Continuous Deployment at Facebook and OANDA
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Modisco: a Model Driven Reverse Engineering Framework Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, Frédéric Madiot
MoDisco: a Model Driven Reverse Engineering Framework Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, Frédéric Madiot To cite this version: Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, Frédéric Madiot. MoDisco: a Model Driven Reverse Engineering Framework. Information and Software Technology, Elsevier, 2014, 56 (8), pp.1012-1032. 10.1016/j.infsof.2014.04.007. hal-00972632 HAL Id: hal-00972632 https://hal.inria.fr/hal-00972632 Submitted on 7 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MoDisco: a Model Driven Reverse Engineering Framework Hugo Bruneli`erea,1,∗, Jordi Cabota, Gr´egoire Dup´eb, Fr´ed´eric Madiotc aAtlanMod (Inria & LINA), Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes, France bMia-Software, 4 rue du Chateau de l’Eraudi`ere, 44324 Nantes, France cObeo, 7 boulevard Amp`ere, Espace Performance La Fleuriaye, 44481 Carquefou, France Abstract Context: Most companies, independently of their size and activity type, are facing the problem of managing, maintaining and/or replacing (part of) their existing software systems. These legacy systems are often large applications playing a critical role in the company’s information system and with a non-negligible impact on its daily operations. -
Rugby - a Process Model for Continuous Software Engineering
INSTITUT FUR¨ INFORMATIK DER TECHNISCHEN UNIVERSITAT¨ MUNCHEN¨ Forschungs- und Lehreinheit I Angewandte Softwaretechnik Rugby - A Process Model for Continuous Software Engineering Stephan Tobias Krusche Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Informatik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Helmut Seidl Prufer¨ der Dissertation: 1. Univ.-Prof. Bernd Brugge,¨ Ph.D. 2. Prof. Dr. Jurgen¨ Borstler,¨ Blekinge Institute of Technology, Karlskrona, Schweden Die Dissertation wurde am 28.01.2016 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Informatik am 29.02.2016 angenommen. Abstract Software is developed in increasingly dynamic environments. Organizations need the capability to deal with uncertainty and to react to unexpected changes in require- ments and technologies. Agile methods already improve the flexibility towards changes and with the emergence of continuous delivery, regular feedback loops have become possible. The abilities to maintain high code quality through reviews, to regularly re- lease software, and to collect and prioritize user feedback, are necessary for con- tinuous software engineering. However, there exists no uniform process model that handles the increasing number of reviews, releases and feedback reports. In this dissertation, we describe Rugby, a process model for continuous software en- gineering that is based on a meta model, which treats development activities as parallel workflows and which allows tailoring, customization and extension. Rugby includes a change model and treats changes as events that activate workflows. It integrates re- view management, release management, and feedback management as workflows. As a consequence, Rugby handles the increasing number of reviews, releases and feedback and at the same time decreases their size and effort. -
Enterprise Architecture
Enterprise Architecture Dr. Adnan Albar Faculty of Computing & Information Technology King AbdulAziz University - Jeddah 1 Enterprise Architecture Methods Lecture 5 Week 5 Slides King AbdulAziz University - FCIT 2 Overview . Description Languages for Business & IT Domains . IDEF . BPMN . Testbed . ARIS . Unified Modeling Language . Service-Oriented Architecture (SOA) Slide 3 Description Languages . In domains such as business process design and software development, we find established description languages for modeling these domains. For software modeling, UML is of course, the single dominant language. In organization and process modeling, on the other hand, a multitude of languages are in use: there is no standard for models in this domain. We will focus on languages that either find widespread use or have properties that are interesting from the perspective of our goals in developing an enterprise architecture language. Slide 4 IDEF – Integrated DEFinition Methods .IDEF is a family of languages .Used to perform enterprise modeling and analysis .Currently, there are 16 IDEF methods. Of these methods, IDEF0, IDEF3, and IDEF1X (‘the core’) are the most commonly used. Slide 5 IDEF – The Scope it Covers .Functional modeling, IDEF0: The idea behind IDEF0 is to model the elements controlling the execution of a function, the actors performing the function, the objects or data consumed and produced by the function, and the relationships between business functions (shared resources and dependencies). .Process modeling, IDEF3: IDEF3 captures the workflow of a business process via process flow diagrams. These show the task sequence for processes performed by the organization, the decision logic, describe different scenarios for performing the same business functions, and enable the analysis and improvement of the workflow. -
