Estimated Baseflow Characteristics of Selected Washington Rivers and Streams

Total Page:16

File Type:pdf, Size:1020Kb

Estimated Baseflow Characteristics of Selected Washington Rivers and Streams Estimated Baseflow Characteristics of Selected Washington Rivers and Streams Water Supply Bulletin No. 60 October 1999 Publication No. 99-327 printed on recycled paper The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam Era veteran's status or sexual orientation. If you have special accommodation needs or require this document in alternative format, please contact the Environmental Assessment Program, Joan LeTourneau at (360) 407-6764 (voice). Ecology's telecommunications device for the deaf (TDD) number at Ecology Headquarters is (360) 407-6006. For additional copies of this publication, please contact: Department of Ecology Publications Distributions Office P. O. Box 47600 Olympia, Washington 98504-7600 (360) 407-7472 Refer to Publication Number 99-327 This report is also available on Ecology’s home page on the world wide web, at http://www.wa.gov/ecology/biblio/99327.html The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the Department of Ecology or the state of Washington. Estimated Baseflow Characteristics of Selected Washington Rivers and Streams Water Supply Bulletin No. 60 by Kirk A. Sinclair and Charles F. Pitz Washington State Department of Ecology Environmental Assessment Program Olympia, Washington 98504-7710 October 1999 Publication No. 99-327 printed on recycled paper This page is purposely left blank for duplex printing Table of Contents Page List of Figures .....................................................................................................................ii List of Plates.......................................................................................................................iii Acknowledgements ............................................................................................................iv Abstract ............................................................................................................................ v Glossary ..........................................................................................................................vii Introduction ......................................................................................................................... 1 Purpose and scope ......................................................................................................... 2 Previous investigations.................................................................................................. 2 Theoretical background................................................................................................. 3 Study Methods..................................................................................................................... 5 Compilation of streamflow data.................................................................................... 5 Statistical data analysis.................................................................................................. 6 Compilation and preparation of digital data.................................................................. 7 Results .......................................................................................................................... 11 Monthly statistics ........................................................................................................11 Annual statistics .......................................................................................................... 11 Data Limitations................................................................................................................12 Period of data record ................................................................................................... 12 Length of data record .................................................................................................. 12 Streamflow regulation................................................................................................. 12 Drainage area............................................................................................................... 14 Snow/glacial melt........................................................................................................ 15 Alternative baseflow analysis techniques ................................................................... 17 Summary and Conclusions................................................................................................ 19 Recommendations and Suggestions for Additional Study............................................... 21 References ......................................................................................................................... 23 Appendices A. Characteristics of Modeled Gaging Stations B. Monthly Summary Statistics for Baseflow and Streamflow C. Annual Summary Statistics for Baseflow and Streamflow D. Digital Data and GIS Project Files (in the report folder - not included in the pdf version) Page i List of Figures Page Figure 1: Base Flow Separation Using the Local Minimum Method, S.F. Skykomish River Near Index, WA (USGS 12133000) ........................................................ 4 Figure 2: Graphical Depiction of Baseflow Statistics, Black River at Littlerock, WA. (USGS 12029000) ............................................................................................. 7 Figure 3: Comparison of Annual Mean Streamflow, Estimated Annual Mean Baseflow, and Annual 7-Day Low Flow, Naselle River Near Naselle, WA. (USGS 12010000) ............................................................................................. 9 Figure 4: Comparison of Estimated Monthly Mean Baseflow, Mean Surface Runoff, and Mean Streamflow, Naselle River Near Naselle, WA. (USGS 12010000) 10 Figure 5: August Baseflow and Total Streamflow, Wynoochee River Above Black Creek Near Montesano, WA. (USGS 12037400) ................................. 