Spinup and Disruption of Interstellar Asteroids by Mechanical Torques, and Implications for 1I/2017 U1 (Oumuamua)

Total Page:16

File Type:pdf, Size:1020Kb

Spinup and Disruption of Interstellar Asteroids by Mechanical Torques, and Implications for 1I/2017 U1 (Oumuamua) Draft version May 10, 2018 Preprint typeset using LATEX style AASTeX6 v. 1.0 SPINUP AND DISRUPTION OF INTERSTELLAR ASTEROIDS BY MECHANICAL TORQUES, AND IMPLICATIONS FOR 1I/2017 U1 (‘OUMUAMUA) Thiem Hoang Korea Astronomy and Space Science Institute, Daejeon 34055, Korea, email: [email protected] and Korea University of Science and Technology, Daejeon, 34113, Korea Abraham Loeb Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, USA A. Lazarian Astronomy Department, University of Wisconsin, Madison, WI 53706, USA Jungyeon Cho Department of Astronomy and Space Science, Chungnam National University, Daejeon, Korea ABSTRACT The discovery of the first interstellar asteroid, 1I/2017 U1 (‘Oumuamua), has opened a new era for research on interstellar objects. In this paper, we study the rotational dynamics of interstellar asteroids (ISAs) of irregular shapes moving through the interstellar gas. We find that regular mechanical torques resulting from the bombardment of gas flow on the irregular body could be important for the dynamics and destruction of ISAs. Mechanical torques can spin up the ISA, resulting in the breakup of the original ISA into small binary asteroids when the rotation rate exceeds the critical frequency. We find that the breakup timescale is short for ISAs of highly irregular shapes and low tensile strength. We apply our results to the first observed ISA, ‘Oumuamua, and suggest that its extreme elongated shape may originate from a reassembly of the binary fragments due to gravity along its journey in the interstellar medium. The tumbling of ‘Oumuamua could have been induced by rotational disruption due to mechanical torques. Finally, we discuss the survival possibility of high-velocity asteroids presumably formed by tidal disruption of planetary systems by the black hole at the Galactic center. Keywords: asteroids: individual (1I/2017 U1 (‘Oumuamua)) meteorites, meteors, meteoroids arXiv:1802.01335v2 [astro-ph.GA] 8 May 2018 1. INTRODUCTION of the first ISA opens a new era of research on interstel- The detection of the first interstellar object, lar objects. 1I/2017 U1 (‘Oumuamua) by the Pan-STARRS sur- Rotational dynamics is critically important for under- vey (Bacci et al. 2017) implies an abundance popula- standing the formation and evolution of asteroids. For tion of similarly interstellar objects (Meech et al. 2017; solar system asteroids (SSAs), it is widely believed that Do et al. 2018). The elongated shape with an ex- the rotation of small asteroids is excited by Yarkovsky- treme axial ratio of & 5 : 1 of ‘Oumuamua is myste- OKeefe-Radzievskii-Paddack (YORP; Rubincam 2000; rious (Fraser et al. 2018; see also Jewitt et al. 2017 and see also Binzel 2003), while larger ones are driven by Gaidos et al. 2017). Bannister et al. (2017) and Gaidos random collisions with asteroids in the asteroid belt (see (2017) suggested that it may be an elongated object or Bottke et al. 2006 for a review). Tidal encounters be- a contact binary, while others speculate that the bizarre tween the asteroid and a planet system can disrupt large shape might be formed by violent events, such as colli- SSAs. sions during the planet formation stage. The discovery For ISAs such as ‘Oumuamua, the YORP effect is 2 Hoang et al. unlikely important because this ISA does not revolve grain can spin-up dust grains to suprathermal rotation, around the Sun as SSAs. Moreover, collisions of ISAs are i.e., rotating with velocity larger than the thermal ve- expected to be much less frequent due to the low density locity. Hoang et al. (2018) found that the efficiency of of the