Computational Mechanisms Underlying Human Confidence Reports

Total Page:16

File Type:pdf, Size:1020Kb

Computational Mechanisms Underlying Human Confidence Reports Computational mechanisms underlying human confidence reports by William T. Adler A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Center for Neural Science New York University January 2018 Wei Ji Ma c William T. Adler All Rights Reserved, 2018 I think it’s much more interesting to live not knowing than to have answers which might be wrong. I have approximate answers, and possible beliefs, and different degrees of certainty about different things, but I’m not absolutely sure of anything, and there are many things I don’t know anything about, such as whether it means anything to ask why we’re here, and what the question might mean. But I don’t have to know an answer. I don’t feel frightened by not knowing things, by being lost in a mysterious universe without having any purpose, which is the way it really is, as far as I can tell, possibly. Richard Feynman Dedication To Maw, who asked questions v Acknowledgements First and foremost, I want to thank Wei Ji Ma. Weiji is the best graduate school mentor that I could have asked for. I feel lucky to have joined Weiji’s lab, in part because it was so unplanned (he was not yet NYU faculty when I applied here), and in part because he allowed me to join even though I knew next to nothing about probability. Weiji has always pushed me to be extremely rigorous in forming and answering questions, and has helped me become a more precise thinker and writer. He has been a friend and an ally in political matters inside and outside of NYU. I wish him all the best in his new journey of fatherhood, and I know that he and Ting will make great parents. Rachel Denison has been an excellent collaborator on the project presented in Chapter 4. Collaborating with her has shown me how much more fun and productive it is to work with someone I admire than to work alone. Thanks to Marisa Carrasco for knowing everything there is to know about attention. Roshni Lulla and Gordon Bill were a great help on this project, collecting data and having thoughtful discussions. I want to thank my committee, Eero Simoncelli, Roozbeh Kiani, Marisa Carrasco, and my outside reader Angela Yu, for helping to shape this work. Steve Fleming and Joaquín Navajas provided helpful feedback on the work presented in Chapter 2. Thank you to the National Science Foundation and all political actors that enable taxpayer- funded research, without which most science would not be possible. This dissertation was based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1342536. I want to highlight a few of my brilliant colleagues in the Ma lab. Luigi Acerbi has been one of the most important figures of my graduate education. I learned something new vi every time I talked to Luigi, and his facility and enthusiasm for modeling were contagious. Aspen Yoo has been one of my best friends, and a great support, ever since she mysteriously appeared in the lab one day without any announcement or introduction by Weiji. I have been indebted to Bas van Opheusden ever since he stayed up with me until 3 a.m. our first year of graduate school, helping me write my first log likelihood function. Andra Mihali has always provided helpful comments on manuscripts and talks, as well as ibuprofen for headaches. Emin Orhan has provided various mathematical assistance over the years, and the analysis in Chapter 5 was very much inspired by his work. I want to thank everyone who has been with the Scientist Action and Advocacy Network (ScAAN) since the beginning. I have been so impressed by your enthusiasm for combining science with policy, and by the hard work you have put into our projects. You all have helped me to expand my conception of what a scientific career can be. Many people have provided meaningful contributions to ScAAN projects, but I especially want to thank Weiji, Jenn, Milenna, Kristina, David, Silvia, Ali, Billy, Stephen, Andra, and EG, for their consistent participation, enthusiasm, and leadership. Thanks to the department, especially Amala, for supporting us. Thank you to my New York friends in and outside of the department, especially Silvia Lopez Guzman, Corey Ziemba, and Alex Gibson. I want to thank my supportive family, especially my parents Martha and David, who taught me to love learning. Thank you to my sisters Zoe and Rachel; my soon-to-be parents- in-law Lisa and Philip; my Hags family Tania, Ariel, Charlie, and Robbie; and Jolene and DeWitt Clinton, who only occasionally spill coffee on my keyboard. Finally, I want to thank Sarah. Over the last eight years, we have watched each other grow more fully into ourselves and into our relationship. I treasure the time that we have spent together, and I am thankful that we will have so much more of it. vii Preface Each of Chapters 2 to4 represents work from a manuscript that