13 Figure 6: Comparison of Annual Mean Streamflow, Estimated Annual Mean Baseflow, and Annual 7-day Low Flow, Wynoochee River Above Black Creek Near Montesano, WA. (USGS 12037400) ................................. 15 Figure 7: Comparison of Estimated Monthly Mean Baseflow, Mean Surface Runoff, and Mean Streamflow, Chamokane Creek Below Falls Near Long Lake, WA (USGS 12433200) ............................................................................................ 16 . Page ii List of Plates (Plates are located in the report folder - or at the back of this pdf) Plate 1: Distribution of Modeled Gaging Stations Plate 2: Gaging Station Features 2A: Years of Data Used to Estimate Baseflow 2B: Degree of Stream Regulation 2C: Drainage Area of Modeled Stations Plate 3: Estimated Baseflow Contributions to Total Streamflow by Season 3A: Mean Baseflow as a Percentage of Total Streamflow – February 3B: Mean Baseflow as a Percentage of Total Streamflow – May 3C: Mean Baseflow as a Percentage of Total Streamflow – August 3D: Mean Baseflow as a Percentage of Total Streamflow – November Plate 4: Watershed Hydrology 4A: Median of Annual Means – Total Streamflow (ft3/sec) 4B: Median of Annual Means – 7-day Low Flow (ft3/sec) 4C: Median of Annual Means – Estimated Baseflow (ft3/sec) Plate 5: Estimated Baseflow Characteristics 5A: Median of Annual Means – Estimated Baseflow as a Percentage of Total Streamflow 5B: Median of Annual Means – Estimated Baseflow (in) – Streams with Little or No Reported Regulation 5C: Median of Annual Means – Estimated Unit-area Baseflow (ft3/sec/mi2) – Streams with Little or No Reported Regulation Page iii Acknowledgements This study would not have been possible without the support and contributions of others at the Washington State Department of Ecology (Ecology) and at the U.S. Geological Survey (USGS). We want to express our appreciation to the following: USGS ◊ Michele Crouse for expediting public distribution of HYSEP and for her insights regarding use of the HYSEP program. ◊ The many hydrologists, technicians, and computer specialists who, over the years, built and maintained the stream gages and computer databases this study drew upon. Ecology ◊ Will Kendra, Larry Goldstein, and Bill Backous who supported and funded this study. ◊ John Covert, John Roland, Linton Wildrick, Art Larson, Todd Kirk, Kirk Cook and Doug McChesney who reviewed and commented on drafts of this report. ◊ Joan LeTourneau who edited and formatted the final report. ◊ Steve Barrett for posting this report on the Internet. Page iv Abstract Automated hydrograph separation techniques were used to evaluate the groundwater contribution to total streamflow (baseflow) at active and inactive stream gaging stations throughout Washington State. Discharge records for 582 gaging stations, with at least three complete water years of daily mean streamflow data, were downloaded from the U.S. Geological Survey (USGS) National Water Information System. Station characteristics were compiled for each gage, including period of streamflow record, type and degree of regulation affecting the gage, watershed drainage area, USGS station number, station name, and gage location. Summary statistics were calculated for annual mean streamflow and annual 7-day low flow for all 582 stations. Monthly, and in some cases annual, statistics for baseflow were then estimated using a USGS hydrograph separation software program called HYSEP (Sloto and Crouse,
Recommended publications
  • Socioeconomic Monitoring of the Olympic National Forest and Three Local Communities
    NORTHWEST FOREST PLAN THE FIRST 10 YEARS (1994–2003) Socioeconomic Monitoring of the Olympic National Forest and Three Local Communities Lita P. Buttolph, William Kay, Susan Charnley, Cassandra Moseley, and Ellen M. Donoghue General Technical Report United States Forest Pacific Northwest PNW-GTR-679 Department of Service Research Station July 2006 Agriculture The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all pro- grams.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
    [Show full text]
  • The Washington Climate Change Impacts Assessment
    The Washington Climate Change Impacts Assessment Evaluating Washington’s Future in a Changing Climate ........................................................................................................ A report by The Climate Impacts Group University of Washington Climate Science June 2009 in the Public Interest Recommended citation: Climate Impacts Group, 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell, and L Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington. Available at: http://www.cses.washington.edu/db/pdf/wacciareport681.pdf Front cover satellite image credit: http://visibleearth.nasa.gov/view_rec.php?vev1id=4786 NASA - National Aeronautics and Space Administration Visible Earth: A catalog of NASA images and animations of our home planet Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE The Pacific Northwest is cloud-free in this SeaWiFS image. Multihued phytoplankton blooms are visible off of Washington's Olympic coast. Also visible in this image are: Fraser River outflow, snowcapped peaks of Mt. Olympus, Mt. Rainier, Mt. Adams, Mt. Hood, Mt. Jefferson, the Three Sisters, the North Cascades, and the Columbia and Snake River watersheds. Metadata * Sensor OrbView-2/SeaWiFS * Visualization Date 2000-09-26 * The Visible Earth is part of the EOS Project Science Office located at NASA Goddard Space Flight Center. Small images credits: Wheat: © 2009 www.photos.com Coast; Seattle skyline: © J. Martin Grassley McNary Dam: courtesy Bonneville Power Administration Salmon: courtesy University of Washington News and Information Forest: courtesy Climate Impacts Group, University of Washington Report design: Beth Tully, Edit-Design Center, University of Washington The Washington Climate Change Impacts Assessment Evaluating Washington’s Future in a Changing Climate ........................................................................................