ISAs (see e.g., Feng & Jones 2018). Therefore, to spinup by mechanical torques depends on the irregular- understand the origin and evolution (in shape and size) ity of grain shapes, such that highly irregular shapes can of ISAs, it is necessary to study physical processes that be spun-up to suprathermal rotation, while axisymmet- can affect the dynamics of ISAs in the interplanetary ric grains experience negligible spinup. and interstellar medium (ISM). SSAs have different shapes, from highly irregular Photometric observations reveal that SSAs have dif- shapes to spheroidal shapes, and a number of SSAs ex- ferent shapes, from highly irregular shapes to spheroidal hibit simple shapes with large planar facets and sharp shapes. Thus, we expect ISAs to also have a variety of edges (Torppa et al. 2003), such as 2100 Ra-Shalom, 43 irregular shapes. Because of their motion through the Ariadne, and 694 Ekard (see Domokos et al. 2009). gas, ISAs should experience regular mechanical torques Therefore, to account for a wide range of shapes of in the same way as an helical dust grain or a wind- ISAs, we assume that the asteroid surface can be repre- mill gets spun-up by the gas flow. The original idea of sented by Nfc facets having random orientations. Thus, mechanical torques for irregular grain shapes was intro- an axisymmetric spheroid has Nfc , and the helical → ∞ duced by Lazarian & Hoang (2007) where the authors grain shape in Lazarian & Hoang (2007) has Nfc = 1. found that the gas flow can produce strong regular me- Let R be the effective size of the irregular asteroid with 5 chanical torques when interacting with the helical grain. mass density ρ. The inertia moment is Ii =8πρR αi/15 Numerical calculations in Das & Weingartner (2016) where αi are the dimensionless parameters of unity with demonstrated the spinup effect by mechanical torques αi = 1 for spherical asteroids. for dust grains of Gaussian random shapes. Recently, We consider an ISA drifting at speed vd through a gas Hoang et al. (2018) quantified the mechanical torques of hydrogen density nH and temperature Tgas. When for realistic grains and found that for highly irregular a stream of gas particles hit the asteroid surface, each shapes, mechanical torques are efficient in spinning-up facet can act as a mirror, acquires an amount of the grains to suprathermal rotation as well as aligning grains momentum due to reflection of the gas flow that provides with magnetic fields. a random contribution to the total torque. Following Due to the increase in mechanical torques with the Hoang et al. (2018), the mechanical torque (MAT) due object’s surface area, an ISA is expected to experience to specular reflection by a facet is approximately given large mechanical torques. As a result, ISAs would be by spun-up and disrupted when the rotation speed exceeds 4πR2 the critical threshold determined by the maximum ten- δΓMAT nH v γ (mHv R) , (1) ∼ N d r d sile strength of the material. Such a rotational disrup- fc tion would be an important process that breaks an ISA where γr is the reflection coefficient, and the grain sur- into small fragments in the ISM. face area is 4πR, nH is the gas number density. The structure of the paper is as follows. In Section 2 The net torque from Nfc facets can be calculated using we calculate the rotation velocity achieved by mechan- the random walk formula: ical torques for ISAs. In Section 3 we discuss the criti- Γ δΓ γ N cal speed and breakup timescale of ISAs by mechanical MAT MAT e fc ∼ 3 torques. These results are applied to ISAs in Section 4. p 2 R 4πγr√γenHmHvd , (2) Finally, 5 summarizes our main results. ∼ √Nfc where γe denotes the fraction of the grain surface area 2. ISA SPINUP BY MECHANICAL TORQUES AND that is substantially exposed to the stream of particles. IMPULSIVE TORQUES From Equations (2), we see that an arbitrary grain Rotational