Major and Trace Element Geochemistry of Pyrite and Pyrrhotite from Stratiform and Lamellar Orebodies

Total Page:16

File Type:pdf, Size:1020Kb

Major and Trace Element Geochemistry of Pyrite and Pyrrhotite from Stratiform and Lamellar Orebodies minerals Article Major and Trace Element Geochemistry of Pyrite and Pyrrhotite from Stratiform and Lamellar Orebodies: Implications for the Ore Genesis of the Dongguashan Copper (Gold) Deposit, Eastern China Zhongfa Liu 1, Yongjun Shao 1, Haodi Zhou 2, Nan Liu 3, Kuanxin Huang 1, Qingquan Liu 1,4,* ID , Jiandong Zhang 1 and Cheng Wang 1 1 Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, China; [email protected] (Z.L.); [email protected] (Y.S.); [email protected] (K.H.); [email protected] (J.Z.); [email protected] (C.W.) 2 Hunan Key Laboratory of Land and Resources Evaluation and Utilization, Changsha 410007, China; [email protected] 3 Hunan Institute of Geological Survey, Changsha 410116, China; [email protected] 4 School of Resources and safety engineering, Central South University, Changsha 410083, China * Correspondence: [email protected]; Tel.: +86-731-888-30616 Received: 28 May 2018; Accepted: 24 August 2018; Published: 1 September 2018 Abstract: The Dongguashan copper (gold) deposit in Anhui Province is one of the largest copper (gold) deposits in the Tongling ore district, which is the most important region in the Middle–Lower Yangtze River Metallogenic Belt, Eastern China. Stratiform and lamellar orebodies are the major deposit types. Pyrite and pyrrhotite from the stratiform deposit type (Py I, Po I) and lamellar deposit type (Py II, Po II) are investigated using Electron-probe Microanalyses (EPMA) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Py I, Py II, Po I and Po II have high contents of Cu, Co, Au and Se, low contents of As, Pb and Zn, with Co/Ni ratios of 0.50−48.00, 4.00−45.00, 1.55−14.45 and 1.02−1.36, respectively, most of which are greater than 1 and vary widely; these characteristics are consistent with those of pyrite with a magmatic–hydrothermal origin. The higher Au/Ag and Fe/(S + As) ratios of pyrite and crystallization temperatures (286–387 ◦C) of hexagonal pyrrhotite indicate that the mineralization occurrs in environments with medium- to high-temperatures, high sulfur fugacity and medium-shallow depths. Therefore, we suggest that the Dongguashan copper (gold) deposit is a stratabound skarn-type ore deposit associated with magma intrusion activity during the Yanshanian Period. Keywords: EPMA and LA-ICP-MS; major and trace elements; pyrite and pyrrhotite; Dongguashan copper (gold) deposit; Tongling ore district 1. Introduction As minerals represent the most basic units of rocks and/or ore, their chemical composition and type are of great significance when discussing the origins of rocks and/or ore, as well as the ore genesis and the ore-forming environment [1,2]. Due to the influence of factors, such as the purity of single minerals and the interference associated with solid solutions, the data obtained using traditional chemical analyses for single phases have large errors. The rapid development of Electron-Probe Microanalyses (EPMA) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) has realized in situ analysis of single minerals at the nanoscale, which has Minerals 2018, 8, 380; doi:10.3390/min8090380 www.mdpi.com/journal/minerals Minerals 2018, 8, x FOR PEER REVIEW 2 of 20 Minerals 2018, 8, 380 2 of 20 Spectrometry (LA-ICP-MS) has realized in situ analysis of single minerals at the nanoscale, which has solved the problem of the large errors in traditional analytical methods. So far, these in situ solved the problem of the large errors in traditional analytical methods. So far, these in situ analytical analytical methods have been widely applied to study on the ore-forming environments, methods have been widely applied to study on the ore-forming environments, ore-forming material ore-forming