has been previously posted as a preprint on bioRxiv, with myself as first author and Wei Ji Ma as senior author. On the manuscript associated with Chapter 4, Rachel N. Denison and I are co-first authors, and Marisa Carrasco is also an author. Chapter 5 was included in an earlier version of the manuscript associated with Chapter 3, and is in that article’s version history on bioRxiv. It has since been removed from the manuscript, and is unlikely to see publication outside of this dissertation. All human behavior data, as well as all code used for the work presented here, is available at github.com/wtadler/confidence. viii Abstract A perceptual decision is often accompanied by a subjective feeling of confidence. Because humans are able to easily report this feeling in a laboratory setting, confidence reports have long been objects of study. However, the computations underlying confidence reports are not well understood. It has been proposed that confidence in categorization tasks should be defined as the observer’s estimated probability of being correct. This definition extends Bayesian decision theory so that it describes confidence reports as well as decisions. Although this definition is elegant, the notion that confidence reports are Bayesian is a hypothesis rather than an established fact. In this dissertation, our aim is to test that hypothesis, which we call the Bayesian confidence hypothesis (BCH). We find that a proposed approach to determining the computational origins of confidence is flawed. Some authors have proposed that one way to determine whether confidence is Bayesian is to derive qualitative signatures of Bayesian confidence, and then see whether they are present in behavioral or neural data. We analyze some of these proposed signatures and find that they are less useful than they might have seemed. Specifically, they are neither necessary nor sufficient signatures of Bayesian confidence, which means that observation of (or failure to observe) these signatures provides an uncertain amount of evidence for (or against) the BCH. There has been a confusion in the literature about a second possible signature. We find no evidence that this second signature is ever expected under Bayesian confidence. Finally, the application of these signatures is a qualitative exercise because it may not always be clear whether data displays a signature, especially noisy data. Our analysis of the signatures leads us to conclude that the most powerful way to test the BCH is by using quantitative model comparison. ix We test human subjects on a set of binary categorization tasks designed to distinguish Bayesian models of confidence from other plausible models. In all experiments, the primary variable of interest to the observer was the orientation of a stimulus. In one set of experiments, we induce sensory uncertainty by manipulating properties of the stimulus, such as contrast. We find that subjects take their sensory uncertainty into account, and that confidence appears qualitatively Bayesian. Quantitatively, however, heuristic models provide a much better fit to the data. Our conclusions are robust to variants of both the experiment and the Bayesian models. In another experiment, we induce sensory uncertainty by manipulating the subjects’ attention. As in the previous set of experiments, we find that confidence reports are qualitatively Bayesian. In this experiment, we are unable to distinguish the Bayesian model from the heuristic models. Finally, we describe an exploratory analysis intended to explain why confidence reports might not be Bayesian. We trained feedforward neural networks on our tasks as if they were naïve human subjects and fit our behavioral models to the data produced by these trained networks. We find that the same heuristic models that fit our human data well also fit the network-produced data. We suggest a future research program in which neural network behavior is compared to human behavior on the basis of model rankings. x Contents Dedication v Acknowledgements vi Preface viii Abstract ix List of Figures xv List of Tables xviii 1 Introduction1 1.1 Techniques for measuring confidence ...................... 2 1.2 Models of confidence............................... 4 1.3 Dissertation outline................................ 8 2 Limitations of proposed signatures of Bayesian confidence9 2.1 Introduction.................................... 9 2.2 Binary categorization task............................ 11 xi 2.3 Derivation of Bayesian confidence........................ 13 2.4 0.75 signature: Mean Bayesian confidence is 0.75 for neutral evidence trials. 14 2.4.1 The 0.75 signature is not a necessary condition for Bayesian confidence 15 2.4.2 The 0.75 signature is not a sufficient condition for Bayesian confidence 19 2.5 Divergence signature #1: As stimulus magnitude increases, mean confidence increases on correct trials but decreases on incorrect trials .........