dynamics is important for understanding shape of Nfc facets has mechanical torques reduced by the wide range of sizes and rotation periods of small a factor √Nfc. Such a suppression arises from averag- SSAs, as well as the maximum observed rotation rate of ing individual torques of random facets, which we term large SSAs (Pravec & Harris 2000, see also Jewitt 2012). cancellation effect. For instance, a spheroidal or spher- We will first study the spinup of IASs by mechanical ical shape of Nfc 1 experience negligible mechanical ≫ torques. torques, as expected. The rotation frequency achieved after a time t is given 2.1. Spinup by mechanical torques by Lazarian & Hoang (2007) showed that mechanical Γ t torques due to the reflection a gas flow onto a helical Ω= MAT I1 Spinup and Disruption of interstellar asteroids 3 2 2 −5 sd nH 1km tGyr −1 Assuming that all interstellar dust mass is in 0.1 µm 10 − rads , (3) ≃ 10 30cm 3 R 1/2 particles and a dust-to-gas mass ratio of 0.01, the total α1Nfc number of collisions with 0.1 µm grains is 1/2 where sd = vd/vth with vth = (2kBTgas/mH) , and 9 0.01v tm πR2 the travel time tGyr is expressed in units of 10 yr. Here d H Ncoll −15 3 γe =1/6 is assumed. For perfect reflection, γr = 1, and ∼ (4π/3)ρ 10 cm 21 ×2 sticking collisions have the torque reduced by a factor of 10 sd,1R kmtGyr. (8) 2. ∼ The rotation period induced by mechanical torques is The rotation frequency after Ncoll (Eq. 8) collisions can now be calculated using the total angular momen- −3 1/2 −2 2 30cm α1Nfc tum ∆J from Equation (7): PMAT 175s R hr, (4) ≃ d,1 km n t H Gyr ∆J Ω Ncollδω where sd,1 = (sd/10), and R km is the asteroid radius in ∼ I1 ∼ km. p 3/2 −17 sd,1 1/2 3 −1 For an irregular shape with high helicity, e.g., Nfc 10 3 tGyra−5rads , (9) ∼ ≃ α1R km ! 10, a small asteroid of R =0.1 km moving at supersonic speed (s = 10) can be spun-up to PMAT 0.55 hr after which is negligible compared to the spinup by mechan- d ≈ t = 10 Gyr.
Recommended publications
  • Photometry of Asteroids: Lightcurves of 24 Asteroids Obtained in 1993–2005
    ARTICLE IN PRESS Planetary and Space Science 55 (2007) 986–997 www.elsevier.com/locate/pss Photometry of asteroids: Lightcurves of 24 asteroids obtained in 1993–2005 V.G. Chiornya,b,Ã, V.G. Shevchenkoa, Yu.N. Kruglya,b, F.P. Velichkoa, N.M. Gaftonyukc aInstitute of Astronomy of Kharkiv National University, Sumska str. 35, 61022 Kharkiv, Ukraine bMain Astronomical Observatory, NASU, Zabolotny str. 27, Kyiv 03680, Ukraine cCrimean Astrophysical Observatory, Crimea, 98680 Simeiz, Ukraine Received 19 May 2006; received in revised form 23 December 2006; accepted 10 January 2007 Available online 21 January 2007 Abstract The results of 1993–2005 photometric observations for 24 main-belt asteroids: 24 Themis, 51 Nemausa, 89 Julia, 205 Martha, 225 Henrietta, 387 Aquitania, 423 Diotima, 505 Cava, 522 Helga, 543 Charlotte, 663 Gerlinde, 670 Ottegebe, 693 Zerbinetta, 694 Ekard, 713 Luscinia, 800 Kressmania, 1251 Hedera, 1369 Ostanina, 1427 Ruvuma, 1796 Riga, 2771 Polzunov, 4908 Ward, 6587 Brassens and 16541 1991 PW18 are presented. The rotation periods of nine of these asteroids have been determined for the first time and others have been improved. r 2007 Elsevier Ltd. All rights reserved. Keywords: Asteroids; Photometry; Lightcurve; Rotational period; Amplitude 1. Introduction telescope of the Crimean Astrophysics Observatory in Simeiz. Ground-based observations are the main source of knowledge about the physical properties of the asteroid 2. Observations and their reduction population. The photometric lightcurves are used to determine rotation periods, pole coordinates, sizes and Photometric observations of the asteroids were carried shapes of asteroids, as well as to study the magnitude-phase out in 1993–1994 using one-channel photoelectric photo- relation of different type asteroids.
