Identification of Potential Key Lncrnas and Genes Associated with Aging Based on Microarray Data of Adipocytes from Mice
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Supplemental Figure 1. Vimentin
Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672 -
Supplemental Table 3 - Male Genes Differentially Expressed > 1.5-Fold Among Strains in E11.5 XY Gonads
Supplemental Table 3 - Male genes differentially expressed > 1.5-fold among strains in E11.5 XY gonads. Male genes differentially expressed between C57BL/6J and 129S1/SvImJ. Note: Positive fold values reflect male genes that are up regulated in C57BL/6J relative to 129S1/SvImJ. Fold Diff Gene symbol Genbank acc Description 10.77 Gcnt1 NM_173442 Mus musculus glucosaminyl (N-acetyl) transferase 1, core 2 (Gcnt1), mRNA [NM_173442] 5.50 Afp NM_007423 Mus musculus alpha fetoprotein (Afp), mRNA [NM_007423] 4.95 Hnf4a NM_008261 Mus musculus hepatic nuclear factor 4, alpha (Hnf4a), mRNA [NM_008261] 4.71 Ppp1r14c AK082372 Mus musculus 0 day neonate cerebellum cDNA, RIKEN full-length enriched library, clone:C230042N14 product:hypothetical protein, full insert sequence. [AK082372] 4.41 Gorasp2 AK020521 Mus musculus 12 days embryo embryonic body between diaphragm region and neck cDNA, RIKEN full-length enriched library, clone:9430094F20 product:inferred: golgi reassembly stacking protein 2, full insert sequence. [AK020521] 3.69 Tmc7 NM_172476 Mus musculus transmembrane channel-like gene family 7 (Tmc7), mRNA [NM_172476] 2.97 Mt2 NM_008630 Mus musculus metallothionein 2 (Mt2), mRNA [NM_008630] 2.62 Gstm6 NM_008184 Mus musculus glutathione S-transferase, mu 6 (Gstm6), mRNA [NM_008184] 2.43 Adhfe1 NM_175236 Mus musculus alcohol dehydrogenase, iron containing, 1 (Adhfe1), mRNA [NM_175236] 2.38 Txndc2 NM_153519 Mus musculus thioredoxin domain containing 2 (spermatozoa) (Txndc2), mRNA [NM_153519] 2.30 C030038J10Rik AK173336 Mus musculus mRNA for mKIAA2027 -
Supplemental Material Annexin A2-S100A10 Represents the Regulatory Component of Maxi-Cl Channel Dependent on Protein Tyrosine De
Supplemental Material Annexin A2-S100A10 Represents the Regulatory Component of Maxi-Cl Channel Dependent on Protein Tyrosine Dephosphorylation and Intracellular Ca2+ Md. Rafiqul Islama Toshiaki Okadaa Petr G. Merzlyaka,b Abduqodir H. Toychieva,c Yuhko Ando-Akatsukad Ravshan Z. Sabirova,b Yasunobu Okadaa,e aDivision of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki, Japan, bInstitute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan, cDepartment of Biological Sciences, State University of New York College of Optometry, New York, NY, USA, dDepartment of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan, eDepartment of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan Supplementary Material Supplementary Fig. 1. Maxi-Cl currents in C127 cells were unaffected by siRNA- mediated silencing of three annexin family member genes, Anxa1, Anxa3 and Anxa11. Effects of knockdown mediated by Anxa1-specific siRNA (A), Anxa3-specific siRNA (B) and Anxa11-specific siRNA (C). Top panels: The effects on expression of ANXA mRNAs in C127 cells treated with non-targeting siRNA (cnt) or Anxa1/3/11-specific siRNA (si) detected by RT-PCR using Gapdh as a control. M: molecular size markers (100-bp ladder). These data represent triplicate experiments. Upper-middle panels: Representative time courses of Maxi-Cl current activation recorded at +25 mV after patch excision from C127 cells transfected with Anxa1/3/11-specific siRNA. Lower-middle panels: Voltage- dependent inactivation pattern of Maxi-Cl currents elicited by applying single voltage step pulses from 0 to 25 and 50 mV. Bottom panels: Summary of the effects of non-targeting siRNA (Control) and Anxa1/3/11-specific siRNA on the mean Maxi-Cl currents recorded at +25 mV. -
Análise Integrativa De Perfis Transcricionais De Pacientes Com
UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. -
Methylglyoxal Down-Regulates the Expression of Cell Cycle Associated