Recommended publications
  • Complex Internal Representations in Sensorimotor Decision Making: a Bayesian Investigation Doctor of Philosophy, 2014
    COMPLEXINTERNALREPRESENTATIONS INSENSORIMOTORDECISIONMAKING: A BAYESIAN INVESTIGATION luigi acerbi I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy Doctoral Training Centre for Computational Neuroscience Institute of Perception, Action and Behaviour School of Informatics University of Edinburgh 2014 Luigi Acerbi: Complex internal representations in sensorimotor decision making: A Bayesian investigation Doctor of Philosophy, 2014 supervisors: Prof. Sethu Vijayakumar, Ph.D., FRSE Prof. Daniel M. Wolpert, D.Phil., FRS, FMedSci ABSTRACT The past twenty years have seen a successful formalization of the idea that percep- tion is a form of probabilistic inference. Bayesian Decision Theory (BDT) provides a neat mathematical framework for describing how an ideal observer and actor should interpret incoming sensory stimuli and act in the face of uncertainty. The predictions of BDT, however, crucially depend on the observer’s internal models, represented in the Bayesian framework by priors, likelihoods, and the loss function. Arguably, only in the simplest scenarios (e.g., with a few Gaussian variables) we can expect a real observer’s internal representations to perfectly match the true statistics of the task at hand, and to conform to exact Bayesian computations, but how humans systemati- cally deviate from BDT in more complex cases is yet to be understood. In this thesis we theoretically and experimentally investigate how people represent and perform probabilistic inference with complex (beyond Gaussian) one-dimensional distributions of stimuli in the context of sensorimotor decision making. The goal is to reconstruct the observers’ internal representations and details of their decision- making process from the behavioural data – by employing Bayesian inference to un- cover properties of a system, the ideal observer, that is believed to perform Bayesian inference itself.
    [Show full text]
  • Moira Rose (Molly) Dillon
    Moira Rose Dillon Department of Psychology, New York University, 6 Washington Place, New York, NY 10003 Email – [email protected] Departmental Website – http://as.nyu.edu/psychology/people/faculty.Moira-Dillon.html Lab Website – https://www.labdevelopingmind.com Employment New York University New York, NY Assistant Professor, Department of Psychology, Faculty of Arts and Sciences (July 2017-present) Concurrent Positions New York University New York, NY Faculty Affiliate, Institute of Human Development and Social Change, Steinhardt School of Culture, Education, and Human Development (May 2019-present) Massachusetts Institute of Technology Cambridge, MA Invited Researcher, Abdul Latif Jameel Poverty Action Lab (J-PAL), Foundations of Learning (April 2021-present) Education Harvard University Cambridge, MA (August 2011-May 2017) Ph.D., Psychology (May 2017) A.M., Psychology (May 2014) Yale University New Haven, CT (August 2004-May 2008) B.A., Cognitive Science; Art (May 2008) Funding 2019-2024 National Science Foundation (PI: $1,718,437) CAREER: Becoming Euclid: Characterizing the geometric intuitions that support formal learning in mathematics (PI: $24,671) CLB: Career-Life Balance Faculty Early Career Development Program Supplement 2019-2023 DARPA (Co-PI; to NYU: $1,703,553; to Dillon: $871,874) Cognitive milestones for Machine Common Sense, Co-PI: Brenden Lake 2019-2021 Jacobs Foundation (PI: 150,000 CHF) Early Career Research Fellowship 2018-2019 Institute of Human Development and Social Change at NYU (PI: $14,848) The arc of geometric
    [Show full text]
  • Why the Bayesian Brain May Need No Noise
    Stochasticity from function – why the Bayesian brain may need no noise Dominik Dolda,b,1,2, Ilja Bytschoka,1, Akos F. Kungla,b, Andreas Baumbacha, Oliver Breitwiesera, Walter Sennb, Johannes Schemmela, Karlheinz Meiera, Mihai A. Petrovicia,b,1,2 aKirchhoff-Institute for Physics, Heidelberg University. bDepartment of Physiology, University of Bern. 1Authors with equal contributions. 2Corresponding authors: [email protected], [email protected]. August 27, 2019 Abstract An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic computing. Since the precise statistical properties of neural activity are important in this context, many models assume an ad-hoc source of well-behaved, explicit noise, either on the input or on the output side of single neuron dynamics, most often assuming an independent Poisson process in either case. However, these assumptions are somewhat problematic: neighboring neurons tend to share receptive fields, rendering both their input and their output correlated; at the same time, neurons are known to behave largely deterministically, as a function of their membrane potential and conductance. We suggest that spiking neural networks may have no need for noise to perform sampling-based Bayesian inference. We study analytically the effect of auto- and cross-correlations in functional Bayesian spiking networks and demonstrate how their effect translates to synaptic interaction strengths, rendering them controllable through synaptic plasticity. This allows even small ensembles of interconnected deterministic spiking networks to simultaneously and co-dependently shape their output activity through learning, enabling them to perform complex Bayesian computation without any need for noise, which we demonstrate in silico, both in classical simulation and in neuromorphic emulation.