    [Show full text]
  • CCD Photometry of Six Rapidly Rotating Asteroids
    114 Acknowledgements CCD PHOTOMETRY OF SIX RAPIDLY ROTATING ASTEROIDS This work was done as a part of the REU program in Physics and Astronomy at Texas A&M University-Commerce funded by Kevin B. Alton National Science Foundation grant PHY- 1359409. 70 Summit Ave, Cedar Knolls, NJ 07927 [email protected] References (Received: 2018 Nov 12) Alkema, M.S. (2013). “Asteroid Lightcurve Analysis at Elephant Head Observatory: 2012 November - 2013 April.” Minor Planet Fourier analysis of ccd-based photometric data has led Bull. 40, 133-137. to the determination of synodic periods for the asteroids 216 Kleopatra (5.386 h), 218 Bianca (6.339 h), Florczak, M., Dotto, E., Barucci, M.A., Birlan, M., Erikson, A., 276 Adelheid (6.320 h), 694 Ekard (5.922 h), Fulchignoni, M., Nathues, A., Perret, L., Thebault, P. (1997). 1224 Fantasia (4.995 h), and 1627 Ivar (4.796 h) “Rotational properties of main belt asteroids: photoelectric and CCD observations of 15 objects.” Planet. Space Sci.. 45, 1423- 1435. Photometric data from six rapidly rotating minor planets collected at UnderOak Observatory (UO: Cedar Knolls, NJ) and Desert Harris, A.W., Young, J.W., Scaltriti, F., Zappala, V. (1984). Bloom Observatory (DBO: Benson, AZ) in 2017 and 2018 are “Lightcurves and phase relations of the asteroids 82 Alkmene and reported herein. CCD image acquisition, calibration, registration 444 Gyptis.” Icarus 57, 251-258. and data reduction at both sites has been described elsewhere (Novak and Alton 2018; Alton 2018). In all cases, photometric Higgins, D., Warner, B.D. (2009). “Lightcurve Analysis at data were subjected to Fourier period analysis (FALC; Harris et al.
    [Show full text]
  • RASNZ Occultation Section Circular CN2009/1 ­ April 2013 NOTICES
    ISSN 1176­5038 (Print) RASNZ ISSN 2324­1853 (Online) OCCULTATION CIRCULAR CN2009/1 April 2013 SECTION Lunar limb Profile produced by Dave Herald's Occult program showing 63 events for the lunar graze of a bright, multiple star ZC2349 (aka Al Niyat, sigma Scorpi) on 31 July 2009 by two teams of observers from Wellington and Christchurch. The lunar profile is drawn using data from the Kaguya lunar surveyor, which became available after this event. The path the star followed across the lunar landscape is shown for one set of observers (Murray Forbes and Frank Andrews) by the trail of white circles. There are several instances where a stepped event was seen, due to the two brightest components disappearing or reappearing. See page 61 for more details. Visit the Occultation Section website at http://www.occultations.org.nz/ Newsletter of the Occultation Section of the Royal Astronomical Society of New Zealand Table of Contents From the Director.............................................................................................................................. 2 Notices................................................................................................................................................. 3 Seventh Trans­Tasman Symposium on Occultations............................................................3 Important Notice re Report File Naming...............................................................................4 Observing Occultations using Video: A Beginner's Guide..................................................
    [Show full text]
  • The Ch-‐Class Asteroids
    The Ch-class asteroids: Connecting a visible taxonomic class to a 3-µm band shape Andrew S. Rivkin1*, Cristina A. Thomas2+, Ellen S. Howell3*^, Joshua P. Emery4* 1. The Johns Hopkins University Applied Physics Laboratory 2. NASA Goddard Space Flight Center, 3. Arecibo Observatory, USRA 4. University of Tennessee Accepted to The Astronomical Journal 3 November 2015 *Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. +Currently also at the Planetary Science Institute. Work done while supported by an appointment to the NASA Postdoctoral Program, administered by Oak Ridge Associated Universities through a contract with NASA. ^Currently at Lunar and Planetary Laboratory, University of Arizona, Tucson AZ Abstract Asteroids belonging to the Ch spectral taxonomic class are defined by the presence of an absorption near 0.7 μm, which is interpreted as due to Fe-bearing phyllosilicates. Phyllosilicates also cause strong absorptions in the 3-μm region, as do other hydrated and hydroxylated minerals and H2O ice. Over the past decade, spectral observations have revealed different 3-µm band shapes the asteroid population. Although a formal taxonomy is yet to be fully established, the “Pallas-type” spectral group is most consistent with the presence of phyllosilicates. If Ch class and Pallas type are both indicative of phyllosilicates, then all Ch-class asteroids should also be Pallas-type. In order to test this hypothesis, we obtained 42 observations of 36 Ch-class asteroids in the 2- to 4-µm spectral region.