material source, ore-forming processes, and ore genesis [1,3–10]. source, ore-forming processes, and ore genesis [1,3–10]. The Tongling ore district in Anhui Province, which is enriched in Cu, Fe, and Au, is one of the The Tongling ore district in Anhui Province, which is enriched in Cu, Fe, and Au, is one of most important regions in the Middle–Lower Yangtze River Metallogenic Belt, Eastern China the most important regions in the Middle–Lower Yangtze River Metallogenic Belt, Eastern China (Figure 1). Five major deposits have been discovered in this ore district, including the Dongguashan (Figure1). Five major deposits have been discovered in this ore district, including the Dongguashan Cu-Au, Shizishan Cu-Au, Tongguanshan Cu-Fe, Fenghuangshan Cu-Fe and Xinqiao Cu-S-Fe Cu-Au, Shizishan Cu-Au, Tongguanshan Cu-Fe, Fenghuangshan Cu-Fe and Xinqiao Cu-S-Fe deposits. deposits. In the last few years, researchers have carried out many in-depth studies of these deposits In the last few years, researchers have carried out many in-depth studies of these deposits in the in the Tongling ore district. Different ore genetic models have been established, which mainly Tongling ore district. Different ore genetic models have been established, which mainly include include the stratabound–skarn model [11], the “multi-story building”-type model [12,13], the the stratabound–skarn model [11], the “multi-story building”-type model [12,13], the generalized generalized skarn–porphyry-type hydrothermal model [14] and the porphyry–skarn–manto-type skarn–porphyry-type hydrothermal model [14] and the porphyry–skarn–manto-type model [15]. model [15]. Figure 1. Geological map showing the location of the Tongling ore district, and related porphyry– Figure 1. Geological map showing the location of the Tongling ore district, and related skarn–stratabound Cu-Au-Mo (>135 Ma) deposits along the Middle–Lower Yangtze River Valley porphyry–skarn–stratabound Cu-Au-Mo (>135 Ma) deposits along the Middle–Lower Yangtze River Metallogenic Belt [16]. Faults: TLF—Tancheng–Lujiang fault, XGF—Xiangfan–Guangji fault, Valley Metallogenic Belt [16]. Faults: TLF—Tancheng–Lujiang fault, XGF—Xiangfan–Guangji fault, YCF—Yangxing–Changzhou fault. YCF—Yangxing–Changzhou fault. The Dongguashan copper (gold) ore deposit is one of the largest copper (gold) deposits in the TonglingThe Dongguashanore district, and copper it is located (gold) ore approximately deposit is one 7 ofkm the to largestthe east copper of Tongling (gold) depositscity (Figure in the2), TonglingAnhui Province, ore district, Eastern and itChina. is located It approximatelyis controlled by 7 km stratigraphic to the east ofhorizons, Tongling anticlines, city (Figure and2), Anhuiinterlayered Province, structures. Eastern The China. major It is stratiform controlled and by stratigraphic lamellar orebodies horizons, in anticlines,the Dongguashan and interlayered deposit structures.are distributed The along major the stratiform northern and core lamellar and limbs orebodies of the in Qingshan the Dongguashan anticline, depositand they are are distributed hosted in alongthe limestones the northern of the core Middle and limbsand Upper of the Carbonif Qingshanerous anticline, Huanglong and they and areChuanshan hosted in formations. the limestones The ofDongguashan the Middle andcopper Upper (gold) Carboniferous deposit, with Huanglong its unique andgeological Chuanshan characteristics, formations. has The attracted Dongguashan a lot of copperattention (gold) to geologists deposit, withfor a its long unique time. geological A great characteristics, deal of scientific has attractedprogress ahas lot been of attention made toin geologistsidentifying for the a longsource time. of Aore-forming great deal of materials scientific progressand fluids, has rock- been madeand ore-forming in identifying ages, the sourceand ore of ore-forminggenesis [17–26]. materials However, and fluids, as far rock- as the and ore ore-forming genesis of ages, the Dongguashan and ore genesis copper [17–26 ].