    [Show full text]
  • Wilken and Ma 2004
    Journal of Vision (2004) 4, 1120-1135 http://journalofvision.org/4/12/11/ 1120 A detection theory account of change detection Division of Biology, California Institute of Technology, Patrick Wilken Pasadena, CA, USA Division of Biology, California Institute of Technology, Wei Ji Ma Pasadena, CA, USA Previous studies have suggested that visual short-term memory (VSTM) has a storage limit of approximately four items. However, the type of high-threshold (HT) model used to derive this estimate is based on a number of assumptions that have been criticized in other experimental paradigms (e.g., visual search). Here we report findings from nine experiments in which VSTM for color, spatial frequency, and orientation was modeled using a signal detection theory (SDT) approach. In Experiments 1-6, two arrays composed of multiple stimulus elements were presented for 100 ms with a 1500 ms ISI. Observers were asked to report in a yes/no fashion whether there was any difference between the first and second arrays, and to rate their confidence in their response on a 1-4 scale. In Experiments 1-3, only one stimulus element difference could occur (T = 1) while set size was varied. In Experiments 4-6, set size was fixed while the number of stimuli that might change was varied (T = 1, 2, 3, and 4). Three general models were tested against the receiver operating characteristics generated by the six experiments. In addition to the HT model, two SDT models were tried: one assuming summation of signals prior to a decision, the other using a max rule. In Experiments 7-9, observers were asked to directly report the relevant feature attribute of a stimulus presented 1500 ms previously, from an array of varying set size.
    [Show full text]
  • Using Games to Understand Intelligence
    Using Games to Understand Intelligence Franziska Brandle¨ 1, Kelsey Allen2, Joshua B. Tenenbaum2 & Eric Schulz1 1Max Planck Research Group Computational Principles of Intelligence, Max Planck Institute for Biological Cybernetics 2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Over the last decades, games have become one of the most isons between human and machine agents, for example in re- popular recreational activities, not only among children but search of human tool use (Allen et al., 2020). Games also also among adults. Consequently, they have also gained pop- offer complex environments for human-agent collaborations ularity as an avenue for studying cognition. Games offer sev- (Fan, Dinculescu, & Ha, 2019). Games have gained increas- eral advantages, such as the possibility to gather big data sets, ing attention during recent meetings of the Cognitive Science engage participants to play for a long time, and better resem- Society, with presentations on multi-agent collaboration (Wu blance of real world complexities. In this workshop, we will et al., 2020), foraging (Garg & Kello, 2020) and mastery (An- bring together leading researchers from across the cognitive derson, 2020) (all examples taken from the 2020 Conference). sciences to explore how games can be used to study diverse aspects of intelligent behavior, explore their differences com- Goal and scope pared to classical lab experiments, and discuss the future of The aim of this workshop is to bring together scientists who game-based cognitive science research. share a joint interest in using games as a tool to research in- Keywords: Games; Cognition; Big Data; Computation telligence. We have invited leading academics from cogni- tive science who apply games in their research.