    [Show full text]
  • The Minor Planet Bulletin 36, 188-190
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 3, A.D. 2010 JULY-SEPTEMBER 81. ROTATION PERIOD AND H-G PARAMETERS telescope (SCT) working at f/4 and an SBIG ST-8E CCD. Baker DETERMINATION FOR 1700 ZVEZDARA: A independently initiated observations on 2009 September 18 at COLLABORATIVE PHOTOMETRY PROJECT Indian Hill Observatory using a 0.3-m SCT reduced to f/6.2 coupled with an SBIG ST-402ME CCD and Johnson V filter. Ronald E. Baker Benishek from the Belgrade Astronomical Observatory joined the Indian Hill Observatory (H75) collaboration on 2009 September 24 employing a 0.4-m SCT PO Box 11, Chagrin Falls, OH 44022 USA operating at f/10 with an unguided SBIG ST-10 XME CCD. [email protected] Pilcher at Organ Mesa Observatory carried out observations on 2009 September 30 over more than seven hours using a 0.35-m Vladimir Benishek f/10 SCT and an unguided SBIG STL-1001E CCD. As a result of Belgrade Astronomical Observatory the collaborative effort, a total of 17 time series sessions was Volgina 7, 11060 Belgrade 38 SERBIA obtained from 2009 August 20 until October 19. All observations were unfiltered with the exception of those recorded on September Frederick Pilcher 18. MPO Canopus software (BDW Publishing, 2009a) employing 4438 Organ Mesa Loop differential aperture photometry, was used by all authors for Las Cruces, NM 88011 USA photometric data reduction. The period analysis was performed using the same program. David Higgins Hunter Hill Observatory The data were merged by adjusting instrumental magnitudes and 7 Mawalan Street, Ngunnawal ACT 2913 overlapping characteristic features of the individual lightcurves.
    [Show full text]
  • Thermal Inertia of Main Belt Asteroids Smaller Than 100 Km from IRAS Data
    Thermal inertia of main belt asteroids smaller than 100 km from IRAS data ,1 Marco Delbo’ ∗ and Paolo Tanga Laboratoire Cassiop´ee, Observatoire de la Cˆote d’Azur BP 4229, 06304 Nice cedex 04, France. Abstract Recent works have shown that the thermal inertia of km-sized near-Earth asteroids (NEAs) is more than two orders of magnitude higher than that of main belt asteroids (MBAs) with sizes (diameters) between 200 and 1,000 km. This confirms the idea that large MBAs, over hundreds millions of years, have developed a fine and thick thermally insulating regolith layer, responsible for the low values of their thermal inertia, whereas km-sized asteroids, having collisional lifetimes of only some millions years, have less regolith, and consequently a larger surface thermal inertia. Because it is believed that regolith on asteroids forms as a result of impact pro- cesses, a better knowledge of asteroid thermal inertia and its correlation with size, arXiv:0808.0869v1 [astro-ph] 6 Aug 2008 taxonomic type, and density can be used as an important constraint for modeling of impact processes on asteroids. However, our knowledge of asteroids’ thermal inertia values is still based on few data points with NEAs covering the size range 0.1–20 km and MBAs that >100 km. Here, we use IRAS infrared measurements to estimate the thermal inertia val- ues of MBAs with diameters <100 km and known shapes and spin vector: filling an important size gap between the largest MBAs and the km-sized NEAs. An update Preprint submitted to Planetary and Space Science 31 October 2018 to the inverse correlation between thermal inertia and diameter is presented.