    [Show full text]
  • Ecology and Habitat Requirements of Fish Populations in South Fork Hoh River, Olympic National Park
    Ecology and Habitat Requirements of Fish Populations in South Fork Hoh River, Olympic National Park J.R. Sedell, P.A. Bisson, J.A. June, and R.W. Speaker ABSTRACT Four distinct running water habitats are defined and examined on the South Fork Hoh River--main river channel, river off-channel areas, terrace tributaries, and valley wall tributaries. Species compositions, densities, and total fish biomasses are distinctly different for each habitat examined. Habitat formed by the main river channel and its tributaries is controlled by the valley terrace structure and the modifying effects of large woody debris. Without large wood, spawning and rearing habitat quality would be poorer, even in the large channel. Virtually all rearing of salmonid fish occurs in river off-channel areas and tributaries. The main channel is used mainly for spawning and migration. Fish densities and biomasses are highest in streams along the valley floor. Alteration of these areas will have greatest impact on fish production. J. R. Sedell, U.S. Department of Agriculture, Forest Service, Forestry Sciences Laboratory, 3200 Jefferson Way, Corvallis, Oregon 97331; P. A. Bisson, Weyerhaeuser Company, 505 North Pearl Street, Centralia, Washington 98531; J. A. June, Department of Fisheries, University of Washington, Seattle, Washington 98195; and R. W. Speaker, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331. 35 SOUTH FORK HON RIVER MATERIALS AND METHODS FISH SAMPLE SIT ES A beach seine was employed for sampling salmonid AAAAA " populations in the main stem South Fork Hoh River. tOlhf 114•1" A 600-volt backpack electric shocker was used to .11.
    [Show full text]
  • Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
    Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge.
    [Show full text]
  • Modifying Wepp to Improve Streamflow Simulation in a Pacific Northwest Watershed
    MODIFYING WEPP TO IMPROVE STREAMFLOW SIMULATION IN A PACIFIC NORTHWEST WATERSHED A. Srivastava, M. Dobre, J. Q. Wu, W. J. Elliot, E. A. Bruner, S. Dun, E. S. Brooks, I. S. Miller ABSTRACT. The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow, soil water, and deep percolation. However, to adequately simulate hydrologic conditions with significant quantities of groundwater flow into streams, a baseflow component for WEPP is needed. The objectives of this study were (1) to simulate streamflow in the Priest River Experimental Forest in the U.S. Pacific Northwest using the WEPP model and a baseflow routine, and (2) to compare the performance of the WEPP model with and without including the baseflow using observed streamflow data. The baseflow was determined using a linear reservoir model. The WEPP- simulated and observed streamflows were in reasonable agreement when baseflow was considered, with an overall Nash- Sutcliffe efficiency (NSE) of 0.67 and deviation of runoff volume (Dv) of 7%. In contrast, the WEPP simulations without including baseflow resulted in an overall NSE of 0.57 and Dv of 47%. On average, the simulated baseflow accounted for 43% of the streamflow and 12% of precipitation annually. Integration of WEPP with a baseflow routine improved the model’s applicability to watersheds where groundwater contributes to streamflow. Keywords. Baseflow, Deep seepage, Forest watershed, Hydrologic modeling, Subsurface lateral flow, Surface runoff, WEPP.