    [Show full text]
  • Wei Ji Ma CV Apr 2021 Center for Neural Science
    Wei Ji Ma CV Apr 2021 Center for Neural Science and Department of Psychology New York University 4 Washington Place, New York, NY 10003, USA, (212) 992 6530 [email protected] Lab website: http://www.cns.nyu.edu/malab POSITIONS 2020-present Professor, Center for Neural Science and Department of Psychology, New York University ● Affiliate faculty in the Institute for Decision-Making, the Center for Data Science, the Neuroscience Institute, and the Center for Experimental Social Science ● Collaborating Faculty of the NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai 2013-2020 Associate Professor, Center for Neural Science and Department of Psychology, New York University (with affiliations as above) 2008-2013 Assistant Professor, Department of Neuroscience, Baylor College of Medicine ● Adjunct faculty in the Department of Psychology, Rice University TRAINING 2004-2008 Postdoc, Department of Brain and Cognitive Sciences, University of Rochester. Advisor: Alexandre Pouget 2002-2004 Postdoc, Division of Biology, California Institute of Technology. Advisor: Christof Koch 1996-2001 PhD in Theoretical Physics, University of Groningen, the Netherlands Jan-Jun 2000 Visiting PhD student, Department of Physics, Princeton University. Advisor: Erik Verlinde 1994-1997 BS/MS in Mathematics, University of Groningen 1993-1996 BS/MS in Physics, University of Groningen RESEARCH INTERESTS Planning, reinforcement learning, social cognition, perceptual decision-making, perceptual organization, visual working memory, comparative cognition, optimality/rationality, approximate inference, probabilistic computation, efficient coding, computational methods. TEACHING, MENTORING, AND OUTREACH Improving the quality of undergraduate teaching, improving mentorship, diversity/equity/inclusion, science outreach, science writing, science advocacy, translating science to policy, social justice. Founder of Growing up in science Founding member of the Scientist Action and Advocacy Network (ScAAN) Founding member of NeuWrite NYU 1 PUBLICATIONS 1.
    [Show full text]
  • COSYNE 2012 Workshops February 27 & 28, 2012 Snowbird, Utah
    COSYNE 2012 Workshops February 27 & 28, 2012 Snowbird, Utah Monday, February 27 Organizer(s) Location 1. Coding and Computation in visual short-term memory. W.J. Ma Superior A 2. Neuromodulation: beyond the wiring diagram, M. Higley Wasatch B adding functional flexibility to neural circuits. 3. Sensorimotor processes reflected in spatiotemporal Z. Kilpatrick Superior B of neuronal activity. J-Y. Wu 4. Characterizing neural responses to structured K. Rajan Wasatch A and naturalistic stimuli. W.Bialek 5. Neurophysiological and computational mechanisms of D. Freedman Magpie A categorization. XJ. Wang 6. Perception and decision making in rodents S. Jaramillio Magpie B A. Zador 7. Is it time for theory in olfaction? V.Murphy Maybird N. Uchida G. Otazu C. Poo Workshop Co-Chairs Email Cell Brent Doiron, Pitt [email protected] 412-576-5237 Jess Cardin, Yale [email protected] 267-235-0462 Maps of Snowbird are at the end of this booklet (page 32). 1 COSYNE 2012 Workshops February 27 & 28, 2012 Snowbird, Utah Tuesday, February 28 Organizer(s) Location 1. Understanding heterogeneous cortical activity: S. Ardid Wasatch A the quest for structure and randomness. A. Bernacchia T. Engel 2. Humans, neurons, and machines: how can N. Majaj Wasatch B psychophysics, physiology, and modeling collaborate E. Issa to ask better questions in biological vision J. DiCarlo 3. Inhibitory synaptic plasticity T. Vogels Magpie A H Sprekeler R. Fromeke 4. Functions of identified microcircuits A. Hasenstaub Superior B V. Sohal 5. Promise and peril: genetics approaches for systems K. Nagal Superior A neuroscience revisited. D. Schoppik 6. Perception and decision making in rodents S.