    [Show full text]
  • The Minor Planet Bulletin Lost a Friend on Agreement with That Reported by Ivanova Et Al
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 3, A.D. 2006 JULY-SEPTEMBER 49. LIGHTCURVE ANALYSIS FOR 19848 YEUNGCHUCHIU Kwong W. Yeung Desert Eagle Observatory P.O. Box 105 Benson, AZ 85602 [email protected] (Received: 19 Feb) The lightcurve for asteroid 19848 Yeungchuchiu was measured using images taken in November 2005. The lightcurve was found to have a synodic period of 3.450±0.002h and amplitude of 0.70±0.03m. Asteroid 19848 Yeungchuchiu was discovered in 2000 Oct. by the author at Desert Beaver Observatory, AZ, while it was about one degree away from Jupiter. It is named in honor of my father, The amplitude of 0.7 magnitude indicates that the long axis is Yeung Chu Chiu, who is a businessman in Hong Kong. I hoped to about 2 times that of the shorter axis, as seen from the line of sight learn the art of photometry by studying the lightcurve of 19848 as at that particular moment. Since both the maxima and minima my first solo project. have similar “height”, it’s likely that the rotational axis was almost perpendicular to the line of sight. Using a remote 0.46m f/2.8 reflector and Apogee AP9E CCD camera located in New Mexico Skies (MPC code H07), images of Many amateurs may have the misconception that photometry is a the asteroid were obtained on the nights of 2005 Nov. 20 and 21. very difficult science. After this learning exercise I found that, at Exposures were 240 seconds.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 6), ^F "T O 414 al Z A (NASA-CR-175350) RADAR INVESTIGATION OF N84-17090 ASTEROIDS Semiannual Status Report, 1 Jul. - 31 Dec. 1983 (Cornell Univ.) 14 p HC A02/MF A01 CSCL 03B Unclas G3/91 00572 CORNELL UNIVERSITY Center for Radiophysics and Space Research ITHACA, N. Y. SEMI-ANNUAL STATUS REPORT to the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION under NASA Grant NAGW-116 Y RADAR INVESTIGATION OF ASTEROIDS D July 1, 1983 - December 31, 1983 Principal Investigator: Professor Steven J. Ostro t n CENTER FOR RADIOPHYSICS AND SPACE RESEARCH CORNELL UNIVERSITY ITHACA, NEW YORK 14853 SEMI-ANNUAL STATUS REPORT NASA Grant NAGW-116 July 1, 1983 - December 31, 1983 RADAR INVESTIGATION OF ASTEROIDS r Prepared January 1984 i Professor Steven J.
    [Show full text]
  • DAMIT: a Database of Asteroid Models
    A&A 513, A46 (2010) Astronomy DOI: 10.1051/0004-6361/200912693 & c ESO 2010 Astrophysics DAMIT: a database of asteroid models J. Durechˇ 1, V. Sidorin2, and M. Kaasalainen3 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Academy of Sciences, Bocníˇ II, 14131 Prague, Czech Republic 3 Tampere University of Technology, PO Box 553, 33101 Tampere, Finland Received 15 June 2009 / Accepted 20 January 2010 ABSTRACT Context. Apart from a few targets that were directly imaged by spacecraft, remote sensing techniques are the main source of infor- mation about the basic physical properties of asteroids, such as the size, the spin state, or the spectral type. The most widely used observing technique – time-resolved photometry – provides us with data that can be used for deriving asteroid shapes and spin states. In the past decade, inversion of asteroid lightcurves has led to more than a hundred asteroid models. In the next decade, when data from all-sky surveys are available, the number of asteroid models will increase. Combining photometry with, e.g., adaptive optics data produces more detailed models. Aims. We created the Database of Asteroid Models from Inversion Techniques (DAMIT) with the aim of providing the astronomical community access to reliable and up-to-date physical models of asteroids – i.e., their shapes, rotation periods, and spin axis directions. Models from DAMIT can be used for further detailed studies of individual objects, as well as for statistical studies of the whole set.