Towards an Application Lifecycle Management Framework
VTT CREATES BUSINESS FROM TECHNOLOGY Technology and market foresight • Strategic research • Product and service development • IPR and licensing Dissertation VTT PUBLICATIONS 759 • Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership • • • VTT PUBLICATIONS 759 TOWARDS AN APPLICATION LIFECYCLE MANAGEMENT FRAMEWORK AN APPLICATION 759 TOWARDS • VTT PUBLICATIONS VTT PUBLICATIONS 742 Elina Mattila. Design and evaluation of a mobile phone diary for personal health management. 2010. 83 p. + app. 48 p. 743 Jaakko Paasi & Pasi Valkokari (eds.). Elucidating the fuzzy front end – Experiences from the INNORISK project. 2010. 161 p. 744 Marja Vilkman. Structural investigations and processing of electronically and protonically conducting polymers. 2010. 62 p. + app. 27 p. 745 Juuso Olkkonen. Finite difference time domain studies on sub-wavelength aperture structures. 2010. 76 p. + app. 52 p. 746 Jarkko Kuusijärvi. Interactive visualization of quality Variability at run-time. 2010. 111 p. 747 Eija Rintala. Effects of oxygen provision on the physiology of baker’s yeast Saccharomyces cerevisiae. 2010. 82 p. + app. 93 p. 748 Virve Vidgren. Maltose and maltotriose transport into ale and lager brewer’s yeast strains. 2010. 93 p. + app. 65 p. 749 Toni Ahonen, Markku Reunanen & Ville Ojanen (eds.). Customer value driven service business development. Outcomes from the Fleet Asset Management Project. 2010. 43 p. + app. 92 p. 750 Tiina Apilo. A model for corporate renewal. Requirements for innovation management. 2010. 167 p. + app. 16 p. 751 Sakari Stenudd. Using machine learning in the adaptive control of a smart environment. 2010. 75 p. 752 Evanthia Monogioudi. Enzymatic Cross-linking of ββ-casein and its impact on digestibility and allergenicity. -
D1.1.1 Public State of the Art Document
D1.1.1 Public state of the art document Programme ITEA3 Challenge Smart Engineering Project number 17038 Project name Visual diagnosis for DevOps software development Project duration 1st October 2018 – 30st June 2022 Project website Project WP WP1 - Pre-studies and requirements Project Task Task 1.1 – Update of state-of-art and state-of-the practice analysis for visualization in software projects in DevOps context Deliverable type X Doc Textual deliverable SW Software deliverable Version V17 Delivered 18/11/2019 Access x Public Abstracts are public Confidential D1.1.1 Public state of the art document Document Contributors Partber Author Role EXPERIS Ester Sancho editor EXPERIS Miriam Moreno writer GRO Paris Avgeriou writer INVENCO Mika Koivuluoma writer OCE Lou Somers writer/reviewer OULU Markus Kelanti writer TAU Kari Systä writer/reviewer TAU Outi Sievi-Korte writer/reviewer TIOBE Paul Jansen writer TIOBE Marvin Wener writer UPC Lidia López writer UPC Xavier Franch writer VINCIT Veli-Pekka Eloranta writer Document History Date Version Editors Status 18/06/2019 ToC EXPERIS Table of Content 10/07/2019 V01 TAU Draft 30/09/2019 V02 OCE/GRO Draft 17/10/2019 V06 TIOBE Draft 22/10/2019 V08 OULU Draft 12/11/2019 V09 VINCIT 1ST Final Draft 20/11/2019 V10 OCE Reviewed version 26/11/2019 V12 UPC/EXPERIS/TAU 2nd Final Draft 10/12/2019 V16 EXPERIS Final Version 16/12/2019 V16.01 TAU Peer Review 18/12/2019 V17 EXPERIS Submission 2 D1.1.1 Public state of the art document Table of Contents Executive Summary ............................................................................................................................. 6 1. -
Devsecops in Reguated Industries Capgemini Template.Indd
DEVSECOPS IN REGULATED INDUSTRIES ACCELERATING SOFTWARE RELIABILITY & COMPLIANCE TABLE OF CONTENTS 03... Executive Summary 04... Introduction 07... Impediments to DevSecOps Adoption 10... Playbook for DevSecOps Adoption 19... Conclusion EXECUTIVE SUMMARY DevOps practices enable rapid product engineering delivery and operations, particularly by agile teams using lean practices. There is an evolution from DevOps to DevSecOps, which is at the intersection of development, operations, and security. Security cannot be added after product development is complete and security testing cannot be done as a once-per-release cycle activity. Shifting security Left implies integration of security at all stages of the Software Development Life Cycle (SDLC). Adoption of DevSecOps practices enables faster, more reliable and more secure software. While DevSecOps emerged from Internet and software companies, it can benefit other industries, including regulated and high security environments. This whitepaper covers how incorporating DevSecOps in regulated Industries can accelerate software delivery, reducing the time from code change to production deployment or release while reducing security risks. This whitepaper defines a playbook for DevSecOps goals, addresses challenges, and discusses evolving workflows in DevSecOps, including cloud, agile, application modernization and digital transformation. Bi-directional requirement traceability, document generation and security tests should be part of the CI/CD pipeline. Regulated industries can securely move away -
CADET: Debugging and Fixing Misconfigurations Using Counterfactual Reasoning
