are reported each year, and lifetime CCS Concepts analysis suggests that the new code added this year has intro- duced tens of thousands of more bugs. ! • Software and its engineering Software verification; While operating systems are far from the only source of se- ! • Computer systems organization Reliability. curity vulnerabilities, it is hard to envision building trustwor- Keywords thy computer systems without addressing operating system correctness. kernel safety, verified systems, reliable systems One attractive option is to scrap Linux and start over. Many ACM Reference Format: past works focus on building more secure and correct op- Jialin Li, Samantha Miller, Danyang Zhuo, Ang Chen, Jon Howell, erating systems from the ground up: ones based on strong and Thomas Anderson. -
A Semantic File System for Integrated Product Data Management', Advanced Engineering Informatics, Vol
Citation for published version: Eck, O & Schaefer, D 2011, 'A Semantic File System for Integrated Product Data Management', Advanced Engineering Informatics, vol. 25, no. 2, pp. 177-184. https://doi.org/10.1016/j.aei.2010.08.005 DOI: 10.1016/j.aei.2010.08.005 Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link to publication University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Advanced Engineering Informatics 25 (2011) 177–184 Contents lists available at ScienceDirect Advanced Engineering Informatics journal homepage: www.elsevier.com/locate/aei A semantic file system for integrated product data management ⇑ Oliver Eck a, , Dirk Schaefer b a Department of Computer Science, HTWG Konstanz, Germany b Systems Realization Laboratory, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA article info abstract Article history: A mechatronic system is a synergistic integration of mechanical, electrical, electronic and software tech- Received 31 October 2009 nologies into electromechanical systems. Unfortunately, mechanical, electrical, and software data are Received in revised form 10 June 2010 often handled in separate Product Data Management (PDM) systems with no automated sharing of data Accepted 17 August 2010 between them or links between their data. -
Simple File System (SFS) Format
Simple File System (SFS) Format Version SFS-V00.01 The SFS is a simple file system format optimized for writing and for low overhead.. The advantages of this format are: • Event navigation is possible using simple content-independent file system like functions. • Very low overhead. No loss due to block size granularity • Entire valid file system can be created by appending content On the other hand, random access directory navigation is rather slow because there is no built-in indexing or directory hierarchy. For a 500MB file system containing files with 5k bytes this represents an initial search overhead of ~1-2 sec (~100,000 seeks). SFS Structure The structure of a SFS file is as follows VolumeSpec Head File1 File1 Binary Data File2 File2 Binary Data ... ... Tail VolumeSpec: This is simply a 12 byte character string representing filesystem version. For example: “SFS V00.01” Head: This is a short header record. The byte order only applies to the time field of this record. type = “HEAD” byte_order = 0x04030201 time File: The File records are a variable length record containing information about a file. type = “FILE” byte_order = 0x04030201 Sz head_sz attr reserved name.... name (continued).... “byte_order” corresponds only to this header. The endiness of the data is undefined by SFS “sz” corresponds to the datafile size. This may be any number, but the file itself will be padded to take up a multiple of 4 bytes “head_sz” this must be a multiple of 4 “attr” SFS_ATTR_INVALID: file deleted SFS_ATTR_PUSHDIR: push current path to path stack SFS_ATTR_POPDIR: pop current path from path stack SFS_ATTR_NOCD: this record doesn’t reset the basedir “name” the name of the file. -
A Plethora of Paths
A Plethora of Paths Eric Larson Seattle University [email protected] Abstract A common static software bug detection technique is to use path simulation. Each execution path is simulated using symbolic variables to determine if any software errors could occur. The scalability of this and other path-based approaches is dependent on the number of paths in the pro- gram. This paper explores the number of paths in 15 differ- ent programs. Often, there are one or two functions that contribute a large percentage of the paths within a program. A unique aspect in this study is that slicing was used in dif- ferent ways to determine its effect on the path count. In par- ticular, slicing was applied to each interesting statement individually to determine if that statement could be analyzed without suffering from path explosion. Results show that slic- ing is only effective if it can completely slices away a func- tion that suffers from path explosion. While most programs had several statements that resulted in short path counts, slicing was not adequate in eliminating path explosion occurrences. Looking into the tasks that suffer from path explosion, we find that functions that process input, produce stylized output, or parse strings or code often have signifi- Figure 1. Sample Control Flow Graph. cantly more paths than other functions. a reasonable amount of time. One technique to address path 1. Introduction explosion is to use program slicing [11, 20] to remove code not relevant to the property being verified. Static analysis is an important tool in software verifica- Consider the sample control flow graph in Figure 1. -