    [Show full text]
  • Evaluating Snowmelt Runoff Generation in a Discontinuous Permafrost
    Evaluating snowmelt runoff generation in a discontinuous Nordic Hydrology permafrost catchment using stable isotope, hydrochemical and hydrometric data* S.K. Carey1 and W.L. Quinton2 1Department of Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada K1S 5B6 Vol 35 No 4 pp 309–324 E-mail: [email protected] 2Department of Geography, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 Received 1 November 2003; accepted in revised form 15 June 2004 Abstract Research on snowmelt runoff generation in discontinuous permafrost subarctic catchments has highlighted the role of: (i) permafrost in restricting deep percolation and sustaining near-surface water tables and (ii) the surface organic layer in rapidly conveying water to the stream. Conceptual models of runoff generation have largely been derived from hydrometric data, with isotope and hydrochemical data having only limited q application in delineating sources and pathways of water. In a small subarctic alpine catchment within the Wolf IWA Publishing 2004 Creek Research Basin, Yukon, Canada, snowmelt runoff generation processes were studied during 2002 using a mixed methods approach. Snowmelt timing varied between basin slopes, with south-facing exposures melting prior to permafrost-underlain north-facing slopes. The streamflow freshet period begain after 90% of snow had melted on the south-facing slope and coincided with the main melt period on the north-facing slope, indicating that contributing areas were largely defined by permafrost distribution. Stable isotope (d18O) and hydrochemical parameters (dissolved organic carbon, specific conductivity, pH) suggest that, at the beginning of the melt period, meltwater infiltrates soil pores and resides in temporary storage. As melt progresses and bare ground appears, thawing of soils and continued meltwater delivery to the slopes allows rapid drainage of this meltwater through surface organic layers.
    [Show full text]
  • Provincial Freshet and Flood Status
    Dashboard # Provincial Lead Contact: Media Relations contact: Provincial Freshet and Flood Status Manager, River Forecast Centre & Flood Safety Provincial Information Coordination Officer Date: June 24th, 2021, 4:00 pm Freshet 12 - George Roman Tyler Hooper 2021 Water Management Branch, Public Affairs Officer Ministry of Forests, Lands, Natural Resource [email protected] Operations and Rural Development (FLNRORD) 250-213-8172 [email protected] 250-896-2725 Provincial Summary Several streams and rivers are flowing higher this week than seasonal due the unprecedented historic heat resulting in a number of Flood Warnings, Flood Watches and High Streamflow Advisories. In general, stream flows will begin to recede over the next week. The Fraser River is expected to rise into the weekend; however, flows are forecast to remain below their earlier 2021 peaks. Provincial staff, local government staff, First Nations, and other parties continue to monitor the situation and support the implementation of flood emergency preparedness, response, and recovery. The public is advised to stay clear of all fast-flowing rivers and streams and potentially unstable riverbanks during spring high streamflow periods. Weather (Current and Forecast) Temperatures have reduced from the historic heat we recently experienced. As the ridge that resulted in the high temperatures moves east there is increased risk of instability leading to thunder and lightening. Limited precipitation is expected over the next several days. Flood Warnings and Advisories River Conditions and Outlook Flood Warning The historic heat event has led to historic snow melt. Many streams responded to the extreme heat and high elevation snow and glacial • Upper Fraser River melt.
