CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server Rotating Charged Black String and Three Dimensional Black Holes Jos´eP.S.Lemos1 Departamento de Astrof´ısica Observat´orio Nacional – CNPq Rua General Jos´e Cristino 77, 20921, Rio de Janeiro, RJ, Brazil, & Departamento de F´ısica Instituto Superior T´ecnico Av. Rovisco Pais 1, 1096, Lisboa, Portugal Vilson T. Zanchin 2 Departamento de F´ısica-CCNE Universidade Federal de Santa Maria 97119-900 Santa Maria, RS, Brazil 1e-mail:
[email protected] 2Present address: Department of Physics, Brown University, Providence, R.I. 02912. e-mail:
[email protected] Abstract Einstein-Maxwell equations with a cosmological constant are analyzed in a stationary spacetime admitting an isometry group R×U(1). We find charged rotating black string solutions in a spacetime asymptotically anti-de Sitter in the radial direction. The mass (M), angular momentum (J) and charge (Q) line densities are defined using the Hamiltonian formalism of Brown and York. It is shown through dimensional reduction that M, J and Q are respec- tively the mass, angular momentum and charge of a related three dimensional black hole. The black string solutions are classified according to the charge and angular momentum parameters. The causal structure of each case is studied in detail for different ranges of the parameters and the Penrose dia- grams are shown. There are many similarities between the charged rotating black string and the Kerr-Newman spacetime. The solution has Cauchy and event horizons, ergosphere, timelike singularities, closed timelike curves, and extremal cases.