(gold) However, deposit as far is asconcerned, the ore genesis questions of the remain, Dongguashan as this deposit copper (gold)has been deposit proposed is concerned, to be a questionsstratabound remain, skarn-type as this deposit[15,23,25,27–29], has been proposedexhalative to sedimentary be a stratabound and hydr skarn-typeothermal [15 ,superimposition-type23,25,27–29], exhalative [21,22,30–36], sedimentary and hydrothermalexhalative sedimentary-type superimposition-type deposit [21 [19,37–39].,22,30–36 ], and exhalative sedimentary-type deposit [19,37–39]. Minerals 2018, 8, 380 3 of 20 Minerals 2018, 8, x FOR PEER REVIEW 3 of 20 Figure 2. Geological map of the Tongling ore district [27,40]. Figure 2. Geological map of the Tongling ore district [27,40]. Questions regarding deposit genesis is mainly focused on stratiform and lamellar orebodies. It willQuestions be helpful regarding for us to understand deposit genesis the ore is genesi mainlys by focused determining on stratiform their geneses. and In lamellar this paper, orebodies. we It willare begoing helpful to study for usthe tomajor understand and trace the element ore genesis compos byitions determining of pyrite and their pyrrhotite geneses. in Instratiform this paper, we areand goinglamellar to studyorebodies the by major using and EPMA trace and element LA-ICP-MS compositions and to constrain of pyrite the and ore pyrrhotite genesis. in stratiform and lamellar orebodies by using EPMA and LA-ICP-MS and to constrain the ore genesis. 2. Geological Setting 2. GeologicalThe Tongling Setting ore district is located in the northeastern section of the Lower Yangtze area, in theThe junction Tongling between oredistrict North China is located and inthe theYangtze northeastern Block. This section ore district of the is Lower bounded Yangtze by the area, in theXiangfan–Guangji junction between fault North to the north, China the and Tanlu the fa Yangtzeult to the Block. northeast, This and ore the district Yangxing–Changzhou is bounded by the fault to the south (Figure 1). A three-stage tectonic evolution of the Lower Yangtze area has been Xiangfan–Guangji fault to the north, the Tanlu fault to the northeast, and the Yangxing–Changzhou proposed, i.e., the formation of Pre-Sinian (Late Neoproterozoic) basement, the development of fault to the south (Figure1).
Recommended publications
  • High-Temperature Thermomagnetic Properties of Vivianite Nodules
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Clim. Past, 9, 433–446, 2013 Climate www.clim-past.net/9/433/2013/ Climate doi:10.5194/cp-9-433-2013 of the Past of the Past © Author(s) 2013. CC Attribution 3.0 License. Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions High-temperature thermomagnetic properties of Open Access Open Access vivianite nodules, Lake El’gygytgyn, Northeast RussiaGeoscientific Geoscientific Instrumentation Instrumentation P. S. Minyuk1, T. V. Subbotnikova1, L. L. Brown2, and K. J. Murdock2 Methods and Methods and 1North-East Interdisciplinary Scientific Research Institute, Far East Branch of the Russian AcademyData Systems of Sciences, Data Systems Magadan, Russia Discussions Open Access 2 Open Access Department of Geosciences, University of Massachusetts, Amherst, USA Geoscientific Geoscientific Correspondence to: P. S. Minyuk ([email protected]) Model Development Model Development Received: 7 September 2012 – Published in Clim. Past Discuss.: 9 October 2012 Discussions Revised: 15 January 2013 – Accepted: 15 January 2013 – Published: 19 February 2013 Open Access Open Access Hydrology and Hydrology and Abstract. Vivianite, a hydrated iron phosphate, is abun- 1 Introduction Earth System Earth System dant in sediments of Lake El’gygytgyn, located in the Anadyr Mountains of central Chukotka, northeastern Rus- Sciences Sciences sia (67◦300 N, 172◦050 E).