CADET: Debugging and Fixing Misconfigurations using Counterfactual Reasoning Md Shahriar Iqbal∗ Rahul Krishna∗ Mohammad Ali Javidian University of South Carolina Columbia University Purdue University [email protected] [email protected] [email protected] Baishakhi Ray Pooyan Jamshidi Columbia University University of South Carolina [email protected] [email protected] Abstract Swap Mem. Swap Memory Modern computing platforms are highly-configurable with thou- sands of interacting configuration options. However, configuring GPU Resource these systems is challenging and misconfigurations can cause un- 512 Mb Latency 1Gb Memory Pressure expected non-functional faults. This paper proposes CADET (short 2Gb 3Gb for Causal Debugging Toolkit) that enables users to identify, ex- 4Gb Latency plain, and fix the root cause of non-functional faults early and in a GPU Growth GPU Growth principled fashion. CADET builds a causal model by observing the (a) (b) (c) performance of the system under different configurations. Then, it uses casual path extraction followed by counterfactual reason- Figure 1: Observational data (in Fig.1a) (incorrectly) shows ing over the causal model to (a) identify the root causes of non- that high GPU memory growth leads to high latency. The trend functional faults, (b) estimate the effects of various configuration is reversed when the data is segregated by swap memory. options on the performance objective(s), and (c) prescribe candi- date repairs to the relevant configuration options to fix the non- functional fault. We evaluated CADET on 5 highly-configurable systems by comparing with state-of-the-art configuration optimiza- heat dissipation [15, 71, 74, 84]. The sheer number of modalities tion and ML-based debugging approaches. -
Enterprise Application Lifecycle Management Solutions Enterprise Application Lifecycle Management Solutions
Enterprise Application Lifecycle Management Solutions Enterprise Application Lifecycle Management Solutions This extensive onsite knowledge gained from years of expe- Products and Solutions for rience combined with our trusted relationships with end- users, puts us in a unique position to self-instrument the Comprehensive Enterprise products crucially needed by our customers to successfully accomplish their Enterprise Application Lifecycle Manage- Application Lifecycle ment projects. Management With this in mind, we have developed Our Enterprise Application Lifecycle Ma- RaySuite. nagement Solutions include delivering RaySuite is a comprehensive set of products that automates various tasks within an Enterprise Application Lifecycle. consulting and software packaging ser- vices to enterprises undergoing an OS This automation ranges from the analysis of the existing application portfolio and license inventories via complex migration or implementing a software license management and software packaging, all the way deployment tool. We have successfully to comprehensive quality control and fi nally software deployment in production. These automated processes served over 600 enterprise customers are sustainable and can be replicated for every change and with excellent results. every patch. A central database and a common user interface found throughout all RaySuite products form a consistent solution and off er a strong contrast to existing patchwork solutions that are often found in enterprises, as a result of limited vision and the implementation of various suppliers. Al- though Raynet guarantees a consistent approach with the use of its entire product range, it is still possible to buy and implement the individual products of RaySuite autono- mously as well as integrate them with existing third-party or home-grown products. -
Automatic Deployment of Distributed Software Systems: Definitions and State of the Art
Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 14816 To link to this article : DOI :10.1016/j.jss.2015.01.040 URL : http://dx.doi.org/10.1016/j.jss.2015.01.040 To cite this version : Arcangeli, Jean-Paul and Boujbel, Raja and Leriche, Sébastien Automatic Deployment of Distributed Software Systems: Definitions and State of the Art. (2015) Journal of Systems and Software, vol. 103. pp. 198-218. ISSN 0164-1212 Any correspondance concerning this service should be sent to the repository administrator: [email protected] Automatic deployment of distributed software systems: Definitions and state of the art a, a b Jean-Paul Arcangeli ∗, Raja Boujbel , Sébastien Leriche a Université de Toulouse, UPS, IRIT, 118 Route de Narbonne, F-31062 Toulouse, France b Université de Toulouse, ENAC, 7 Avenue Édouard Belin, F-31055 Toulouse, France a b s t r a c t Deployment of software systems is a complex post-production process that consists in making software available for use and then keeping it operational. It must deal with constraints concerning both the system and the target machine(s), in particular their distribution, heterogeneity and dynamics, and satisfy requirements from different stakeholders. In the context of mobility and openness, deployment must react to the instability of the network of machines (failures, connections, disconnections, variations in the quality of the resources, etc.). -