    [Show full text]
  • Bayesian Modeling of Behavior Fall 2017 Wei Ji Ma
    Bayesian modeling of behavior Fall 2017 Wei Ji Ma This syllabus is subject to change. Changes will be announced in class and by email. Description Bayesian inference is the mathematical framework for making optimal decisions and actions when the state of the world is not exactly known. This course will provide an intuitive yet mathematically rigorous introduction to Bayesian models of behavior in perception, memory, decision-making, and cognitive reasoning. While this is primarily a psychology course, we will also discuss connections to economics and neuroscience. This course is not about Bayesian data analysis, but about theories that the brain itself is a Bayesian decision-maker. Nevertheless, we will spend some time on model fitting and model comparison. Prerequisites • Strong command of Calculus 1 or equivalent • Introductory course in probability or probability-based statistics. • Ability to code in Matlab. If you have not coded in Matlab before, you will be ok if you have other programming experience and do a tutorial before the course starts. Email Wei Ji if you have any questions about prerequisites. Lecturer Prof. Wei Ji Ma, [email protected], 212 992 6530 Weekly schedule Lecture Wednesdays, 4-6 pm Meyer 815 Recitation Thursdays, 2-4 pm Meyer 815 Office hours By appointment Meyer 754 (Wei Ji’s office) Materials • Bayesian modeling of perception, by Ma, Kording, and Goldreich. Will be distributed in electronic form. • You will need Matlab. If you have a laptop, please install Matlab on it before the course starts. Instructions for if you are on the Meyer building network: http://localweb.cns.nyu.edu/unixadmin/#august10-2015.
    [Show full text]
  • Bayesian Modeling of Behavior Fall 2018 Wei Ji Ma
    Bayesian modeling of behavior Fall 2018 Wei Ji Ma This syllabus is subject to change. Changes will be announced in class and by email. Description Bayesian inference is the mathematical framework for making optimal decisions and actions when the state of the world is not exactly known. This course will provide an intuitive yet mathematically rigorous introduction to Bayesian models of behavior in perception, memory, decision-making, and cognitive reasoning. While this is primarily a psychology course, we will also discuss connections to economics and neuroscience. This course is not about Bayesian data analysis, but about theories that the brain itself is a Bayesian decision-maker. Nevertheless, we will spend some time on model fitting and model comparison. Prerequisites • Strong command of Calculus 1 or equivalent • Introductory course in probability or probability-based statistics. • Ability to code in Matlab. If you have not coded in Matlab before, you will be ok if you have other programming experience and do a tutorial before the course starts. Email Wei Ji if you have any questions about prerequisites. Lecturer Prof. Wei Ji Ma, [email protected], 212 992 6530 Weekly schedule Lecture Wednesdays, 4-5:50 pm Meyer 851 Recitation Thursdays, 4-5:50 pm Meyer 851 Office hours By appointment Meyer 754 (Wei Ji’s office) Materials • Bayesian modeling of perception, by Ma, Kording, and Goldreich. Will be distributed in electronic form. • You will need Matlab. Instructions for installing Matlab if you are on the Meyer building network: http://localweb.cns.nyu.edu/unixadmin/#august10-2015. 1 Grading The total grade will be calculated as follows: Best 8 of 11 homework sets 55% Project 30% Participation 15% Letter grade Your numerical grade will be turned into a letter grade according to the following scale: 90-100 A; 87-89 A-; 84-86 B+; 80-83 B; 77-79 B-; 74-76 C+; 70-73 C; 67-69 C-; 64-66 D+; 60-63 D; 57-59 D-; 0-56 F.