    [Show full text]
  • The Mineralogy and Crystallography of Pyrrhotite
    Chapter 1 INTRODUCTION ________________________________________________________ 1.1 Introduction Pyrrhotite Fe(1-x)S is one of the most commonly occurring metal sulfide minerals and is recognised in a variety of ore deposits including nickel-copper, lead-zinc, and platinum group element (PGE). Since the principal nickel ore mineral, pentlandite, almost ubiquitously occurs coexisting with pyrrhotite, the understanding of the behaviour of pyrrhotite during flotation is of fundamental interest. For many nickel processing operations, pyrrhotite is rejected to the tailings in order to control circuit throughput and concentrate grade and thereby reduce excess sulfur dioxide smelter emissions (e.g. Sudbury; Wells et al., 1997). However, for platinum group element processing operations, pyrrhotite recovery is targeted due to its association with the platinum group elements and minerals (e.g. Merensky Reef; Penberthy and Merkle, 1999; Ballhaus and Sylvester, 2000). Therefore, the ability to be able to manipulate pyrrhotite performance in flotation is of great importance. It can be best achieved if the mineralogical characteristics of the pyrrhotite being processed can be measured and the relationship between mineralogy and flotation performance is understood. The pyrrhotite mineral group is non-stoichiometric and has the generic formula of Fe(1-x)S where 0 ≤ x < 0.125. Pyrrhotite is based on the nickeline (NiAs) structure and is comprised of several superstructures owing to the presence and ordering of vacancies within its structure. Numerous pyrrhotite superstructures have been recognised in the literature, but only three of them are naturally occurring at ambient conditions (Posfai et al., 2000; Fleet, 2006). This includes the stoichiometric FeS known as troilite which is generally found in extraterrestrial localities, but on occasion, has also been recognised in some nickel deposits (e.g.
    [Show full text]
  • Using the High-Temperature Phase Transition of Iron Sulfide Minerals As
    www.nature.com/scientificreports OPEN Using the high-temperature phase transition of iron sulfde minerals as an indicator of fault Received: 9 November 2018 Accepted: 15 May 2019 slip temperature Published: xx xx xxxx Yan-Hong Chen1, Yen-Hua Chen1, Wen-Dung Hsu2, Yin-Chia Chang2, Hwo-Shuenn Sheu3, Jey-Jau Lee3 & Shih-Kang Lin2 The transformation of pyrite into pyrrhotite above 500 °C was observed in the Chelungpu fault zone, which formed as a result of the 1999 Chi-Chi earthquake in Taiwan. Similarly, pyrite transformation to pyrrhotite at approximately 640 °C was observed during the Tohoku earthquake in Japan. In this study, we investigated the high-temperature phase-transition of iron sulfde minerals (greigite) under anaerobic conditions. We simulated mineral phase transformations during fault movement with the aim of determining the temperature of fault slip. The techniques used in this study included thermogravimetry and diferential thermal analysis (TG/DTA) and in situ X-ray difraction (XRD). We found diversifcation between 520 °C and 630 °C in the TG/DTA curves that signifes the transformation of pyrite into pyrrhotite. Furthermore, the in situ XRD results confrmed the sequence in which greigite underwent phase transitions to gradually transform into pyrite and pyrrhotite at approximately 320 °C. Greigite completely changed into pyrite and pyrrhotite at 450 °C. Finally, pyrite was completely transformed into pyrrhotite at 580 °C. Our results reveal the temperature and sequence in which the phase transitions of greigite occur, and indicate that this may be used to constrain the temperature of fault-slip. This conclusion is supported by feld observations made following the Tohoku and Chi-Chi earthquakes.