Devops Point of View an Enterprise Architecture Perspective
DevOps Point of View An Enterprise Architecture perspective Amsterdam, 2020 Management summary “It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change.”1 Setting the scene Goal of this Point of View In the current world of IT and the development of This point of view aims to create awareness around the IT-related products or services, companies from transformation towards the DevOps way of working, to enterprise level to smaller sizes are starting to help gain understanding what DevOps is, why you need it use the DevOps processes and methods as a part and what is needed to implement DevOps. of their day-to-day organization process. The goal is to reduce the time involved in all the An Enterprise Architecture perspective software development phases, to achieve greater Even though it is DevOps from an Enterprise Architecture application stability and faster development service line perspective, this material has been gathered cycles. from our experiences with customers, combined with However not only on the technical side of the knowledge from subject matter experts and theory from organization is DevOps changing the playing within and outside Deloitte. field, also an organizational change that involves merging development and operations teams is Targeted audience required with an hint of cultural changes. And last but not least the skillset of all people It is specifically for the people within Deloitte that want to involved is changing. use this as an accelerator for conversations and proposals & to get in contact with the people who have performed these type of projects. -
Code Debugging Tool to Help Teach Mainframe Programming Languages Claudio Gonçalves Bernardo Paulo Roberto Chineara Batuta Msc
Code Debugging Tool to Help Teach Mainframe Programming Languages Claudio Gonçalves Bernardo Paulo Roberto Chineara Batuta MSc. Computer Engineer MBA Software Quality Universidade Paulista Centro Universitário Araraquara Brazilia – Brazil São Paulo - Brazil [email protected] [email protected] Abstract – The purpose of testing activity is to discover errors in important to check the quality of software at various stages of software and for this objective to be achieved many activities development, not only restricting the testing phase of the software. must be performed. There are several types of test and while An appropriate test is one that discovers the greatest possible some are generated and focused on functional verification of a number of faults in the software and when this software is designed component and incorporating components in the structure of the to run in an large environment, also known as Mainframe, becomes program, others are applied to point traceability requirements. an even greater difficulty, since this environment is complex and the There are systems tests designed to validate part of a software characteristics of each facility are different. Universities see this component, which is a part of software solution greater. Its difficulty as a major obstacle to the teaching of languages such as function is only to be a small part of a more complex reality. The Cobol, PL/I, Easytrieve, Assembler and others, who did not die and different types of tests are complementary and in most cases are will not die, as a single system mainframe can deliver thousands of applicable to all software developed. All aim to develop programs virtual Linux platforms with a small fraction the dollar cost, power with the fewest mistakes as possible, allowing the product to and space [20]. -
Development and Deployment at Facebook
Development and Deployment at Facebook Dror G. Feitelson Eitan Frachtenberg Kent L. Beck Hebrew University Facebook Facebook Abstract More than one billion users log in to Facebook at least once a month to connect and share content with each other. Among other activities, these users upload over 2.5 billion content items every day. In this article we describe the development and deployment of the software that supports all this activity, focusing on the site’s primary codebase for the Web front-end. Information on Facebook’s architecture and other software components is available elsewhere. Keywords D.2.10.i Rapid prototyping; D.2.18 Software Engineering Process; D.2.19 Software Quality/SQA; D.2.2.c Distributed/Internet based software engineering tools and techniques; D.2.5.r Testing tools; D.2.7.e Evolving Internet applications. Facebook’s main development characteristics are speed and growth. The front-end is under continuous development by hundreds of software engineers. These engineers commit code to the version control system up to 500 times a day, recording changes in some 3,000 files. Naturally, codebase size unique developers by week commits per month 14 800 10 700 12 600 10 8 500 8 6 400 6 300 4 4 200 LoC [millions] 2 100 2 active developers 0 0 0 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 number of commits [1000s] ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 Figure 1: Different aspects of Facebook growth: growth of the number of engineers working on the code, growth in the total activity of these engineers, and growth of the codebase itself.