www.nature.com/scientificreports OPEN Methylglyoxal down-regulates the expression of cell cycle associated genes and activates the p53 Received: 8 May 2018 Accepted: 12 December 2018 pathway in human umbilical vein Published: xx xx xxxx endothelial cells Jana D. Braun1, Diego O. Pastene1, Annette Breedijk1, Angelica Rodriguez1, Björn B. Hofmann1, Carsten Sticht2, Elke von Ochsenstein3, Heike Allgayer3, Jacob van den Born4, Stephan Bakker4, Sibylle J. Hauske1, Bernhard K. Krämer1, Benito A. Yard1 & Thomas Albrecht1 Although methylglyoxal (MGO) has emerged as key mediator of diabetic microvascular complications, the infuence of MGO on the vascular transcriptome has not thoroughly been assessed. Since diabetes is associated with low grade infammation causing sustained nuclear factor-kappa B (NF-κB) activation, the current study addressed 1) to what extent MGO changes the transcriptome of human umbilical vein endothelial cells (HUVECs) exposed to an infammatory milieu, 2) what are the dominant pathways by which these changes occur and 3) to what extent is this afected by carnosine, a putative scavenger of MGO. Microarray analysis revealed that exposure of HUVECs to high MGO concentrations signifcantly changes gene expression, characterized by prominent down-regulation of cell cycle associated genes and up-regulation of heme oxygenase-1 (HO-1). KEGG-based pathway analysis identifed six signifcantly enriched pathways of which the p53 pathway was the most afected. No signifcant enrichment of infammatory pathways was found, yet, MGO did inhibit VCAM-1 expression in Western blot analysis. Carnosine signifcantly counteracted MGO-mediated changes in a subset of diferentially expressed genes. Collectively, our results suggest that MGO initiates distinct transcriptional changes in cell cycle/apoptosis genes, which may explain MGO toxicity at high concentrations. -
Characterization of Glomerular Extracellular Matrix in Iga Nephropathy by Proteomic Analysis of Laser-Captured Microdissected Gl
Paunas et al. BMC Nephrology (2019) 20:410 https://doi.org/10.1186/s12882-019-1598-1 RESEARCH ARTICLE Open Access Characterization of glomerular extracellular matrix in IgA nephropathy by proteomic analysis of laser-captured microdissected glomeruli Flavia Teodora Ioana Paunas1,2* , Kenneth Finne2, Sabine Leh2,3, Tarig Al-Hadi Osman2, Hans-Peter Marti2,4, Frode Berven5 and Bjørn Egil Vikse1,2 Abstract Background: IgA nephropathy (IgAN) involves mesangial matrix expansion, but the proteomic composition of this matrix is unknown. The present study aimed to characterize changes in extracellular matrix in IgAN. Methods: In the present study we used mass spectrometry-based proteomics in order to quantitatively compare protein abundance between glomeruli of patients with IgAN (n = 25) and controls with normal biopsy findings (n = 15). Results: Using a previously published paper by Lennon et al. and cross-referencing with the Matrisome database we identified 179 extracellular matrix proteins. In the comparison between IgAN and controls, IgAN glomeruli showed significantly higher abundance of extracellular matrix structural proteins (e.g periostin, vitronectin, and extracellular matrix protein 1) and extracellular matrix associated proteins (e.g. azurocidin, myeloperoxidase, neutrophil elastase, matrix metalloproteinase-9 and matrix metalloproteinase 2). Periostin (fold change 3.3) and azurocidin (3.0) had the strongest fold change between IgAN and controls; periostin was also higher in IgAN patients who progressed to ESRD as compared to patients who did not. Conclusion: IgAN is associated with widespread changes of the glomerular extracellular matrix proteome. Proteins important in glomerular sclerosis or inflammation seem to be most strongly increased and periostin might be an important marker of glomerular damage in IgAN. -
Original Article EFEMP2 Is Upregulated in Gliomas and Promotes Glioma Cell Proliferation and Invasion