    [Show full text]
  • Thermomagnetic Properties of Vivianite Nodules, Lake El'gygytgyn
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 8, 4989–5027, 2012 www.clim-past-discuss.net/8/4989/2012/ Climate doi:10.5194/cpd-8-4989-2012 of the Past © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available. Thermomagnetic properties of vivianite nodules, Lake El’gygytgyn, Northeast Russia P. S. Minyuk1, T. V. Subbotnikova1, L. L. Brown2, and K. J. Murdock2 1North-East Interdisciplinary Scientific Research Institute of Far East Branch of Russian Academy Science, Magadan, Russia 2Department of Geosciences, University of Massachusetts, Amherst, USA Received: 7 September 2012 – Accepted: 20 September 2012 – Published: 9 October 2012 Correspondence to: P. S. Minyuk ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 4989 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Vivianite, a hydrated iron phosphate, is abundant in sediments of El’gygytgyn Lake, located in the Anadyr Mountains of Central Chukotka, Northeastern Russia (67◦300 N; 172◦050 E). Magnetic measurements, including weight low-field AC magnetic suscepti- 5 bility, field dependent magnetic susceptibility, hysteresis parameters, temperature de- pendence of the saturation magnetization, as well as susceptibility in different heating media provide ample information on vivianite. Electron-microprobe analyses, electron microscopy and energy dispersive spectroscopy were used to identify diagnostic min- erals. Vivianite nodules are abundant in both sediments of cold (anoxic) and warm −6 3 −1 10 (oxic) stages. Magnetic susceptibility of the nodules varies from 0.78 × 10 m kg to 1.72×10−6 m3 kg−1 (average = 1.05×10−6 m3 kg−1) and is higher than the susceptibility of sediments from the cold intervals.
    [Show full text]
  • Implications for Mining Seafloor Hotsprings AT
    UNIVERSITY OF CALIFORNIA RIVERSIDE Kinetics of Pyrrhotite Oxidation in Seawater: Implications for Mining Seafloor Hotsprings A Thesis submitted in partial satisfaction of requirements for the degree of Masters of Science in Geological Sciences by Gina Yolanda Romano December 2012 Thesis Committee: Dr. Michael McKibben, Chairperson Dr. Timothy Lyons Dr. Gordon Love Copyright by Gina Yolanda Romano 2012 The Thesis of Gina Yolanda Romano is approved: __________________________________________________ __________________________________________________ __________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements I graciously acknowledge my committee members, especially Mike: thank you for always giving me more to think about, and for letting me be a part of this project, which I have become enormously passionate about. I am lucky to be able to directly apply this research to my exiting new career in industry. Thank you to Laura Bilenker for many helpful conversations and even more helpful laughs. It was a great honor to do this project with you. Thank you to the Lyons lab for the use of and assistance with the ICP-MS, especially Jeremy Owens. I am indebted to for your endless patience. Also thank you to Krassimir Bohzilov and CFAMM for the use of the SEM. To my family: thank you for your endless support. I owe all my successes to you. Most of all I want to thank my Mom. You always push me to go after my dreams, never to give up, and are cheering me on the whole way. I wouldn’t be where I am today without you. iv Table of Contents Abstract 1 1. Introduction 2 2.
    [Show full text]
  • Pyrrhotite Fe1−Xs (X = 0 to 0.17) C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic, Pseudohexagonal
    Pyrrhotite Fe1−xS (x = 0 to 0.17) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic, pseudohexagonal. Point Group: 2/m. Crystals typically tabular or platy on {0001}, to 40 cm; steep pyramidal faces or short pyramidal; as rosettes showing nearly parallel aggregation on {0001}; commonly massive, granular. Twinning: On {1012}. Physical Properties: Cleavage: Parting on {0001}, distinct. Fracture: Uneven to subconchoidal. Hardness = 3.5–4.5 VHN = 373–409 (100 g load). D(meas.) = 4.58–4.65 D(calc.) = 4.69 Magnetic, varying in intensity inversely with iron content. Optical Properties: Opaque. Color: Bronze-yellow to pinchbeck-brown; tarnishes quickly, rarely to iridescence. Streak: Dark grayish black. Luster: Metallic. Pleochroism: Weak. Anisotropism: Strong. R1–R2: (400) 27.9–31.0, (420) 28.6–32.2, (440) 29.4–33.6, (460) 30.3–34.8, (480) 31.4–36.2, (500) 32.4–37.6, (520) 33.4–38.6, (540) 34.5–39.6, (560) 35.5–40.4, (580) 36.5–41.2, (600) 37.4–42.0, (620) 38.3–42.6, (640) 39.1–43.0, (660) 39.9–43.5, (680) 40.7–43.9, (700) 41.4–44.1 Cell Data: Space Group: Depends on polytype. a = 6.865 b = 11.9 c = 22.72 β =90◦50 Z=64 X-ray Powder Pattern: Santa Eulalia, Mexico. 2.08 (10), 2.65 (6), 1.728 (5), 3.00 (4), 1.328 (4), 1.105 (4), 1.052 (3) Chemistry: (1) (2) (3) Fe 60.18 59.83 61.57 S 39.82 39.55 38.53 rem.