    [Show full text]
  • Thermophysical Modeling of Main-Belt Asteroids from WISE Thermal Data
    Thermophysical modeling of main-belt asteroids from WISE thermal data a, b a c J. Hanuˇs ∗, M. Delbo’ , J. Durechˇ , V. Al´ı-Lagoa aAstronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic bUniversit´eCˆote d’Azur, CNRS–Lagrange, Observatoire de la Cˆote d’Azur, CS 34229 – F 06304 NICE Cedex 4, France cMax-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstraße, Postfach 1312, 85741 Garching, Germany Abstract By means of a varied-shape thermophysical model of Hanusˇ et al. (2015, Icarus, Volume 256) that takes into account asteroid shape and pole uncertainties, we analyze the thermal infrared data acquired by the NASA’s Wide-field Infrared Survey Explorer of about 300 asteroids with derived convex shape models. We utilize publicly available convex shape models and rotation states as input for the thermophysical modeling. For more than one hundred asteroids, the thermophysical modeling gives us an acceptable fit to the thermal infrared data allowing us to report their thermophysical properties such as size, thermal inertia, surface roughness or visible geometric albedo. This work more than doubles the number of asteroids with determined thermophysical properties, especially the thermal inertia. In the remaining cases, the shape model and pole orientation uncertainties, specific rotation or thermophysical properties, poor thermal infrared data or their coverage prevent the determination of reliable thermophysical properties. Finally, we present the main results of the statistical study of derived thermophysical parameters within the whole population of main-belt asteroids and within few asteroid families. Our sizes based on TPM are, in average, consistent with the radiometric sizes reported by Mainzer et al.
    [Show full text]
  • Homogeneous Internal Structure of CM-Like Asteroid (41) Daphne?,?? B
    A&A 623, A132 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833898 & © B. Carry et al. 2019 Astrophysics Homogeneous internal structure of CM-like asteroid (41) Daphne?,?? B. Carry1, F. Vachier2, J. Berthier2, M. Marsset3, P. Vernazza4, J. Grice1,5, W. J. Merline6, E. Lagadec1, A. Fienga7, A. Conrad8, E. Podlewska-Gaca9,11, T. Santana-Ros9, M. Viikinkoski12, J. Hanuš14, C. Dumas15, J. D. Drummond16, P. M. Tamblyn6,17, C. R. Chapman6, R. Behrend18, L. Bernasconi18, P. Bartczak9, Z. Benkhaldoun10, M. Birlan2, J. Castillo-Rogez19, F. Cipriani20, F. Colas2, A. Drouard4, J. Durechˇ 14, B. L. Enke6, S. Fauvaud18,21, M. Ferrais22, R. Fetick4, T. Fusco4, M. Gillon22, E. Jehin22, L. Jorda4, M. Kaasalainen12, M. Keppler13, A. Kryszczynska9, P. Lamy4, F. Marchis23, A. Marciniak9, T. Michalowski9, P. Michel1, M. Pajuelo2,24, P. Tanga1, A. Vigan4, B. Warner25, O. Witasse20, B. Yang26, and A. Zurlo4,27,28 (Affiliations can be found after the references) Received 18 July 2018 / Accepted 7 January 2019 ABSTRACT Context. CM-like asteroids (Ch and Cgh classes) are a major population within the broader C-complex, encompassing about 10% of the mass of the main asteroid belt. Their internal structure has been predicted to be homogeneous, based on their compositional similarity as inferred from spectroscopy and numerical modeling of their early thermal evolution. Aims. Here we aim to test this hypothesis by deriving the density of the CM-like asteroid (41) Daphne from detailed modeling of its shape and the orbit of its small satellite. Methods. We observed Daphne and its satellite within our imaging survey with the Very Large Telescope extreme adaptive-optics SPHERE/ZIMPOL camera and complemented this data set with earlier Keck/NIRC2 and VLT/NACO observations.
    [Show full text]