Int J Clin Exp Pathol 2015;8(9):10385-10393 www.ijcep.com /ISSN:1936-2625/IJCEP0013127 Original Article EFEMP2 is upregulated in gliomas and promotes glioma cell proliferation and invasion Long Wang, Qianxue Chen, Zhibiao Chen, Daofeng Tian, Haitao Xu, Qiang Cai, Baohui Liu, Gang Deng Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China Received July 19, 2015; Accepted August 25, 2015; Epub September 1, 2015; Published September 15, 2015 Abstract: Gliomas are the most common and aggressive form of primary brain tumor. Although EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2), an extracellular matrix (ECM) glycoprotein, is regarded as a candidate oncogene, little is known about the association of EFEMP2 and gliomas. Here, the expression of EFEMP2 was significantly increased in glioma tissues (n=60) compared to non-tumorous brain tissues (n=25). Silencing of EFEMP2 expression through RNA interference in two glioma cell lines (U87 and U373) remarkably inhibited cell proliferation and G1/S transition. More importantly, EFEMP2 silencing significantly induced cell apoptosis via increasing the ratio of Bax and Bcl-2. Additionally, knockdown of EFEMP2 significantly inhibited the invasive ability of both glioma cells, which was associated with the downregulated expression of metalloproteinase-2 (MMP-2) and MMP-9. In conclusion, expression of EFEMP2 was associated with the oncogenic potential of gliomas and silenc- ing of its expression can suppress cancer cell growth and metastasis. Inhibition of EFEMP2 may be a therapeutic strategy for gliomas. Keywords: Apoptosis, EFEMP2, G1/S transition, gliomas, metalloproteinase Introduction ing-EGF-like domains and a unique fibulin C-terminal domain [5]. -
Colon Cancer Recurrence‑Associated Genes Revealed by WGCNA Co‑Expression Network Analysis
MOLECULAR MEDICINE REPORTS 16: 6499-6505, 2017 Colon cancer recurrence‑associated genes revealed by WGCNA co‑expression network analysis XIAOFENG ZHAI1,2*, QINGFENG XUE3*, QUN LIU1,2, YUYU GUO1,2 and ZHE CHEN1,2 1Department of Integrative Oncology, Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University; 2Department of Integrative Oncology, Changhai Hospital, Shanghai 200433; 3Department of Anesthesiology, 264 Hospital of The People's Liberation Army, Taiyuan, Shanxi 030001, P.R. China Received March 31, 2016; Accepted March 20, 2017 DOI: 10.3892/mmr.2017.7412 Abstract. The present study aimed to identify the revealed that the function of cell adhesion, biological adhe- recurrence-associated genes in colon cancer, which may sion, extracellular matrix (ECM) organization, pathways of provide theoretical evidence for the development of novel ECM‑receptor interaction and focal adhesion were the signifi- methods to prevent tumor recurrence. Colon cancer and cantly changed terms in colon cancer. In conclusion, SERP2, matched normal samples microarray data (E-GEOD-39582) EFEMP2, FBN1, SPARC, and LINC0219 were revealed to be were downloaded from ArrayExpress. Genes with signifi- the recurrence-associated molecular and prognostic indicators cant variation were identified, followed by the screening of in colon cancer by WGCNA co‑expression network analysis. differentially expressed genes (DEGs). Subsequently, the co-expression network of DEGs was constructed using the Introduction weighted correlation network analysis (WGCNA) method, which was verified using the validation dataset. The signifi- Colon cancer is one of the most common malignant tumors, cant modules associated with recurrence in the network were with a high incident rate in the 40-50 age group. -
Transcriptomic and Proteomic Profiling Provides Insight Into
BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes. -
Proteomics of Serum Extracellular Vesicles Identifies a Novel COPD Biomarker, Fibulin-3 from Elastic Fibres
ORIGINAL ARTICLE COPD Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres Taro Koba 1, Yoshito Takeda1, Ryohei Narumi2, Takashi Shiromizu2, Yosui Nojima 3, Mari Ito3, Muneyoshi Kuroyama1, Yu Futami1, Takayuki Takimoto4, Takanori Matsuki1, Ryuya Edahiro1, Satoshi Nojima5, Yoshitomo Hayama1, Kiyoharu Fukushima1, Haruhiko Hirata1, Shohei Koyama1, Kota Iwahori1, Izumi Nagatomo1, Mayumi Suzuki1, Yuya Shirai1, Teruaki Murakami1, Kaori Nakanishi 1, Takeshi Nakatani1, Yasuhiko Suga1, Kotaro Miyake1, Takayuki Shiroyama1, Hiroshi Kida 1, Takako Sasaki6, Koji Ueda7, Kenji Mizuguchi3, Jun Adachi2, Takeshi Tomonaga2 and Atsushi Kumanogoh1 ABSTRACT There is an unmet need for novel biomarkers in the diagnosis of multifactorial COPD. We applied next-generation proteomics to serum extracellular vesicles (EVs) to discover novel COPD biomarkers. EVs from 10 patients with COPD and six healthy controls were analysed by tandem mass tag-based