    [Show full text]
  • Testing Structural Concrete Aggregate for Pyrrhotite
    Testing Structural Concrete Aggregate for Pyrrhotite By: Julia Singer Bansal, Senior Legislative Attorney October 18, 2019 | 2019-R-0225 Petrography Issue Petrography is the description and classification of rock by any means, from Are there reliable methods of checking visual observations to highly technical pyrrhotite levels in structural concrete chemical and instrumental analyses (e.g., aggregate, before it is mixed into concrete? electron microscopy and x-ray fluorescence analysis). It is generally conducted by microscopic study. Summary Sulfur While there are accurate methods of The element sulfur is present in several determining whether an aggregate sample chemical forms (also called “chemical contains pyrrhotite, it appears that there are no species”) in nature. Two species are relevant widely accepted test standards (i.e., guidelines in the aggregate context: (1) sulfate, the oxidized form, and (2) sulfide, the reduced for sampling and sample preparation). form. Sulfide can combine with elements Additionally, there are no widely accepted such as iron or copper to make different standards for the amount of pyrrhotite in crystal structures, called minerals. concrete aggregate that may be present without Pyrrhotite impacting the concrete’s integrity. According to Pyrrhotite is composed of the elements iron information prepared by the Army Corps of and sulfur; it is an iron sulfide mineral. Engineers and UConn (see ”Attachments”) in Pyrrhotite’s chemical formula varies, as it the context of “crumbling foundations” (i.e., presents in several crystal structures. foundations that have deteriorated due to the Pyrrhotite expands when exposed to water presence of pyrrhotite), more research must be and oxygen, which can cause concrete done to identify (1) appropriate and cost- containing it to crack and swell, and effective testing methods and (2) a threshold eventually crumble.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • Analysis of the Oxidation of Chalcopyrite,Chalcocite, Galena
    PLEASE 00 Nor REMOVE FRCM LIBRARY Bureau of Mines Report of Investigations/1987 Analysis of the Oxidation of Chalcopyrite, Chalcocite, Galena, Pyrrhotite, Marcasite, and Arsenopyrite By G. W. Reimers and K. E. Hjelmstad UBRARY ""OKANERESEARC H CENTER .... RECEIVED OCT 021 1981 US BUREAU Of MINES t 315 MONTGOMBlY ",'IE. SPOICANl,. WI>. 99201 UNITED STATES DEPARTMENT OF THE INTERIOR Report of Investigations 9118 Analysis of the Oxidation of Chalcopyrite, Chalcocite, Galena!' Pyrrhotite, Marcasite, and Arsenopyrite By G. W. Reimers and K. E. Hjelmstad UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF MINES David S. Brown, Acting Director Library of Congress Cataloging in Publication Data : Reimers, G. W. (George W.) Analysis of the oxidation of chalcopyrite, chalcocite, galena, pyr­ rhotite, marcasite, and arsenopyrite. (Bureau of Mines report of investigations; 9118) Bibliography: p. 16 . Supt. of Docs. no.: 128.23: 9118. 1. Pyrites. 2. Oxidation. I. Hjelmstad, Kenneth E. II . Title. III. Series: Reportofinvestiga­ tions (United States. Bureau of Mines) ; 9118. TN23.U43 [QE389.2] 622 s [622'.8] 87-600136 CONTENTS Abst 1 Introduction ••••••••• 2 Equipment and test • .,.,.,.,.,.,., .•. .,., ..... .,.,.,.,., ... ., . ., ........ ., .... ., ..... ., .. ., . .,. 3 Samp Ie ., .. ., ., ., ., ., ., ., ., ., ., ., .. ., .• ., .. ., ..... ., •.••• ., . ., ., ..•. ., ., ., . ., ., ., ., • ., ., ., ., • 4 Results and discussion .. ., . .,.,.,. ........ .,., ...... ., ., .... " . ., . .,.,., . .,., . .,., ,.,.., ., . .,