    [Show full text]
  • Testing the Bayesian Brain Hypothesis in Visual Perception
    TESTING THE BAYESIAN BRAIN HYPOTHESIS IN VISUAL PERCEPTION A Dissertation presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by APRIL SWAGMAN Dr. Jeffrey N. Rouder, Dissertation Supervisor JULY 2016 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled: TESTING THE BAYESIAN BRAIN HYPOTHESIS IN VISUAL PERCEPTION presented by April Swagman, a candidate for the degree of Doctor of Philosophy and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Jeffrey N. Rouder Dr. Clint Davis-Stober Dr. Chi-Ren Shyu Dr. Jeffrey Johnson ACKNOWLEDGMENTS For providing the inspiration for this project and my first experiment, I would like to acknowledge Dr. Wei Ji Ma at New York University, who was sure we would find evidence that people are ideally Bayesian. To all past and present members of the Perception and Cognition Lab{Jon Thiele, Julia Haaf, Jory Province, and Tim Ricker{thank you for the encouragement and friendship you provided as I worked on this project. I would especially like to thank Jory for being a mentor and friend throughout my learning experience in the Rouder lab, and for the significant theoret- ical contributions he made to this work. I would like to thank all the PCL undergrad- uate research assistants who helped out with data collection, and especially to Ryan Bahr who helped me become a more effective mentor and was even willing to learn R along the way. And of course I am eternally grateful to my adviser Jeff Rouder for being helpful, inspiring, and, most importantly, patient as I made my way through this work.
    [Show full text]
  • High Precision Coding in Mouse Visual Cortex
    bioRxiv preprint doi: https://doi.org/10.1101/679324; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. High precision coding in mouse visual cortex Carsen Stringer1∗, Michalis Michaelos1, Marius Pachitariu1∗ 1HHMI Janelia Research Campus, Ashburn, VA, USA ∗ correspondence to (stringerc, pachitarium) @ janelia.hhmi.org ABSTRACT this behavior-related neural activity only accounted for ∼35% of the total coordinated variability, leaving the possibility that Single neurons in visual cortex provide unreliable mea- the rest is stimulus-related and thus potentially information- surements of visual features due to their high trial-to-trial limiting. variability. It is not known if this “noise” extends its ef- Estimating the impact of information-limiting noise on cod- fects over large neural populations to impair the global ing is difficult, because even small amounts of information- encoding of sensory stimuli. We recorded simultaneously limiting noise can put absolute bounds on the precision of from ∼20,000 neurons in mouse visual cortex and found stimulus encoding [27]. To detect the effects of such small that the neural population had discrimination thresholds noise, it is thus necessary to record from large numbers of of 0.3◦ in an orientation decoding task. These thresholds neurons. This introduces a new problem: the information con- are ∼100 times smaller than those reported behaviorally tent of such recordings cannot be estimated directly and de- in mice.
    [Show full text]
  • Computational Neuroscience 2017
    Computational Neuroscience 2017 1 Instructor: Odelia Schwartz Computational neuroscience • Introductions… What area are you in / background? Why Computational Neuroscience? 2 Computational neuroscience Lots of interest from multiple fields! Computer Science Biology Math Cognitive Science Engineering Psychology Physics Medical 3 Computational neuroscience Lots of interest from multiple fields! Computer Science Biology Math Cognitive Science Engineering Psychology Physics Medical Computational principles Experiments Algorithms Data … Computer simulations … 4 Brain machine interfaces Lots of interest from multiple fields! Schematic from http://www.brainfacts.org/-/media/Brainfacts/Article-Multimedia/About-Neuroscience/ 5 Technologies/Illustration-Brain-and-Arm.ashx Research such as L.R. Hochberg et al., Nature 2012 Computational neuroscience Lots of interest, including from industry! 6 Computational neuroscience • But what does it mean to understand how the brain works? (discussion) 7 Computational neuroscience Levels of investigation Psycholog y 8 Diagram: Terrence Sejnowski Computational neuroscience Levels of investigation PsychologBehavior/Cognition y Perception, behavior, cognition 9 Diagram: Terrence Sejnowski Computational Neuroscience • Finding low dimensional descriptions of high dimensional biological data • Proposing models to explain data, making predictions, generalization • Often close interplay between computational frameworks and experiments 10 Computational Neuroscience • Finding low dimensional descriptions of high dimensional
    [Show full text]