non-targeted proteomics, and those from elastase-treated mouse models of emphysema were also analysed by non-targeted proteomics. For validation, EVs from 23 patients with COPD and 20 healthy controls were validated by targeted proteomics. Using non-targeted proteomics, we identified 406 proteins, 34 of which were significantly upregulated in patients with COPD. Of note, the EV protein signature from patients with COPD reflected inflammation and remodelling. We also identified 63 upregulated candidates from 1956 proteins by analysing EVs isolated from mouse models. Combining human and mouse biomarker candidates, we validated 45 proteins by targeted proteomics, selected reaction monitoring. Notably, levels of fibulin-3, tripeptidyl- peptidase 2, fibulin-1, and soluble scavenger receptor cysteine-rich domain-containing protein were significantly higher in patients with COPD. -
Clonally Expanding Smooth Muscle Cells Promote Atherosclerosis by Escaping Efferocytosis and Activating the Complement Cascade
Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade Ying Wanga,b, Vivek Nandaa,b,c, Daniel Direnzoa, Jianqin Yea, Sophia Xiaoa, Yoko Kojimaa, Kathryn L. Howea, Kai-Uwe Jarra, Alyssa M. Floresa, Pavlos Tsantilasa, Noah Tsaoa, Abhiram Raob,d, Alexandra A. C. Newmane, Anne V. Eberharda, James R. Priestf, Arno Ruusaleppg, Gerard Pasterkamph,i, Lars Maegdefesselj,k, Clint L. Millerl,m,n, Lars Lindo, Simon Koplevp, Johan L. M. Björkegrenp, Gary K. Owense, Erik Ingelssonb,o,q, Irving L. Weissmanr,1, and Nicholas J. Leepera,b,1 aDivision of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305; bStanford Cardiovascular Institute, Stanford University, Stanford, CA 94305; cDepartment of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294; dDepartment of Bioengineering, Stanford University, Stanford, CA 94305; eRobert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22904; fDivision of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305; gDepartment of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia 50406; hDepartment of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; iLaboratory of Clinical Chemistry, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; jDepartment for Vascular and Endovascular Surgery, Klinikum Rechts der Isar, Technical University -
Download Author Version (PDF)
Biomaterials Science Cell -derived matrices for tissue engineering and regenerative medicine applications Journal: Biomaterials Science Manuscript ID: BM-REV-07-2014-000246.R1 Article Type: Review Article Date Submitted by the Author: 19-Aug-2014 Complete List of Authors: Fitzpatrick, Lindsay; Queen's University, Department of Chemical Engineering McDevitt, Todd; Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering Page 1 of 33 Biomaterials Science Cell-derived matrices for tissue engineering and regenerative medicine applications 1 Lindsay E. Fitzpatrick a*, Todd C. McDevitt b,c aDepartment of Chemical Engineering, Queen's University, Kingston, Canada; bThe Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, USA; cThe Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA. Corresponding Author (*): Dr. Lindsay E. Fitzpatrick Assistant Professor Department of Chemical Engineering Queen’s University 19 Division St, Room 302 Kingston, Ontario, Canada, K7K 3N6 E-mail: [email protected] Biomaterials Science Page 2 of 33 Abstract The development and application of decellularized extracellular matrices (ECM) has grown rapidly in the fields of cell biology, tissue engineering and regenerative medicine in recent years. Similar to decellularized tissues and whole organs, cell-derived matrices (CDMs) represent bioactive, biocompatible materials consisting of a complex assembly of fibrillar proteins, matrix macromolecules and associated growth factors that often recapitulate, at least to some extent, the composition and organization of native ECM microenvironments. The unique ability to engineer CDMs de novo based on cell source and culture methods makes them an attractive alternative to conventional allogeneic and xenogeneic tissue-derived matrices that are currently harvested from cadaveric sources, suffer from inherent heterogeneity, and have limited ability for customization.