Using Virtual Directories Prashanth Mohan, Raghuraman, Venkateswaran S and Dr
1 Semantic File Retrieval in File Systems using Virtual Directories Prashanth Mohan, Raghuraman, Venkateswaran S and Dr. Arul Siromoney {prashmohan, raaghum2222, wenkat.s}@gmail.com and [email protected] Abstract— Hard Disk capacity is no longer a problem. How- ‘/home/user/docs/univ/project’ directory lists the ever, increasing disk capacity has brought with it a new problem, file. The ‘Database File System’ [2], encounters this prob- the problem of locating files. Retrieving a document from a lem by listing recursively all the files within each directory. myriad of files and directories is no easy task. Industry solutions are being created to address this short coming. Thereby a funneling of the files is done by moving through We propose to create an extendable UNIX based File System sub-directories. which will integrate searching as a basic function of the file The objective of our project (henceforth reffered to as system. The File System will provide Virtual Directories which SemFS) is to give the user the choice between a traditional list the results of a query. The contents of the Virtual Directory heirarchial mode of access and a query based mechanism is formed at runtime. Although, the Virtual Directory is used mainly to facilitate the searching of file, It can also be used by which will be presented using virtual directories [1], [5]. These plugins to interpret other queries. virtual directories do not exist on the disk as separate files but will be created in memory at runtime, as per the directory Index Terms— Semantic File System, Virtual Directory, Meta Data name. -
Privacy Engineering for Social Networks
UCAM-CL-TR-825 Technical Report ISSN 1476-2986 Number 825 Computer Laboratory Privacy engineering for social networks Jonathan Anderson December 2012 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 http://www.cl.cam.ac.uk/ c 2012 Jonathan Anderson This technical report is based on a dissertation submitted July 2012 by the author for the degree of Doctor of Philosophy to the University of Cambridge, Trinity College. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: http://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Privacy engineering for social networks Jonathan Anderson In this dissertation, I enumerate several privacy problems in online social net- works (OSNs) and describe a system called Footlights that addresses them. Foot- lights is a platform for distributed social applications that allows users to control the sharing of private information. It is designed to compete with the performance of today’s centralised OSNs, but it does not trust centralised infrastructure to en- force security properties. Based on several socio-technical scenarios, I extract concrete technical problems to be solved and show how the existing research literature does not solve them. Addressing these problems fully would fundamentally change users’ interactions with OSNs, providing real control over online sharing. I also demonstrate that today’s OSNs do not provide this control: both user data and the social graph are vulnerable to practical privacy attacks. Footlights’ storage substrate provides private, scalable, sharable storage using untrusted servers. Under realistic assumptions, the direct cost of operating this storage system is less than one US dollar per user-year. -
Modern Infrastructure for Dummies®, Dell EMC #Getmodern Special Edition
Modern Infrastructure Dell EMC #GetModern Special Edition by Lawrence C. Miller These materials are © 2017 John Wiley & Sons, Ltd. Any dissemination, distribution, or unauthorized use is strictly prohibited. Modern Infrastructure For Dummies®, Dell EMC #GetModern Special Edition Published by: John Wiley & Sons Singapore Pte Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628, www.wiley.com © 2017 by John Wiley & Sons Singapore Pte Ltd. Registered Office John Wiley & Sons Singapore Pte Ltd., 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628 All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted by the Copyright Act of Singapore 1987, without the prior written permission of the Publisher. For information about how to apply for permission to reuse the copyright material in this book, please see our website http://www.wiley.com/go/ permissions. Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. Dell EMC and the Dell EMC logo are registered trademarks of Dell EMC. All other trademarks are the property of their respective owners. John Wiley & Sons Singapore Pte Ltd., is not associated with any product or vendor mentioned in this book. LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.