    [Show full text]
  • Types of Flooding
    Designed for safer living® Focus on Types of flooding Designed for safer living® is a program endorsed by Canada’s insurers to promote disaster-resilient homes. About the Institute for Catastrophic Loss Reduction The Institute for Catastrophic Loss Reduction (ICLR), established in 1997, is a world-class centre for multidisciplinary disaster prevention research and communication. ICLR is an independent, not-for-profit research institute founded by the insurance industry and affiliated with Western University, London, Ontario. The Institute’s mission is to reduce the loss of life and property caused by severe weather and earthquakes through the identification and support of sustained actions that improve society’s capacity to adapt to, anticipate, mitigate, withstand and recover from natural disasters. ICLR’s mandate is to confront the alarming increase in losses caused by natural disasters and to work to reduce deaths, injuries and property damage. Disaster damage has been doubling every five to seven years since the 1960s, an alarming trend. The greatest tragedy is that many disaster losses are preventable. ICLR is committed to the development and communication of disaster prevention knowledge. For the individual homeowner, this translates into the identification of natural hazards that threaten them and their home. The Institute further informs individual homeowners about steps that can be taken to better protect their family and their homes. Waiver The content of this publication is to be used as general information only. This publication does not replace advice from professionals. Contact a professional if you have questions about specific issues. Also contact your municipal government for information specific to your area.
    [Show full text]
  • Bureau of Reclamation Hoh River Geomorphic
    Summary Report for Geomorphic Assessment of Hoh River in Washington State Hoh River Miles 17 to 40: Oxbow Canyon and Mount Tom Creek U.S. Department of the Interior Bureau of Reclamation Technical Service Center July 2004 Summary Report for Geomorphic Assessment of Hoh River in Washington State River Miles 17 to 40 between Oxbow Canyon and Mount Tom Creek Report Prepared by: Lucille A. Piety, Geomorphologist Seismotectonics & Geophysics Group, Technical Service Center Jennifer A. Bountry, P.E., Hydraulic Engineer Sedimentation & River Hydraulics Group, Technical Service Center Timothy J. Randle, P.E., Hydraulic Engineer Sedimentation & River Hydraulics Group, Technical Service Center Edward W. Lyon, Jr., Geologist Geology, Exploration, & Instrumentation Group Pacific Northwest Regional Office Report Peer Reviewed by: Ralph E. Klinger, Ph.D., Geomorphologist Flood Hydrology Group, Technical Service Center Richard A. Link, Regional Geologist Geology, Exploration, & Instrumentation Group Pacific Northwest Regional Office U.S. Department of the Interior Bureau of Reclamation Technical Service Center, Denver, Colorado UNITED STATES DEPARTMENT OF THE INTERIOR The mission of the Department of the Interior is to protect and provide access to our Nation=s natural and cultural heritage and honor our trust responsibilities to Indian tribes and our commitments to island communities. BUREAU OF RECLAMATION The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound
    [Show full text]
  • Supp III a Basin Description
    Supplement Section III — Basin Description Information Base Part A — Basin Description The Chehalis River Basin is the largest river basin in western Washington. With the exception of the Columbia River basin, it is the largest in the state. The basin extends over eight counties. It encompasses large portions of Grays Harbor, Lewis, and Thurston counties, and smaller parts of Mason, Pacific, Cowlitz, Wahkiakum, and Jefferson counties. For purposes of water resources planning under the Washington State Watershed Planning Act of 1998, the Chehalis Basin was divided into two Water Resource Inventory Areas (WRIAs), WRIA 22 and WRIA 23, depicted here with surrounding WRIA numbers and in relation to the whole state of Washington. Chehalis Basin Watershed — County Land Areas County Area (sq.mi.) Area (acres) Percentage Grays Harbor 1,390 889,711 50.3% Thurston 323 206,446 11.7% Lewis 770 493,103 27.9% Mason 206 132,146 7.5% Pacific 66 42,040 2.4% Cowlitz 8 5,427 0.3% Jefferson 2 1,259 0.07% Wahkiakum .1 37 0.002% Total 2,766 1,770,169 Source: Chehalis Watershed GIS Watershed Boundaries The basin is bounded on the west by the Pacific Ocean, on the east by the Deschutes River Basin, on the north by the Olympic Mountains, and on the south by the Willapa Hills and Cowlitz River Basin. Elevations vary from sea level at Grays Harbor to the 5,054-foot Capitol Peak in the Olympic National Forest. The basin consists of approximately 2,766 square miles. The Chehalis WRIA 22 River system flows through three distinct eco-regions before emptying into Grays Harbor near Aberdeen (Omernik, 1987): • The Cascade ecoregion (including the Olympic Mountains) is char- acterized by volcanic/sedimentary bedrock formations.