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Ferric Sulphate Leaching of Pyrrhotite Tailings
    FERRIC SULPHATE LEACHING OF PYRRHOTITE TAILINGS by Nazanin Samadifard A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Nazanin Samadifard 2015 Ferric Sulfate Leaching of Pyrrhotite Tailings Nazanin Samadifard Master of Applied Science Department of Chemical Engineering and Applied Chemistry University of Toronto 2015 Abstract The present study investigates the potential to recover nickel from pyrrhotite tailings produced at the smelting operations of Vale in Sudbury, Ontario. Leaching tests were performed in acidic ferric sulphate media with 0.14 wt.% solids. The temperature was varied between 30 °C and 55 °C, and the ferric concentration was in a range 0.02- 0.3 M. The shrinking core model (SCM) was applied on the nickel extraction data. The dominant reaction mechanism was found to be diffusion control. The Arrhenius plot yielded an activation energy of Ea=62.12 kJ/mol based on apparent reaction rates obtained by the SCM. The reaction order with respect to ferric ion was found to be 1.0 at the high concentration range. SEM images of partially leached tailings confirmed the presence of elemental sulphur around the pyrrhotite particles, which was responsible for the observed non-linear leaching kinetics (diffusion control). ii Acknowledgments I would like to express my sincere appreciation to my supervisor Dr. Vladimiros Papangelakis for his constant support, guidance and patience throughout the course of my study. Financial support of Vale Canada, Glencore, the Ontario Centers of Excellence (OCE), the Centre for Excellence in Mining Innovation (CEMI), and the Natural Sciences and Engineering Research Council of Canada (NSERC) are gratefully acknowledged.
    [Show full text]
  • Orientation of Exsolved Pentlandite in Natural and Synthetic Nickeliferous
    AmericanMineralogist, Volume61, pages913-920, 1976 Orientationof exsolvedpentlandite in naturaland synthetic nickeliferous pyrrhotite Cenr A. FRANCISI,MtcHesl E. FLestz, KuL,q MlsnA.8,AND JenrEs R. Cnntcl rDepartment of Geological Sciences, Virginia Polytechnic Institute and State Uniuersity, Blacksburg, Virginia 24061 2Department of Geology, The Uniuersity of Western Ontario, London, Ontario N6A3K7 sDepartment of Geological Sciences, The Uniuersity of Tennessee,Knoxuille, Tennessee37916 Abstract Pentlandite(pn), (Fe, Ni)rSB,exsolves from nickeliferouspyrrhotite (po), (Fe, Ni)r-,S, in the form of flamesexhibiting weak reflectionanisotropism and preferredorientation. X-ray precessionstudies on both natural and syntheticcrystals have establishedthe orientation relation:(111)pnll (00.1)po; (0Tl )pn ll (l 1.0)po;(TT2)pn ll (10.0)po.In synthesisexperiments, rapidlyquenched samples of (Fe,Ni)r-,Ssolid solutions contain randomly oriented blebs of pentlandite,whereas slowly cooled charges contain coherent lamellae of pentlanditeparallel to (00.1)of pyrrhotite. Introduction typical Sudbury-typeFe-Ni sulfideassemblages lie within the monosulfidesolid-solution field at higher Threetextural varieties of pentlandite,(Fe,Ni)156, temperatures(Naldrett and Kullerud, 1967;Craig are common in the pyrrhotite-bearing(Sudbury- and Kullerud, 1969) further supportsthis inter- type) naturalnickel sulfide assemblages: (l) massive pretation.Thus the subsolidusexsolution origin of (blocky) pentlandite,often containingislands of pentlanditein nickel-sulfideassemblages
    [Show full text]