    [Show full text]
  • Chehalis River
    Northwest Area Committee OCTOBER 2015 CHEHALIS RIVER Geographic Response Plan (CHER GRP) 1 This page was intentionally left blank. 2 CHEHALIS RIVER GRP OCTOBER 2015 CHEHALIS RIVER Geographic Response Plan (CHER GRP) October 2015 3 CHEHALIS RIVER GRP OCTOBER 2015 Spill Response Contact Sheet Required Notifications for Oil Spills and Hazardous Substance Releases Federal Notification - National Response Center (800) 424-8802* State Notification - Washington Emergency Management (800) 258-5990* Division - Other Contact Numbers - U.S. Environmental Protection Agency Washington State Region 10 - Spill Response (206) 553-1263* Dept Archaeology & Hist Preserv (360) 586-3065 - Washington Ops Office (360) 753-9437 Dept of Ecology - Oregon Ops Office (503) 326-3250 - Headquarters (Lacey) (360) 407-6000 - RCRA/CERCLA Hotline (800) 424-9346 - SW Regional Office (Lacey) (360) 407-6300 - Public Affairs (206) 553-1203 Dept of Fish and Wildlife (360) 902-2200 - Emergency HPA Assistance (360) 902-2537* U.S. Coast Guard -Oil Spill Team (360) 534-8233* Sector Columbia River Dept of Health (Drinking Water) (800) 521-0323 - Emergency / Watchstander (503) 861-2242* - After normal business hours (877) 481-4901 - Command Center (503) 861-6211* Dept of Natural Resources (360) 902-1064 - Incident Management Division (503) 861-6477 - After normal business hours (360) 556-3921 - Station Grays Harbor (360) 268-0121* Dept of Transportation (360) 705-7000 13th Coast Guard District (800) 982-8813 State Parks & Rec Commission (360) 902-8613 National Strike Force (252) 331-6000 State Patrol - District 1 (253) 538-3240 Coordination - Pacific Strike Center Team (415) 883-3311 State Patrol - District 5 (360) 449-7909 State Patrol - District 8 (360) 473-0172 National Oceanic Atmospheric Administration Scientific Support Coordinator (206) 526-6829 Tribal Contacts Weather (206) 526-6087 Chehalis Confederated Tribes (360) 273-5911 - Cultural Resources Ext.
    [Show full text]
  • Biogeochemical and Metabolic Responses to the Flood Pulse in a Semi-Arid Floodplain
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU 1 Running Head: Semi-arid floodplain response to flood pulse 2 3 4 5 6 Biogeochemical and Metabolic Responses 7 to the Flood Pulse in a Semi-Arid Floodplain 8 9 10 11 with 7 Figures and 3 Tables 12 13 14 15 H. M. Valett1, M.A. Baker2, J.A. Morrice3, C.S. Crawford, 16 M.C. Molles, Jr., C.N. Dahm, D.L. Moyer4, J.R. Thibault, and Lisa M. Ellis 17 18 19 20 21 22 Department of Biology 23 University of New Mexico 24 Albuquerque, New Mexico 87131 USA 25 26 27 28 29 30 31 present addresses: 32 33 1Department of Biology 2Department of Biology 3U.S. EPA 34 Virginia Tech Utah State University Mid-Continent Ecology Division 35 Blacksburg, Virginia 24061 USA Logan, Utah 84322 USA Duluth, Minnesota 55804 USA 36 540-231-2065, 540-231-9307 fax 37 [email protected] 38 4Water Resources Division 39 United States Geological Survey 40 Richmond, Virginia 23228 USA 41 1 1 Abstract: Flood pulse inundation of riparian forests alters rates of nutrient retention and 2 organic matter processing in the aquatic ecosystems formed in the forest interior. Along the 3 Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created 4 riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are 5 still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain 6 isolated from flooding (i.e., disconnected).
    [Show full text]